Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-22T19:03:32.879Z Has data issue: false hasContentIssue false

5 - The F-plasmid, a paradigm for bacterial conjugation

Published online by Cambridge University Press:  06 August 2009

Michael J. Gubbins
Affiliation:
Department of Biological Sciences, University of Alberta
William R. Will
Affiliation:
Department of Biological Sciences, University of Alberta
Laura S. Frost
Affiliation:
Department of Biological Sciences, University of Alberta
Peter Mullany
Affiliation:
University College London
Get access

Summary

The F factor is often associated with Escherichia coli and appears to have been adapted by the bacterial host to act as an agent of genetic exchange and evolution. F encodes a type IV secretion system (T4SS) that enables bacterial conjugation, the transfer of DNA from a donor F+ to a recipient F cell. The delivery of DNA containing either host or foreign genes has important consequences for the bacterium, allowing it to enlarge or modify its genetic content and rapidly adapt to an environmental niche. Unlike other plasmids, the conjugative functions of F and F-like plasmids appear to be controlled by a complex regulatory network that involves many host proteins resulting in a symbiotic relation between F and its host. This chapter outlines the predicted and known functions for all the genes on the F plasmid and its close relatives, and describes our current knowledge about the regulation of F conjugation.

BRIEF HISTORY OF THE F PLASMID

The discovery of horizontal gene transfer between bacteria can be attributed to the work of Lederberg and Tatum (1946), who observed that different strains of E. coli K-12 could be genetically and phenotypically altered when mixed together. A series of experiments led to the conclusion that direct contact between bacteria was required in order for genetic material to be transferred between the cells (Davis, 1950). This transfer was found to occur in one direction, from donor to recipient cells, by a mechanism contained within the donor cells (Hayes, 1952).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achtman, M., Manning, P. A., Kusecek, B., Schwuchow, S., and Willetts, N. (1980) A genetic analysis of F sex factor cistrons needed for surface exclusion in Escherichia coli. J. Mol. Biol 138: 779–795CrossRefGoogle ScholarPubMed
Ali Azam, T., Iwata, A., Nishimura, A., Ueda, S., and Ishihama, A. (1999) Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol 181: 6361–6370Google ScholarPubMed
Anthony, K. G., Klimke, W. A., Manchak, J., and Frost, L. S. (1999) Comparison of proteins involved in pilus synthesis and mating pair stabilization from the related plasmids F and R100–1: Insights into the mechanism of conjugation. J Bacteriol 181: 5149–5159Google ScholarPubMed
Anthony, K. G., Sherburne, C., Sherburne, R., and Frost, L. S. (1994) The role of the pilus in recipient cell recognition during bacterial conjugation mediated by F-like plasmids. Mol Microbiol 13: 939–953CrossRefGoogle ScholarPubMed
Bagdasarian, M., Bailone, A., Angulo, J. F., Scholz, P., Bagdasarian, M., and Devoret, R. (1992) PsiB, and anti-SOS protein, is transiently expressed by the F sex factor during its transmission to an Escherichia coli K-12 recipient. Mol Microbiol 6: 885–893CrossRefGoogle Scholar
Bailone, A., Backman, A., Sommer, S., Celerier, J., Bagdasarian, M. M., Bagdasarian, M., and Devoret, R. (1988) PsiB polypeptide prevents activation of RecA protein in Escherichia coli. Mol Gen Genet 214: 389–395CrossRefGoogle ScholarPubMed
Balke, V. L., and Gralla, J. D. (1987) Changes in the linking number of supercoiled DNA accompany growth transitions in Escherichia coli. J Bacteriol 169: 4499–4506CrossRefGoogle ScholarPubMed
Bates, S., Roscoe, R. A., Althorpe, N. J., Brammar, W. J., and Wilkins, B. M. (1999) Expression of leading region genes on IncI1 plasmid ColIb-P9: Genetic evidence for single-stranded DNA transcription. Microbiology 145 (Pt 10): 2655–2662CrossRefGoogle ScholarPubMed
