Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-22T18:11:06.012Z Has data issue: false hasContentIssue false

3 - Site-specific recombination by the serine recombinases

Published online by Cambridge University Press:  06 August 2009

Sally J. Rowland
Affiliation:
University of Glasgow
W. Marshall Stark
Affiliation:
University of Glasgow
Peter Mullany
Affiliation:
University College London
Get access

Summary

It is a curious fact that two unrelated families of enzymes have evolved that promote conservative site-specific recombination. Elsewhere in this volume (see Chapter 2), a large family of “tyrosine recombinases” is described, of which phage lambda integrase is the most famous and senior member. The subject of this chapter is a second large family, the “serine recombinases.” The names come from the conserved residue of the recombinase that provides the nucleophile to attack and break the DNA phosphodiester backbone (see “Tn3 and γδ resolvases: cointegrate resolution” section). Although the serine and tyrosine recombinases are unrelated in sequence, structure, or mechanism, there is no obvious distinction between their biological functions. Why two very different types of site-specific recombinases have survived eons of natural selection, yet continue to play similar roles, remains a mystery. Serine recombinases are widespread in the Eubacteria and Archea, but not in Eukarya, where the few examples found so far may be of recent bacterial origin.

A serine recombinase can be identified by similarity of parts or all of its primary amino acid sequence to that of one of the archetypal members of the family [e.g. Tn3 resolvase (Fig. 3.7)]. Several hundreds of such proteins can now be predicted from available DNA sequences (reviewed by Smith and Thorpe, 2002). The relations of the members of the family are discussed later in this chapter.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel-Meguid, S. S., Grindley, N. D. F., Templeton, N. S., and Steitz, T. A. (1984). Cleavage of the site-specific recombination protein γδ resolvase: The smaller of the two fragments binds DNA specifically. Proc. Natl. Acad. Sci. USA, 81, 2001–2005CrossRefGoogle Scholar
Ackroyd, A. J., Avila, P., Parker, C. N., and Halford, S. E. (1990). Site-specific recombination by mutants of Tn21 resolvase with DNA recognition functions from Tn3 resolvase. J Mol Biol, 216, 633–643CrossRefGoogle ScholarPubMed
Akopian, A., He, J., Boocock, M. R., and Stark, W. M. (2003). Chimeric site-specific recombinases with designed DNA sequence recognition. Proc. Natl. Acad. Sci. USA, 100, 8688–8691CrossRefGoogle ScholarPubMed
Alonso, J. C., Weise, F., and Rojo, F. (1995). The Bacillus subtilis histone-like protein Hbsu is required for DNA resolution and DNA inversion mediated by the β recombinase of pSM19035. Mol Microbiol, 18, 471–478CrossRefGoogle Scholar
Arnold, P. H., Blake, D. G., Grindley, N. D. F., Boocock, M. R., and Stark, W. M. (1999). Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. EMBO J., 18, 1407–1414CrossRefGoogle Scholar
Arthur, A., and Sherratt, D. J. (1979). Dissection of the transcription process: A transposon-encoded site-specific recombination system. Mol Gen Genet, 175, 267–274CrossRefGoogle Scholar
Avila, P., Ackroyd, A. J., and Halford, S. E. (1990). DNA binding by mutants of Tn21 resolvase with DNA recognition functions from Tn3 resolvase. J Mol Biol, 216, 645–655CrossRefGoogle ScholarPubMed
Bednarz, A. L., Boocock, M. R., and Sherratt, D. J. (1990). Determinants of correct res site alignment in site-specific recombination by Tn3 resolvase. Genes Dev, 4, 2366–2375CrossRefGoogle ScholarPubMed
Benjamin, H. W., and Cozzarelli, N. R. (1990). Geometric arrangements of Tn3 resolvase sites. J. Biol. Chem., 265, 6441–6447Google ScholarPubMed
