Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-03T01:14:46.168Z Has data issue: false hasContentIssue false

23 - First-order adjoint method: linear dynamics

from PART VI - DATA ASSIMILATION: DETERMINISTIC/DYNAMIC MODELS

Published online by Cambridge University Press:  18 December 2009

John M. Lewis
Affiliation:
National Severe Storms Laboratory, Oklahoma
S. Lakshmivarahan
Affiliation:
University of Oklahoma
Sudarshan Dhall
Affiliation:
University of Oklahoma
Get access

Summary

In the opening chapter of Part VI we considered a very special dynamical model for pedagogical reasons. Having gained some working knowledge of the methodology for solving the inverse problem using the Lagrangian framework, we now consider the general linear dynamical system. Once we understand the underpinnings of this methodology in the context of a general linear dynamical system, its applicability to a wide variety of linear models is possible.

When compared to Chapter 22, the contents of this chapter are a generalization in one sense and a specialization in another. The generalization comes from the fact that we consider the generic linear dynamical system where the state variables are vectors instead of scalars. The specialty, on the other hand, comes from the fact that we only consider the problem of estimating the initial condition instead of an initial condition and a parameter (x0 and α in the straight line problem).

It could be argued that since few models of interest in real world applications are linear, this chapter's value is essentially academic. While this argument carries some weight, it should be recognized that linear analysis has a fundamental role to play in development of adjoint method for non-linear dynamical systems. For example, one standard approach to non-linear system analysis is using the so-called perturbation method. In this method the non-linear problem is reduced to a local analysis of an associated linear system. Next we want to demonstrate that the data assimilation problem is intrinsically challenging, even when the system is controlled by linear dynamics and observations are linear functions of the state variables.

Type
Chapter
Information
Dynamic Data Assimilation
A Least Squares Approach
, pp. 382 - 400
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×