Bayer, M., Eferl, R., Zellnig, G., Teferle, K., Dijkstra, A., Koraimann, G., and Hogenauer, G. (1995) Gene 19 of plasmid R1 is required for both efficient conjugative DNA transfer and bacteriophage R17 infection. J Bacteriol 177: 4279–4288CrossRefGoogle Scholar
Beaber, J. W., Hochhut, B., and Waldor, M. K. (2002) Genomic and functional analyses of SXT, an integrating antibiotic resistance gene transfer element derived from Vibrio cholerae. J Bacteriol 184: 4259–4269CrossRefGoogle ScholarPubMed
Benz, I., and Schmidt, M. A. (1989) Cloning and expression of an adhesin (AIDA-I) involved in diffuse adherence of enteropathogenic Escherichia coli. Infect. Immun. 57: 1506–1511Google ScholarPubMed
Bergquist, P. L., Saadi, S., and Maas, W. K. (1986) Distribution of basic replicons having homology with RepFIA, RepFIB, and RepFIC among IncF group plasmids. Plasmid 15: 19–34CrossRefGoogle ScholarPubMed
Boltner, D., MacMahon, C., Pembroke, J. T., Strike, P., and Osborn, A. M. (2002) R391: A conjugative integrating mosaic comprised of phage, plasmid, and transposon elements. J Bacteriol 184: 5158–5169CrossRefGoogle ScholarPubMed
Boyd, E. F., Hill, C. W., Rich, S. M., and Hartl, D. L. (1996) Mosaic structure of plasmids from natural populations of Escherichia coli. Genetics 143: 1091–1100Google ScholarPubMed
Brinton, C. C., Gemski, P., and Carnahan, J. (1964) A new type of bacterial pilus genetically controlled by the fertility factor of E. coli K-12 and its role in chromosome transfer. Proc. Natl. Acad. Sci. U S A 52: 776–783CrossRefGoogle ScholarPubMed
Byrd, D. R., Sampson, J. K., Ragonese, H. M., and Matson, S. W. (2002) Structure-function analysis of Escherichia coli DNA helicase I reveals non-overlapping transesterase and helicase domains. J. Biol. Chem. 277: 42645–42653CrossRefGoogle ScholarPubMed
Cabezon, E., Sastre, J. I., and Cruz, F. (1997) Genetic evidence of a coupling role for the TraG protein family in bacterial conjugation. Mol Gen Genet 254: 400–406Google ScholarPubMed
Camacho, E. M., and Casadesus, J. (2002) Conjugal transfer of the virulence plasmid of Salmonella enterica is regulated by the leucine-responsive regulatory protein and DNA adenine methylation. Mol Microbiol 44: 1589–1598CrossRefGoogle ScholarPubMed
Carter, J. R., Patel, D. R., and Porter, R. D. (1992) The role of oriT in tra-dependent enhanced recombination between mini-F-lac-oriT and lambda plac5. Genet. Res. 59: 157–165CrossRefGoogle ScholarPubMed
Carter, J. R., and Porter, R. D. (1991) traY and traI are required for oriT-dependent enhanced recombination between lac-containing plasmids and lambda plac5. J Bacteriol 173: 1027–1034CrossRefGoogle ScholarPubMed
Cascales, E., and Christie, P. D. (2004) Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304: 1170–1173CrossRefGoogle ScholarPubMed
Chase, J. W., Merrill, B. M., and Williams, K. R. (1983) F sex factor encodes a single-stranded DNA binding protein (SSB) with extensive sequence homology to Escherichia coli SSB. Proc. Natl. Acad. Sci. U S A 80: 5480–5484CrossRefGoogle ScholarPubMed
Cheah, K. C., and Skurray, R. (1986) The F plasmid carries an IS3 insertion within finO. J. Gen. Microbiol. 132 (Pt 12): 3269–3275Google Scholar
Christensen, B. B., Sternberg, C., Andersen, J. B., Eberl, L., Moller, S., Givskov, M., and Molin, S. (1998) Establishment of new genetic traits in a microbial biofilm community. Appl. Environ. Microbiol. 64: 2247–2255Google Scholar
Cosma, C. L., Danese, P. N., Carlson, J. H., Silhavy, T. J., and Snyder, W. B. (1995) Mutational activation of the Cpx signal transduction pathway of Escherichia coli suppresses the toxicity conferred by certain envelope-associated stresses. Mol Microbiol 18: 491–505CrossRefGoogle ScholarPubMed
Csitkovits, V. C., and Zechner, E. L. (2003) Extent of single-stranded DNA required for efficient TraI helicase activity in vitro. J. Biol. Chem. 278: 48696–48703CrossRefGoogle ScholarPubMed
D'Ari, R., Lin, R. T., and Newman, E. B. (1993) The leucine-responsive regulatory protein: More than a regulator? Trends Biochem. Sci. 18: 260–263CrossRefGoogle ScholarPubMed