Blake, D. G., Boocock, M. R., Sherratt, D. J., and Stark, W. M. (1995). Cooperative binding of Tn3 resolvase monomers to a functionally asymmetric binding site. Curr. Biol., 5, 1036–1046CrossRefGoogle ScholarPubMed
Bliska, J. B., Benjamin, H. W., and Cozzarelli, N. R. (1991). Mechanism of Tn3 resolvase recombination in vivo. J. Biol. Chem., 226, 2041–2047Google Scholar
Boocock, M. R., Brown, J. L., and Sherratt, D. J. (1987). Topological specificity in Tn3 resolvase catalysis. InKelly, T. J. and McMacken, R., eds. DNA replication and recombination (Alan R. Liss, New York), pp. 703–718
Boocock, M. R., Zhu, X., and Grindley, N. D. F. (1995). Catalytic residues of γδ resolvase act in cis. EMBO J., 14, 5129–5140Google Scholar
Breüner, A., Br⊘ndsted, L., and Hammer, K. (2001). Resolvase-like recombination performed by the TP901–1 integrase. Microbiology, 147, 2051–2063CrossRefGoogle ScholarPubMed
Bruist, M. F., Glasgow, A. C., Johnson, R. C., and Simon, M. I. (1987). Fis binding to the recombinational enhancer of the Hin DNA inversion system. Genes Dev, 1, 762–772CrossRefGoogle ScholarPubMed
Burke, M. E., Arnold, P. H., He, J., Wenwieser, S. V. C. T., Rowland, S. J., Boocock, M. R., and Stark, W. M. (2004). Activating mutations of Tn3 resolvase marking interfaces important in recombination catalysis and its regulation. Mol Microbiol, 51, 937–948CrossRefGoogle ScholarPubMed
Canosa, I., Lopez, G., Rojo, F., Boocock, M. R., and Alonso, J. C. (2003). Synapsis and strand exchange in the resolution and DNA inversion reactions catalysed by the β recombinase. Nucleic Acids Res., 31, 1–7CrossRefGoogle ScholarPubMed
Choo, Y., and Isalan, M. (2000). Advances in zinc finger engineering. Curr. Opin. Struct. Biol., 10, 411–416CrossRefGoogle ScholarPubMed
Colloms, S. D., Bath, J., and Sherratt, D. J. (1997). Topological selectivity in Xer site-specific recombination. Cell, 88, 855–864CrossRefGoogle ScholarPubMed
Crellin, P. K., and Rood, J. I. (1997). The resolvase/invertase domain of the site-specific recombinase TnpX is functional and recognizes a target sequence that resembles the junction of the circular form of the Clostridium perfringens transposon Tn4451. J Bacteriol, 179, 5148–5156CrossRefGoogle ScholarPubMed
Crisona, N. J., Kanaar, R., Gonzalez, T. N., Zechiedrich, E. L., Klippel, A., and Cozzarelli, N. R. (1994). Processive recombination by wild-type Gin and an enhancer-independent mutant. Insight into the mechanisms of recombination site selectivity and strand exchange. J Mol Biol, 243, 437–457CrossRefGoogle Scholar
Deufel, A., Hermann, T., Kahmann, R., and Muskhelishvili, G. (1997). Stimulation of DNA inversion by FIS: Evidence for enhancer-independent contacts with the Gin-gix complex. Nucleic Acids Res., 25, 3832–3839CrossRefGoogle ScholarPubMed
Diaz, V., Rojo, F., Martinez, A. C., Alonso, J. C., and Bernad, A. (1999). The prokaryotic β-recombinase catalyses site-specific recombination in mammalian cells. J. Biol. Chem., 274, 6634–6640CrossRefGoogle Scholar
Dröge, P., Hatfull, G. F., Grindley, N. D. F., and Cozzarelli, N. R. (1990). The two functional domains of γδ resolvase act on the same recombination site: Implications for the mechanism of strand exchange. Proc. Natl. Acad. Sci. USA, 87, 5336–5340CrossRefGoogle Scholar
Falvey, E., and Grindley, N. D. F. (1987). Contacts between γδ resolvase and the γδ res site. EMBO J., 6, 815–821Google Scholar
Falvey, E., Hatfull, G. F., and Grindley, N. D. F. (1988). Uncoupling of the recombination and topoisomerase activities of the γδ resolvase by a mutation at the crossover point. Nature, 332, 861–863CrossRefGoogle Scholar
Feng, J. A., Johnson, R. C., and Dickerson, R. E. (1994). Hin recombinase bound to DNA: The origin of specificity in major and minor groove interactions. Science, 263, 348–355CrossRefGoogle ScholarPubMed
