Published online by Cambridge University Press: 06 August 2009
It is a curious fact that two unrelated families of enzymes have evolved that promote conservative site-specific recombination. Elsewhere in this volume (see Chapter 2), a large family of “tyrosine recombinases” is described, of which phage lambda integrase is the most famous and senior member. The subject of this chapter is a second large family, the “serine recombinases.” The names come from the conserved residue of the recombinase that provides the nucleophile to attack and break the DNA phosphodiester backbone (see “Tn3 and γδ resolvases: cointegrate resolution” section). Although the serine and tyrosine recombinases are unrelated in sequence, structure, or mechanism, there is no obvious distinction between their biological functions. Why two very different types of site-specific recombinases have survived eons of natural selection, yet continue to play similar roles, remains a mystery. Serine recombinases are widespread in the Eubacteria and Archea, but not in Eukarya, where the few examples found so far may be of recent bacterial origin.
A serine recombinase can be identified by similarity of parts or all of its primary amino acid sequence to that of one of the archetypal members of the family [e.g. Tn3 resolvase (Fig. 3.7)]. Several hundreds of such proteins can now be predicted from available DNA sequences (reviewed by Smith and Thorpe, 2002). The relations of the members of the family are discussed later in this chapter.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.