Danese, P. N., Snyder, W. B., Cosma, C. L., Davis, L. J., and Silhavy, T. J. (1995) The Cpx two-component signal transduction pathway of Escherichia coli regulates transcription of the gene specifying the stress-inducible periplasmic protease, DegP. Genes Dev. 9: 387–398CrossRefGoogle ScholarPubMed
Dao-Thi, M. H., Charlier, D., Loris, R., Maes, D., Messens, J., Wyns, L., and Backmann, J. (2002) Intricate interactions within the ccd plasmid addiction system. J. Biol. Chem. 277: 3733–3742CrossRefGoogle ScholarPubMed
Dartigalongue, C., and Raina, S. (1998) A new heat-shock gene, ppiD, encodes a peptidyl-prolyl isomerase required for folding of outer membrane proteins in Escherichia coli. EMBO J. 17: 3968–3980CrossRefGoogle ScholarPubMed
Datta, N. (1985) Plasmids as organisms. Basic Life Sci. 30: 3–16Google ScholarPubMed
Davis, B. D. (1950) Non-filtrability of the agents of genetic recombination in E. coli. J Bacteriol 60: 507–508Google Scholar
Davison, J. (1999) Genetic exchange between bacteria in the environment. Plasmid 42: 73–91CrossRefGoogle ScholarPubMed
Wulf, P., Kwon, O., and Lin, E. C. (1999) The CpxRA signal transduction system of Escherichia coli: Growth-related autoactivation and control of unanticipated target operons. J Bacteriol 181: 6772–6778Google ScholarPubMed
Dempsey, W. B. (1989) Sense and antisense transcripts of traM, a conjugal transfer gene of the antibiotic resistance plasmid R100. Mol Microbiol 3: 561–570CrossRefGoogle ScholarPubMed
Dempsey, W. B. (1994) traJ sense RNA initiates at two different promoters in R100–1 and forms two stable hybrids with antisense FinP RNA. Mol Microbiol 13: 313–326CrossRefGoogle ScholarPubMed
Di Laurenzio, L., Scraba, D. G., Paranchych, W., and Frost, L. S. (1995) Studies on the binding of integration host factor (IHF) and TraM to the origin of transfer of the IncFV plasmid pED208. Mol Gen Genet 247: 726–734CrossRefGoogle ScholarPubMed
Dillard, J. P., and Seifert, H. S. (2001) A variable genetic island specific for Neisseria gonorrhoeae is involved in providing DNA for natural transformation and is found more often in disseminated infection isolates. Mol Microbiol 41: 263–277CrossRefGoogle ScholarPubMed
Disque-Kochem, C., and Dreiseikelmann, B. (1997) The cytoplasmic DNA-binding protein TraM binds to the inner membrane protein TraD in vitro. J Bacteriol 179: 6133–6137CrossRefGoogle ScholarPubMed
Disque-Kochem, C., Seidel, U., Helsberg, M., and Eichenlaub, R. (1986) The repeated sequences (incB) preceding the protein E gene of plasmid mini-F are essential for replication. Mol Gen Genet 202: 132–135CrossRefGoogle Scholar
Dong, J., Iuchi, S., Kwan, H. S., Lu, Z., and Lin, E. C. (1993) The deduced amino-acid sequence of the cloned cpxR gene suggests the protein is the cognate regulator for the membrane sensor, CpxA, in a two-component signal transduction system of Escherichia coli. Gene 136: 227–230Google Scholar
Doran, T. J., Loh, S. M., Firth, N., and Skurray, R. A. (1994) Molecular analysis of the F plasmid traVR region: traV encodes a lipoprotein. J Bacteriol 176: 4182–4186CrossRefGoogle Scholar
Dorman, C. J., Barr, G. C., Bhriain, N. N., and Higgins, C. F. (1988) DNA supercoiling and the anaerobic and growth phase regulation of tonB gene expression. J Bacteriol 170: 2816–2826CrossRefGoogle ScholarPubMed
Eichenlaub, R., Figurski, D., and Helinski, D. R. (1977) Bidirection replication from a unique origin in a mini-F plasmid. Proc. Natl. Acad. Sci. U.S.A 74: 1138–1141CrossRefGoogle Scholar
Eichenlaub, R., Wehlmann, H., and Ebbers, J. (1981) Plasmid mini-F encoded functions involved in replication and incompatibility. In Levy, S. B., Clowes, R. C., and Koenig, E. L. (eds). Molecular biology, pathogenicity, and ecology of bacterial plasmids. New York: Plenum, pp. 327–336CrossRefGoogle Scholar
Eliasson, A., Bernander, R., and Nordstrom, K. (1996) Random initiation of replication of plasmids P1 and F (oriS) when integrated into the Escherichia coli chromosome. Mol Microbiol 20: 1025–1032CrossRefGoogle Scholar
Elton, T. C., Ahsan, I. and L. S. Frost. (2003) Induction of F pilus retraction by a filamentous phage pIII protein fragment. Understanding Phage Display 2003, Vancouver, B. C.