Finkel, S. E., and Johnson, R. C. (1992). The FIS protein: It's not just for DNA inversion anymore. Mol Microbiol, 6, 3257–3265CrossRefGoogle Scholar
Ghosh, P., Kim, A. I., and Hatfull, G. F. (2003). The orientation of mycobacteriophage Bxb1 integration is solely dependent on the central dinucleotide of attP and attB. Mol. Cell, 12, 1101–1111CrossRefGoogle ScholarPubMed
Glasgow, A. C., Bruist, M. F., and Simon, M. I. (1989). DNA-binding properties of the Hin recombinase. J. Biol. Chem., 264, 10072–10082Google ScholarPubMed
Gorman, C., and Bullock, C. (2000). Site-specific gene targeting for gene expression in eukaryotes. Curr. Opin. Biotech., 11, 455–460CrossRefGoogle ScholarPubMed
Grainge, I., Buck, D., and Jayaram, M. (2000). Geometry of site alignment during Int family recombination: Antiparallel synapsis by the Flp recombinase. J Mol Biol, 298, 749–764CrossRefGoogle ScholarPubMed
Grindley, N. D. F. (1993). Analysis of a nucleoprotein complex: The synaptosome of γδ resolvase. Science, 262, 738–740CrossRefGoogle Scholar
Grindley, N. D. F. (1994). Resolvase-mediated site-specific recombination. InEckstein, F. and Lilley, D. M. J., eds. Nucleic acids and molecular biology, vol. 8 (Springer-Verlag, Berlin), pp. 236–267CrossRefGoogle Scholar
Grindley, N. D. F. (2002). The movement of Tn3-like elements: Transposition and cointegrate resolution. InCraig, N., Craigie, R., Gellert, M., and Lambowitz, A., eds. Mobile DNA II (ASM Press, Washington, DC), pp. 272–302CrossRefGoogle Scholar
Grindley, N. D. F., Lauth, M. R., Wells, R. G., Wityk, R. J., Salvo, J. J., and Reed, R. R. (1982). Transposon-mediated site-specific recombination: Identification of three binding sites for resolvase at the res site of γδ and Tn3. Cell, 30, 19–27CrossRefGoogle Scholar
Groth, A. C., and Calos, M. P. (2004). Phage integrases: Biology and applications. J Mol Biol, 335, 667–678CrossRefGoogle ScholarPubMed
Groth, A. C., Olivares, E. C., Thyagarajan, B., and Calos, M. P. (2000). A phage integrase directs efficient site-specific integration in human cells. Proc. Natl. Acad. Sci. USA, 97, 5995–6000CrossRefGoogle ScholarPubMed
Haffter, P., and Bickle, T. A. (1988). Enhancer-independent mutants of the Cin recombinase have a relaxed topological specificity. EMBO J., 7, 3991–3996Google ScholarPubMed
Halford, S. E., Jordan, S. L., and Kirkbride, E. A. (1985). The resolvase protein from the transposon Tn21. Mol Gen Genet, 200, 169–175CrossRefGoogle ScholarPubMed
Hall, S. C., and Halford, S. E. (1993). Specificity of DNA recognition in the nucleoprotein complex for site-specific recombination by Tn21 resolvase. Nucleic Acids Res., 21, 5712–5719CrossRefGoogle ScholarPubMed
Hallet, B., and Sherratt, D. J. (1997). Transposition and site-specific recombination: Adapting DNA cut-and-paste mechanisms to a variety of genetic rearrangements. FEMS Microbiol. Rev., 21, 157–178CrossRefGoogle ScholarPubMed
Hatfull, G. F., and Grindley, N. D. F. (1986). Analysis of γδ resolvase mutants in vitro: Evidence for an interaction between serine-10 of resolvase and site I of res. Proc. Natl. Acad. Sci. USA, 83, 5429–5433CrossRefGoogle Scholar
Haykinson, M. J., Johnson, L. M., Soong, J., and Johnson, R. C. (1996). The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specific DNA inversion. Curr. Biol., 6, 163–177CrossRefGoogle ScholarPubMed
Haykinson, M. J., and Johnson, R. C. (1993). DNA looping and the helical repeat in vitro and in vivo: Effect of HU protein and enhancer location on Hin invertasome assembly. EMBO J., 12, 2503–2512Google ScholarPubMed
Heffron, F., McCarthy, B. J., Ohtsubo, H., and Ohtsubo, E. (1979). DNA sequence analysis of the transposon Tn3: Three genes and three sites involved in transposition of Tn3. Cell, 18, 1153–1163CrossRefGoogle ScholarPubMed
Heichman, K. A., and Johnson, R. C. (1990). The Hin invertasome: Protein-mediated joining of distant recombination sites at the enhancer. Science, 249, 511–517CrossRefGoogle ScholarPubMed
Heichman, K. A., Moskowitz, I. P. G., and Johnson, R. C. (1991). Configuration of DNA strands and mechanism of strand exchange in the Hin invertasome as revealed by analysis of recombinant knots. Genes Dev, 5, 1622–1634CrossRefGoogle ScholarPubMed
Heldwein, E. E., and Brennan, R. G. (2001). Crystal structure of the transcription activator BmrR bound to DNA and a drug. Nature, 409, 378–382CrossRefGoogle ScholarPubMed
Huber, H. E., Iida, S., Arber, W., and Bickle, T. A. (1985). Site-specific DNA inversion is enhanced by a DNA sequence element in cis. Proc. Natl. Acad. Sci. USA, 82, 3776–3780CrossRefGoogle ScholarPubMed
Hubner, P., and Arber, W. (1989). Mutational analysis of a prokaryotic recombinational enhancer with two functions. EMBO J., 8, 577–585Google ScholarPubMed
Hughes, R. E., Hatfull, G. F., Rice, P. A., Steitz, T. A., and Grindley, N. D. F. (1990). Cooperativity mutants of the γδ resolvase identify an essential interdimer interaction. Cell, 63, 1331–1338CrossRefGoogle Scholar
Isalan, M., Klug, A., and Choo, Y. (2001). A rapid, generally applicable method to engineer zinc fingers illustrated by targeting the HIV-1 promoter. Nat. Biotechnol., 19, 656–660CrossRefGoogle ScholarPubMed
Iszvák, Z., Khare, D., Behlke, J., Heinemann, U., Plasterk, R. H., and Ivics, Z. (2002). Involvement of a bifunctional, paired-like DNA-binding domain and a transpositional enhancer in Sleeping Beauty transposition. J. Biol. Chem., 277, 34581–34588Google Scholar
Johnson, R. C. (2002). Bacterial site-specific DNA inversion systems. In Craig, N., Craigie, R., Gellert, M., and Lambowitz, A., eds. Mobile DNA II (ASM Press, Washington, DC), pp. 230–271CrossRefGoogle Scholar
Johnson, R. C., and Bruist, M. F. (1989). Intermediates in Hin-mediated DNA inversion: A role for FIS and the recombinational enhancer in the strand exchange reaction. EMBO J., 8, 1581–1590Google ScholarPubMed
Johnson, R. C., and Simon, M. I. (1985). Hin-mediated site-specific recombination requires two 26 bp recombination sites and a 60 bp enhancer. Cell, 41, 781–791CrossRefGoogle Scholar
Kahmann, R., Rudt, F., Koch, C., and Mertens, G. (1985). G inversion in bacteriophage Mu DNA is stimulated by a site within the invertase gene and a host factor. Cell, 41, 771–780CrossRefGoogle Scholar
Kamali-Moghaddam, M., and Sundstrom, L. (2000). Transposon targeting determined by resolvase. FEMS Microbiol. Lett., 186, 55–59CrossRefGoogle ScholarPubMed
Kamp, D., Kardas, W., Ritthaler, W., Sandulache, R., Schmucker, R., and Stern, B. (1984). Comparative analysis of invertible DNA in phage genomes. Cold Spring Harb. Symp. Quant. Biol., 49, 301–311CrossRefGoogle ScholarPubMed
Kanaar, R., Klippel, A., Shekhtman, E., Dungan, J. M., Kahmann, R., and Cozzarelli, N. R. (1990). Processive recombination by the phage Mu Gin system: Implications for the mechanism of DNA exchange, DNA site alignment, and enhancer action. Cell, 62, 353–366CrossRefGoogle Scholar
Kanaar, R., Putte, P., and Cozzarelli, N. R. (1988). Gin-mediated DNA inversion: Product structure and the mechanism of strand exchange. Proc. Natl. Acad. Sci. USA, 85, 752–756CrossRefGoogle ScholarPubMed
Kanaar, R., Putte, P., and Cozzarelli, N. R. (1989). Gin-mediated recombination of catenated and knotted DNA substrates: Implications for the mechanism of interaction between cis-acting sites. Cell, 58, 147–159CrossRefGoogle ScholarPubMed
Katayama, Y., Ito, T., and Hiramatsu, K. (2000). A new class of genetic element, Staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother., 44, 1549–1555CrossRefGoogle ScholarPubMed