Elton, T. C., Frost, L. S., and Hazes, B. (2004) The cryptic gene trbB of the F plasmid encodes a protein involved in disulfide bond formation. Submitted
Everett, R., and Willetts, N. (1980) Characterisation of an in vivo system for nicking at the origin of conjugal DNA transfer of the sex factor F. J. Mol. Biol 136: 129–150CrossRefGoogle Scholar
Fekete, R. A., and Frost, L. S. (2000) Mobilization of chimeric oriT plasmids by F and R100–1: Role of relaxosome formation in defining plasmid specificity. J Bacteriol 182: 4022–4027CrossRefGoogle ScholarPubMed
Fekete, R. A., and Frost, L. S. (2002) Characterizing the DNA contacts and cooperative binding of F plasmid TraM to its cognate sites at oriTJ. Biol. Chem. 277: 16705–16711CrossRefGoogle ScholarPubMed
Finlay, B. B., Frost, L. S., Paranchych, W., and Willetts, N. S. (1986) Nucleotide sequences of five IncF plasmid finP alleles. J Bacteriol 167: 754–757CrossRefGoogle ScholarPubMed
Finnegan, D., and Willetts, N. (1973) The site of action of the F transfer inhibitor. Mol Gen Genet 127: 307–316CrossRefGoogle Scholar
Firth, N., Ippen-Ihler, K., and Skurray, R. A. (1996) Structure and function of the F factor and mechanism of conjugation. In Neidhardt, F. C.., (eds). Escherichia coli and Salmonella: Cellular and molecular biology.Washington, DC: ASM Press, pp. 2377–2401Google Scholar
Foster, P. L. (2000) Adaptive mutation: Implications for evolution. BioEssays 22: 1067–10743.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Foster, P. L., and Cairns, J. (1992) Mechanisms of directed mutation. Genetics 131: 783–789Google ScholarPubMed
Foster, P. L., and Trimarchi, J. M. (1995a) Adaptive reversion of an episomal frameshift mutation in Escherichia coli requires conjugal functions but not actual conjugation. Proc. Natl. Acad. Sci. U S A 92: 5487–5490CrossRefGoogle Scholar
Foster, P. L., and Trimarchi, J. M. (1995b) Conjugation is not required for adaptive reversion of an episomal frameshift mutation in Escherichia coli. J Bacteriol 177: 6670–6671CrossRefGoogle Scholar
Franch, T., Petersen, M., Wagner, E. G., Jacobsen, J. P., and Gerdes, K. (1999) Antisense RNA regulation in prokaryotes: Rapid RNA/RNA interaction facilitated by a general U-turn loop structure. J Mol Biol 294: 1115–1125CrossRefGoogle ScholarPubMed
Frost, L. S., Ippen-Ihler, K., and Skurray, R. A. (1994) Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol. Rev. 58: 162–210Google ScholarPubMed
Frost, L. S., and Manchak, J. (1998) F-phenocopies: Characterization of expression of the F transfer region in stationary phase. Microbiology 144 (Pt 9): 2579–2587CrossRefGoogle Scholar
Frost, L. S., Paranchych, W., and Willetts, N. S. (1984) DNA sequence of the F traALE region that includes the gene for F pilin. J Bacteriol 160: 395–401Google Scholar
Galitski, T., and Roth, J. R. (1995) Evidence that F plasmid transfer replication underlies apparent adaptive mutation. Science 268: 421–423CrossRefGoogle ScholarPubMed
Gamas, P., Caro, L., Galas, D., and Chandler, M. (1987) Expression of F transfer functions depends on the Escherichia coli integration host factor. Mol Gen Genet 207: 302–305CrossRefGoogle ScholarPubMed
Gaudin, H. M., and Silverman, P. M. (1993) Contributions of promoter context and structure to regulated expression of the F plasmid traY promoter in Escherichia coli K-12. Mol Microbiol 8: 335–342CrossRefGoogle Scholar
Ghetu, A. F., Arthur, D. C., Kerppola, T. K., and Glover, J. N. (2002) Probing FinO-FinP RNA interactions by site-directed protein-RNA crosslinking and gelFRET. RNA 8: 816–823CrossRefGoogle ScholarPubMed
Ghetu, A. F., Gubbins, M. J., Frost, L. S., and Glover, J. N. (2000) Crystal structure of the bacterial conjugation repressor FinO. Nat. Struct. Biol 7: 565–569Google ScholarPubMed