Kersulyte, D., Mukhopadhyay, A. K., Shirai, M., Nakazawa, T., and Berg, D. E. (2000). Functional organization and insertion specificity of IS607, a chimeric element of Helicobacter pylori. J Bacteriol, 182, 5300–5308CrossRefGoogle ScholarPubMed
Kilbride, E., Boocock, M. R., and Stark, W. M. (1999). Topological selectivity of a hybrid site-specific recombination system with elements from Tn3 res/resolvase and bacteriophage P1 loxP/Cre. J Mol Biol, 289, 1219–1230CrossRefGoogle ScholarPubMed
Kilby, N. J., Snaith, M. R., and Murray, J. A. H. (1993). Site-specific recombinases: Tools for genetic engineering. Trends Genet., 9, 413–421CrossRefGoogle Scholar
Kitts, P. A., Symington, L. S., Dyson, P., and Sherratt, D. J. (1983). Transposon-encoded site-specific recombination: Nature of the Tn3 DNA sequences which constitute the recombination site res. EMBO J., 2, 1055–1060Google ScholarPubMed
Klippel, A., Cloppenborg, K., and Kahmann, R. (1988b). Isolation and characterisation of unusual gin mutants. EMBO J., 7, 3983–3989Google Scholar
Klippel, A., Kanaar, R., Kahmann, R., and Cozzarelli, N. R. (1993). Analysis of strand exchange and DNA binding of enhancer-independent Gin recombinase mutants. EMBO J., 12, 1047–1057Google ScholarPubMed
Klippel, A., Mertens, G., Patschinsky, T., and Kahmann, R. (1988a). The DNA invertase Gin of phage Mu: Formation of a covalent complex with DNA via a phosphoserine at amino acid position 9. EMBO J., 7, 1229–1237Google Scholar
Kostrewa, D., Granzin, J., Koch, C., Choe, H. W., Raghunathan, S., Wolf, W.. (1991). Three-dimensional structure of the E. coli DNA-binding protein FIS. Nature, 349, 178–180CrossRefGoogle Scholar
Kostriken, R., Morita, C., and Heffron, F. (1981). Transposon Tn3 encodes a site-specific recombination system: Identification of essential sequences, genes, and actual site of recombination. Proc. Natl. Acad. Sci. USA, 78, 4041–4045CrossRefGoogle Scholar
Krasnow, M. A., and Cozzarelli, N. R. (1983). Site-specific relaxation and recombination by the Tn3 resolvase: Recognition of the DNA path between oriented res sites. Cell, 32, 1313–1324CrossRefGoogle ScholarPubMed
Krasnow, M. A., Stasiak, A., Spengler, S. J., Dean, F., Koller, T., and Cozzarelli, N. R. (1983). Determination of the absolute handedness of knots and catenanes of DNANature, 304, 559–560CrossRefGoogle ScholarPubMed
Kunkel, B., Losick, R., and Stragier, P. (1990). The Bacillus subtilis gene for the development transcription factor sigma K is generated by excision of a dispensable DNA element containing a sporulation recombinase gene. Genes Dev, 4, 525–535CrossRefGoogle ScholarPubMed
Leschziner, A. E., and Grindley, N. D. F. (2003). The architecture of the γδ resolvase crossover site synaptic complex revealed by using constrained DNA substrates. Mol. Cell, 12, 775–781CrossRefGoogle ScholarPubMed
Liebert, C. A, Hall, R. M., and Summers, A. O. (1999). Transposon Tn21, flagship of the floating genome. Microbiol. Mol. Biol. Rev., 63, 507–522Google ScholarPubMed
Liu, T., DeRose, E. F., and Mullen, G. P. (1994). Determination of the structure of the DNA binding domain of γδ resolvase in solution. Protein Sci., 3, 1286–1295CrossRefGoogle Scholar
Liu, T., Liu, D., DeRose, E. F. and Mullen, G. P. (1993). Studies of the dimerization and domain structure of γδ resolvase. J. Biol. Chem., 268, 16309–16315Google Scholar
Lyras, D., and Rood, J. I. (2000). Transposition of Tn4451 and Tn4453 involves a circular intermediate that forms a promoter for the large resolvase, TnpX. Mol Microbiol, 38, 588–601CrossRefGoogle ScholarPubMed
Maeser, S., and Kahmann, R. (1991). The Gin recombinase of phage Mu can catalyse site-specific recombination in plant protoplasts. Mol Gen Genet, 230, 170–176CrossRefGoogle ScholarPubMed