Ghigo, J. M. (2001) Natural conjugative plasmids induce bacterial biofilm development. Nature 412: 442–445CrossRefGoogle ScholarPubMed
Gilmour, M. W., Gunton, J. E., Lawley, T. D., and Taylor, D. E. (2003) Interaction between the IncHI1 plasmid R27 coupling protein and type IV secretion system: TraG associates with the coiled-coil mating pair formation protein TrhB. Mol Microbiol 49: 105–116CrossRefGoogle ScholarPubMed
Goldstein, E., and Drlica, K. (1984) Regulation of bacterial DNA supercoiling: Plasmid linking numbers vary with growth temperature. Proc. Natl. Acad. Sci. U S A 81: 4046–4050CrossRefGoogle ScholarPubMed
Gomis-Ruth, F. X., Cruz, F., and Coll, M. (2002) Structure and role of coupling proteins in conjugal DNA transfer. Res. Microbiol. 153: 199–204CrossRefGoogle ScholarPubMed
Gomis-Ruth, F. X., Moncalian, G., Perez-Luque, R., Gonzalez, A., Cabezon, E., Cruz, F., and Coll, M. (2001) The bacterial conjugation protein TrwB resembles ring helicases and F1-ATPase. Nature 409: 637–641CrossRefGoogle ScholarPubMed
Gordon, G. S., Sitnikov, D., Webb, C. D., Teleman, A., Straight, A., Losick, R.. (1997) Chromosome and low copy plasmid segregation in E. coli: Visual evidence for distinct mechanisms. Cell 90: 1113–1121CrossRefGoogle Scholar
Grandoso, G., Avila, P., Cayon, A., Hernando, M. A., Llosa, M., and Cruz, F. (2000) Two active-site tyrosyl residues of protein TrwC act sequentially at the origin of transfer during plasmid R388 conjugation. J Mol Biol 295: 1163–1172CrossRefGoogle ScholarPubMed
Gubbins, M. J., Arthur, D. C., Ghetu, A. F., Glover, J. N., and Frost, L. S. (2003) Characterizing the structural features of RNA/RNA interactions of the F-plasmid FinOP fertility inhibition system. J. Biol. Chem. 278: 27663–27671CrossRefGoogle ScholarPubMed
Gubbins, M. J., Lau, I., Will, W. R., Manchak, J. M., Raivio, T. L., and Frost, L. S. (2002) The positive regulator, TraJ, of the Escherichia coli F plasmid is unstable in a cpxA∗ background. J Bacteriol 184: 5781–5788CrossRefGoogle Scholar
Guyer, M. S. (1978) The gamma delta sequence of F is an insertion sequence. J Mol Biol 126: 347–365CrossRefGoogle ScholarPubMed
Hanzawa, Y., Oka, C., Ishiguro, N., and Sato, G. (1984) Incompatibility groups of R plasmids in Escherichia coli isolated from animal waste. Nippon Juigaku. Zasshi 46: 453–457CrossRefGoogle ScholarPubMed
Harris, R. L., Hombs, V., and Silverman, P. M. (2001) Evidence that F-plasmid proteins TraV, TraK and TraB assemble into an envelope-spanning structure in Escherichia coli. Mol Microbiol 42: 757–766CrossRefGoogle ScholarPubMed
Harwood, C. R., and Meynell, E. (1975) Cyclic AMP and the production of sex pili by E. coli K-12 carrying derepressed sex factors. Nature 254: 628–660CrossRefGoogle ScholarPubMed
Hausner, M., and Wuertz, S. (1999) High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl. Environ. Microbiol. 65: 3710–3713Google ScholarPubMed
Hayes, W. (1952) Genetic recombination in Bact. coli K12: Analysis of the stimulating effect of ultraviolet light. Nature 169: 1017CrossRefGoogle Scholar
Hayes, W. (1953) Observations on a transmissible agent determining sexual differentiation in Bact. coli. J. Gen. Microbiol. 8: 72–88Google Scholar
Hayes, W. (1964) The genetics of bacteria and their viruses.New York: John Wiley and Sons, p. 740Google Scholar
Higgins, C. F., Dorman, C. J., Stirling, D. A., Waddell, L., Booth, I. R., May, G., and Bremer, E. (1988) A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli. Cell 52:569–584CrossRefGoogle Scholar
Hoch, J. A., and Silhavy, T. J. (1995) Two-component signal transduction.Washington, DC: American Society for Microbiology PressGoogle Scholar