Mazzarelli, J. M., Ermácora, M. R., Fox, R. O., and Grindley, N. D. F. (1993). Mapping interactions between the catalytic domain of resolvase and its DNA substrate using cysteine-coupled EDTA-Iron. Biochemistry, 32, 2979–2986CrossRefGoogle ScholarPubMed
McIlwraith, M. J., Boocock, M. R., and Stark, W. M. (1997). Tn3 resolvase catalyses multiple recombination events without intermediate rejoining of DNA ends. J Mol Biol, 266, 108–121CrossRefGoogle ScholarPubMed
Merickel, S. K., Haykinson, M. J., and Johnson, R. C. (1998). Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed site-specific recombination. Genes Dev, 12, 2803–2816CrossRefGoogle Scholar
Mertens, G. A., Klippel, A., Fuss, H., Blocker, H., Frank, R., and Kahmann, R. (1988). Site-specific recombination in bacteriophage Mu: Characterization of binding sites for the DNA invertase Gin. EMBO J., 7, 1219–1227Google ScholarPubMed
Minakhina, S., Kholodii, G., Mindlin, S., Yurieva, O., and Nikiforov, V. (1999). Tn5053 family transposons are res site hunters sensing plasmidal res sites occupied by cognate resolvases. Mol Microbiol, 33, 1059–1068CrossRefGoogle ScholarPubMed
Moskowitz, I. P., Heichman, K. A., and Johnson, R. C. (1991). Alignment of recombination sites in Hin-mediated site-specific recombination. Genes Dev, 5, 1635–1645CrossRefGoogle Scholar
Murley, L. L., and Grindley, N. D. F. (1998). Architecture of the γδ resolvase synaptosome: Oriented heterodimers identify interactions essential for synapsis and recombination. Cell, 95, 553–562CrossRefGoogle Scholar
Nagy, A. (2000). Cre recombinase: The universal reagent for genome tailoring. Genesis 26, 99–1093.0.CO;2-B>CrossRefGoogle ScholarPubMed
Nash, H. A. (1996). The HU and IHF proteins: Accessory factors for complex protein-DNA assemblies. In Lin, E. C. C. and Landes, A. S., eds. Regulation of gene expression in Escherichia coli (RG Landes Company, Austin, TX), pp. 149–179CrossRefGoogle Scholar
Pan, B., Deng, Z., Liu, D., Ghosh, S., and Mullen, G. P. (1997). Secondary and tertiary structural changes in gammadelta resolvase: Comparison of the wild-type enzyme, the I110R mutant, and the C-terminal DNA binding domain in solution. Protein Sci., 6, 1237–1247CrossRefGoogle Scholar
Pan, B., Maciejewski, M. W., Marintchev, A., and Mullen, G. P. (2001). Solution structure of the catalytic domain of γδ resolvase: Implications for the mechanism of catalysis. J Mol Biol, 310, 1089–1107CrossRefGoogle ScholarPubMed
Parker, C. N., and Halford, S. E. (1991). Dynamics of long range interactions on DNA: The speed of synapsis during site-specific recombination by resolvase. Cell, 66, 781–791CrossRefGoogle ScholarPubMed
Petit, M. A., Ehrlich, D., and Janniere, L. (1995). pAMβ1 resolvase has an atypical recombination site and requires a histone-like protein HUMol Microbiol, 18, 271–282CrossRefGoogle Scholar
Ramaswamy, K. S., Carrasco, C. D., Fatma, T., and Golden, J. W. (1997). Cell-type specificity of the Anabaena fdxN-element rearrangement requires xisH and xisIMol Microbiol, 23, 1241–1249CrossRefGoogle ScholarPubMed
Reed, R. R. (1981a). Transposon-mediated site-specific recombination: A defined in vitro system. Cell, 25, 713–719CrossRefGoogle Scholar
Reed, R. R. (1981b). Resolution of cointegrates between transposons γδ and Tn3 defines the recombination site. Proc. Natl. Acad. Sci. USA, 78, 3428–3432CrossRefGoogle Scholar
Reed, R. R., and Grindley, N. D. F. (1981). Transposon-mediated site-specific recombination in vitro: DNA cleavage and protein-DNA linkage at the recombination site. Cell, 25, 721–728CrossRefGoogle ScholarPubMed
Reed, R. R., and Moser, C. D. (1984). Resolvase-mediated recombination intermediates contain a serine residue covalently linked to DNACold Spring Harb. Symp. Quant. Biol., 49, 245–249CrossRefGoogle Scholar