Hohn, B., and Korn, D. (1969) Cosegregation of a sex factor with the Escherichia coli chromosome during curing by acridine orange. J Mol Biol 45: 385–395CrossRefGoogle ScholarPubMed
Howard, M. T., Nelson, W. C., and Matson, S. W. (1995) Stepwise assembly of a relaxosome at the F plasmid origin of transfer. J. Biol. Chem. 270: 28381–28386Google Scholar
Hu, S., Ohtsubo, E., and Davidson, N. (1975) Electron microscopic heteroduplex studies of sequence relations among plasmids of Escherichia coli: Structure of F13 and related F-primes. J Bacteriol 122: 749–763Google ScholarPubMed
Hu, S., Otsubo, E., Davidson, N., and Saedler, H. (1975a) Electron microscope heteroduplex studies of sequence relations among bacterial plasmids: Identification and mapping of the insertion sequences IS1 and IS2 in F and R plasmids. J Bacteriol 122: 764–775Google Scholar
Hu, S., Ptashne, K., Cohen, S. N., and Davidson, N. (1975b) Alphabeta sequence of F is IS31. J Bacteriol 123: 687–692Google Scholar
Jalajakumari, M. B., Guidolin, A., Buhk, H. J., Manning, P. A., Ham, L. M., Hodgson, A. L.. (1987) Surface exclusion genes traS and traT of the F sex factor of Escherichia coli K-12. Determination of the nucleotide sequence and promoter and terminator activities. J Mol Biol 198: 1–11CrossRefGoogle Scholar
Jensen, P. R., Loman, L., Petra, B., Weijden, C., and Westerhoff, H. V. (1995) Energy buffering of DNA structure fails when Escherichia coli runs out of substrate. J Bacteriol 177: 3420–3426CrossRefGoogle Scholar
Jerome, L. J., and Frost, L. S. (1999) In vitro analysis of the interaction between the FinO protein and FinP antisense RNA of F-like conjugative plasmids. J. Biol. Chem. 274: 10356–10362CrossRefGoogle ScholarPubMed
Jerome, L. J., Biesen, T., and Frost, L. S. (1999) Degradation of FinP antisense RNA from F-like plasmids: The RNA-binding protein, FinO, protects FinP from ribonuclease E. J Mol Biol 285: 1457–1473CrossRefGoogle ScholarPubMed
Jones, C. H., Danese, P. N., Pinkner, J. S., Silhavy, T. J., and Hultgren, S. J. (1997) The chaperone-assisted membrane release and folding pathway is sensed by two signal transduction systems. EMBO J. 16: 6394–6406CrossRefGoogle ScholarPubMed
Karem, K., and Foster, J. W. (1993) The influence of DNA topology on the environmental regulation of a pH-regulated locus in Salmonella typhimurium. Mol Microbiol 10: 75–86CrossRefGoogle ScholarPubMed
Kathir, P., and Ippen-Ihler, K. (1991) Construction and characterization of derivatives carrying insertion mutations in F plasmid transfer region genes, trbA, artA, traQ, and trbBPlasmid 26: 40–54CrossRefGoogle ScholarPubMed
Kaufmann, A., Stierhof, Y. D., and Henning, U. (1994) New outer membrane-associated protease of Escherichia coli K-12. J Bacteriol 176: 359–367CrossRefGoogle ScholarPubMed
Kim, S. R., Maenhaut-Michel, G., Yamada, M., Yamamoto, Y., Matsui, K., Sofuni, T., Nohmi, T.. (1997) Multiple pathways for SOS-induced mutagenesis in Escherichia coli: An overexpression of dinB/dinP results in strongly enhancing mutagenesis in the absence of any exogenous treatment to damage DNA. Proc. Natl. Acad. Sci. U S A 94: 13792–13797CrossRefGoogle ScholarPubMed
Kofoid, E., Bergthorsson, U., Slechta, E. S., and Roth, J. R. (2003) Formation of an F′ plasmid by recombination between imperfectly repeated chromosomal Rep sequences: A closer look at an old friend (F′(128) pro lac). J Bacteriol 185: 660–663CrossRefGoogle Scholar
Komori, H., Matsunaga, F., Higuchi, Y., Ishiai, M., Wada, C., and Miki, K. (1999) Crystal structure of a prokaryotic replication initiator protein bound to DNA at 2.6 Å resolution. EMBO J. 18: 4597–4607CrossRefGoogle ScholarPubMed
Koraimann, G., Koraimann, C., Koronakis, V., Schlager, S., and Hogenauer, G. (1991) Repression and derepression of conjugation of plasmid R1 by wild-type and mutated finP antisense RNA. Mol Microbiol 5: 77–87CrossRefGoogle ScholarPubMed
Koraimann, G., Teferle, K., Markolin, G., Woger, W., and Hogenauer, G. (1996) The FinOP repressor system of plasmid R1: Analysis of the antisense RNA control of traJ expression and conjugative DNA transfer. Mol Microbiol 21: 811–821CrossRefGoogle ScholarPubMed
Kumar, S., and Srivastava, S. (1983) Cyclic AMP and its receptor protein are required for expression of transfer genes of conjugative plasmid F in Escherichia coli. Mol Gen Genet 190: 27–34CrossRefGoogle ScholarPubMed
Lane, D., Feyter, R., Kennedy, M., Phua, S. H., and Semon, D. (1986) D protein of miniF plasmid acts as a repressor of transcription and as a site-specific resolvase. Nucleic Acids Res. 14: 9713–9728Google ScholarPubMed
Lane, D., and Gardner, R. C. (1979) Second EcoRI fragment of F capable of self-replication. J Bacteriol 139: 141–151Google ScholarPubMed
Lane, H. E. (1981) Replication and incompatibility of F and plasmids in the IncFI group. Plasmid 5: 100–126CrossRefGoogle ScholarPubMed
Lanka, E., and Wilkins, B. M. (1995) DNA processing reactions in bacterial conjugation. Annu. Rev. Biochem. 64: 141–169CrossRefGoogle ScholarPubMed
Lau, I. C. Y., Locke, T., Ellison, M., Raivio, T. L., and Frost, L. S. (2004) Activation of the Cpx envelope stress response destabilizes the F plasmid transfer activator, TraJ, via the HslVU protease in Escherichia coli. SubmittedGoogle Scholar
Lawley, T., Wilkins, B. M., and Frost, L. S. (2003) Conjugation in gram-negative bacteria. In Funnell, B. (ed). The biology of plasmids. pp. 203–226, Washington, DC: ASM PressGoogle Scholar
Lawley, T. D., Klimke, W. A., Gubbins, M. J., and Frost, L. S. (2003) F factor conjugation is a true type IV secretion system. FEMS Microbiol. Lett 269: 1–15CrossRefGoogle Scholar
Lederberg, J. (1951) Prevalence of E. coli strains exhibiting genetic recombination. Science 114: 68CrossRefGoogle ScholarPubMed
Lederberg, J., Cavalli, L. L., and Lederberg, E. M. (1952) Sex compatibility in E. coli. Genetics 37: 720–730Google Scholar
Lederberg, J., and Tatum, E. L. (1946) Gene recombination in E. coli. Nature 158: 558CrossRefGoogle Scholar
Lee, S. H., Frost, L. S., and Paranchych, W. (1992) FinOP repression of the F plasmid involves extension of the half-life of FinP antisense RNA by FinO. Mol Gen Genet 235: 131–139CrossRefGoogle Scholar
Libante, V., Thion, L., and Lane, D. (2001) Role of the ATP-binding site of SopA protein in partition of the F plasmid. J Mol Biol 314: 387–399CrossRefGoogle ScholarPubMed
Lin, D. C., and Grossman, A. D. (1998) Identification and characterization of a bacterial chromosome partitioning site. Cell 92: 675–685CrossRefGoogle ScholarPubMed
Loh, S., Cram, D., and Skurray, R. (1989) Nucleotide sequence of the leading region adjacent to the origin of transfer on plasmid F and its conservation among conjugative plasmids. Mol Gen Genet 219: 177–186CrossRefGoogle ScholarPubMed
Loh, S., Skurray, R., Celerier, J., Bagdasarian, M., Bailone, A., and Devoret, R. (1990) Nucleotide sequence of the psiA (plasmid SOS inhibition) gene located on the leading region of plasmids F and R6–5. Nucleic Acids Res. 18: 4597CrossRefGoogle ScholarPubMed
Loh, S. M., Cram, D. S., and Skurray, R. A. (1988) Nucleotide sequence and transcriptional analysis of a third function (Flm) involved in F-plasmid maintenance. Gene 66: 259–268CrossRefGoogle ScholarPubMed
Lu, J., Forsyth, H., and Frost, L. S. (2004) The strong, autoregulated traM promoters in the F plasmid facilitate conjugative DNA transfer and prevent cell toxicity. In preparationGoogle Scholar