Reed, R. R., Shibuya, G. I., and Steitz, J. A. (1982). Nucleotide sequence of the γδ resolvase gene and demonstration that its gene product acts as a repressor of transcription. Nature, 300, 381–383CrossRefGoogle Scholar
Rice, P. A. (1997). Making DNA do a U-turn: IHF and related proteins. Curr. Opin. Struct. Biol., 7, 86–93CrossRefGoogle ScholarPubMed
Rice, P. A., and Steitz, T. A. (1994a). Model for a DNA-mediated synaptic complex suggested by crystal packing of γδ resolvase subunits. EMBO J., 13, 1514–1524Google Scholar
Rice, P. A., and Steitz, T. A. (1994b). Refinement of γδ resolvase reveals a strikingly flexible molecule. Structure, 2, 371–384CrossRefGoogle Scholar
Rimphanitchayakit, V., Hatfull, G. F., and Grindley, N. D. F. (1989). The 43 residue DNA-binding domain of γδ resolvase binds adjacent major and minor grooves of DNANucleic Acids Res., 17, 1035–1050CrossRefGoogle Scholar
Rojo, F., and Alonso, J. C. (1994). A novel site-specific recombinase encoded by the Streptococcus pyogenes plasmid pSM19035. J Mol Biol, 238, 159–172CrossRefGoogle ScholarPubMed
Rojo, F., and Alonso, J. C. (1995). The β recombinase of plasmid pSM19035 binds to two adjacent sites, making different contacts at each of them. Nucleic Acids Res., 23, 3181–3188CrossRefGoogle Scholar
Rowland, S-J., and Dyke, K. G. H. (1990). Tn552, a novel transposable element from Staphylococcus aureus. Mol Microbiol, 4, 961–975CrossRefGoogle ScholarPubMed
Rowland, S-J., Stark, W. M., and Boocock, M. R. (2002). Sin recombinase from Staphylococcus aureus: Synaptic complex architecture and transposon targeting. Mol Microbiol, 44, 607–619CrossRefGoogle ScholarPubMed
Safo, M. K., Yang, W. Z., Corselli, L., Cramton, S. E., Yuan, H. S., and Johnson, R. C. (1997). The transactivation region of the Fis protein that controls site-specific DNA inversion contains extended mobile beta-hairpin arms. EMBO J., 16, 6860–6873CrossRefGoogle ScholarPubMed
Salvo, J. J., and Grindley, N. D. F. (1988). The γδ resolvase bends the res site into a recombinogenic complex. EMBO J., 11, 3609–3616Google Scholar
Sanderson, M. R., Freemont, P. S., Rice, P. A., Goldman, A., Hatfull, G. F., Grindley, N. D. F., and Steitz, T. A. (1990). The crystal structure of the catalytic domain of the site-specific recombination enzyme γδ resolvase at 2.7 Å resolution. Cell, 63, 1323–1329CrossRefGoogle Scholar
Sarkis, G. J., Murley, L. L., Leschziner, A. E., Boocock, M. R., Stark, W. M., and Grindley, N. D. F. (2001). A model for the γδ resolvase synaptic complex. Mol. Cell, 8, 623–631CrossRefGoogle Scholar
Schneider, F., Schwikardi, M., Muskhelishvili, G., and Dröge, P. (2000). A DNA-binding domain swap converts the invertase Gin into a resolvase. J Mol Biol, 295, 767–775CrossRefGoogle ScholarPubMed
Schwikardi, M., and Dröge, P. (2000). Site-specific recombination in mammalian cells catalyzed by γδ resolvase mutants: Implications for the topology of episomal DNAFEBS Lett., 471, 147–150CrossRefGoogle ScholarPubMed
Sclimenti, C. R., Thyagarajan, B., and Calos, M. P. (2001). Directed evolution of a recombinase for improved genomic integration at a native human sequence. Nucleic Acids Res., 29, 5044–5051CrossRefGoogle Scholar
Sherratt, D. J., and Wigley, D. B. (1998). Conserved themes but novel activities in recombinases and topoisomerases. Cell, 93, 149–152CrossRefGoogle ScholarPubMed
Smith, M. C. A., Till, R., Brady, K., Soultanos, P., Thorpe, H., and Smith, M. C. M. (2004b). Synapsis and DNA cleavage in φc31 integrase-mediated site-specific recombination. Nucleic Acids Res., 32, 2607–2617CrossRefGoogle Scholar
Smith, M. C. A., Till, R., and Smith, M. C. M. (2004a). Switching the polarity of a bacteriophage integration system. Mol Microbiol, 51, 1719–1728CrossRefGoogle Scholar
Smith, M. C. M., and Thorpe, H. M. (2002). Diversity in the serine recombinases. Mol Microbiol, 44, 299–307CrossRefGoogle ScholarPubMed
Soultanas, P., Oram, M., and Halford, S. E. (1995). Site-specific recombination at res sites containing DNA-binding sequences for both Tn21 and Tn3 resolvases. J Mol Biol, 245, 208–218CrossRefGoogle ScholarPubMed
Stark, W. M., and Boocock, M. R. (1994). The linkage change of a knotting reaction catalysed by Tn3 resolvase. J Mol Biol, 239, 25–36CrossRefGoogle ScholarPubMed
Stark, W. M., and Boocock, M. R. (1995). Topological selectivity in site-specific recombination. InSherratt, D. J., ed. Mobile genetic elements (Frontiers in Molecular Biology series) (Oxford University Press), pp. 101–129Google Scholar
Stark, W. M., Grindley, N. D. F., Hatfull, G. F., and Boocock, M. R. (1991). Resolvase-catalysed reactions between res sites differing in the central dinucleotide of subsite I. EMBO J., 10, 3541–3548Google ScholarPubMed
Stark, W. M., Parker, C. N., Halford, S. E., and Boocock, M. R. (1994). Stereoselectivity of DNA catenane fusion by resolvase. Nature, 368, 76–78CrossRefGoogle ScholarPubMed
Stark, W. M., Sherratt, D. J., and Boocock, M. R. (1989). Site-specific recombination by Tn3 resolvase: Topological changes in the forward and reverse reactions. Cell, 58, 779–790CrossRefGoogle ScholarPubMed
Stoll, S. M., Ginsburg, D. S., and Calos, M. P. (2002). Phage TP901–1 site-specific integrase functions in human cells. J Bacteriol, 184, 3657–3663CrossRefGoogle ScholarPubMed
Thorpe, H. M., and Smith, M. C. M. (1998). In vitro site-specific integration of bacteriophage DNA catalysed by a recombinase of the resolvase/invertase family. Proc. Natl. Acad. Sci. USA, 95, 5505–5510CrossRefGoogle Scholar
Thorpe, H. M., Wilson, S. E., and Smith, M. C. M. (2000). Control of directionality in the site-specific recombination system of the Streptomyces phage phiC31. Mol Microbiol, 38, 232–241CrossRefGoogle ScholarPubMed
Travers, A., Schneider, R., and Muskhelishvili, G. (2001). DNA supercoiling and transcription in Escherichia coli: The FIS connection. Biochimie, 83, 213–217CrossRefGoogle ScholarPubMed
Wang, H., Roberts, A. P., Lyras, D., Rood, J. I., Wilks, M., and Mullany, P. (2000). Characterization of the ends and target sites of the novel conjugative transposon Tn5397 from Clostridium difficile: Excision and circularization are mediated by a large resolvase, TndX. J Bacteriol, 182, 3775–3783CrossRefGoogle ScholarPubMed
Wasserman, S. A., and Cozzarelli, N. R. (1985). Determination of the stereostructure of the product of Tn3 resolvase by a general method. Proc. Natl. Acad. Sci. USA, 82, 1079–1083CrossRefGoogle ScholarPubMed
Wasserman, S. A., Dungan, J. M., and Cozzarelli, N. R. (1985). Discovery of a predicted DNA knot substantiates a model for site-specific recombination. Science, 229, 171–174CrossRefGoogle ScholarPubMed
Watson, M. A., Boocock, M. R., and Stark, W. M. (1996). Rate and selectivity of synapsis of res recombination sites by Tn3 resolvase. J Mol Biol, 257, 317–329CrossRefGoogle ScholarPubMed
Wells, R. G., and Grindley, N. D. F. (1984). Analysis of the γδ res site: Sites required for site-specific recombination and gene expression. J Mol Biol, 179, 667–687CrossRefGoogle Scholar
Yang, W., and Steitz, T. A. (1995). Crystal structure of the site-specific recombinase γδ resolvase complexed with a 34 bp cleavage site. Cell, 82, 193–207CrossRefGoogle Scholar
Yuan, H. S., Finkel, S. E., Feng, J. A., Kaczor-Grzeskowiak, M., Johnson, R. C., and Dickerson, R. E. (1991). The molecular structure of wild-type and a mutant Fis protein: Relationship between mutational changes and recombinational enhancer function or DNA binding. Proc. Natl. Acad. Sci. USA, 88, 9558–9562CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×