Lum, P. L., Rodgers, M. E., and Schildbach, J. F. (2002) TraY DNA recognition of its two F factor binding sites. J Mol Biol 321: 563–578CrossRefGoogle ScholarPubMed
Lundquist, P. D., and Levin, B. R. (1986) Transitory derepression and the maintenance of conjugative plasmids. Genetics 113: 483–497Google ScholarPubMed
Luo, Y., Gao, Q., and Deonier, R. C. (1994) Mutational and physical analysis of F plasmid traY protein binding to oriT. Mol Microbiol 11: 459–469CrossRefGoogle ScholarPubMed
Lynch, A. S., and Lin, E. C. (1996) Transcriptional control mediated by the ArcA two-component response regulator protein of Escherichia coli: Characterization of DNA binding at target promoters. J Bacteriol 178: 6238–6249CrossRefGoogle ScholarPubMed
Makino, K., Ishii, K., Yasunaga, T., Hattori, M., Yokoyama, K., Yutsudo, C. H., Kubota, Y.. (1998) Complete nucleotide sequences of 93-kb and 3.3-kb plasmids of an enterohemorrhagic Escherichia coli O157:H7 derived from Sakai outbreak. DNA Res. 5: 1–9CrossRefGoogle ScholarPubMed
Manchak, J., Anthony, K. G., and Frost, L. S. (2002) Mutational analysis of F-pilin reveals domains for pilus assembly, phage infection and DNA transfer. Mol Microbiol 43: 195–205CrossRefGoogle ScholarPubMed
Manwaring, N. P., Skurray, R. A., and Firth, N. (1999) Nucleotide sequence of the F plasmid leading region. Plasmid 41: 219–225CrossRefGoogle Scholar
Marmur, J., Rownd, R., Falkow, S., Baron, L. S., Shildkraut, C., and Doty, P. (1961) The nature of intergeneric episomal infection. Proc. Natl. Acad. Sci. U S A 47: 972–979CrossRefGoogle ScholarPubMed
Masai, H., and Arai, K. (1997) Frpo: A novel single-stranded DNA promoter for transcription and for primer RNA synthesis of DNA replication. Cell 89: 897–907CrossRefGoogle ScholarPubMed
Masson, L., and Ray, D. S. (1986) Mechanism of autonomous control of the Escherichia coli F plasmid: Different complexes of the initiator/repressor protein are bound to its operator and to an F plasmid replication origin. Nucleic Acids Res. 14: 5693–5711CrossRefGoogle Scholar
Matson, S. W., and Morton, B. S. (1991) Escherichia coli DNA helicase I catalyzes a site- and strand-specific nicking reaction at the F plasmid oriT. J. Biol. Chem. 266: 16232–16237Google ScholarPubMed
Matsuo, E., Sampei, G., Mizobuchi, K., and Ito, K. (1999) The plasmid F OmpP protease, a homologue of OmpT, as a potential obstacle to E. coli-based protein production. FEBS Lett. 461: 6–8CrossRefGoogle ScholarPubMed
Mazodier, P., and Davies, J. (1991) Gene transfer between distantly related bacteria. Annu. Rev. Genet. 25: 147–171CrossRefGoogle ScholarPubMed
McEwen, J., and Silverman, P. (1980) Chromosomal mutations of Escherichia coli that alter expression of conjugative plasmid functions. Proc. Natl. Acad. Sci. U S A 77: 513–517CrossRefGoogle ScholarPubMed
Meinhardt, H., and Boer, P. A. (2001) Pattern formation in Escherichia coli: A model for the pole-to-pole oscillations of Min proteins and the localization of the division site. Proc. Natl. Acad. Sci. U S A 98: 14202–14207CrossRefGoogle ScholarPubMed
Miki, T., Chang, Z. T., and Horiuchi, T. (1984) Control of cell division by sex factor F in Escherichia coli. II. Identification of genes for inhibitor protein and trigger protein on the 42.84–43.6 F segment. J Mol Biol 174: 627–646CrossRefGoogle ScholarPubMed
Miller, J. F., and Malamy, M. H. (1983) Identification of the pifC gene and its role in negative control of F factor pif gene expression. J Bacteriol 156: 338– 347Google ScholarPubMed
Miller, J. F., and Malamy, M. H. (1984) Regulation of the F-factor pif operon: pifO, a site required in cis for autoregulation, titrates the pifC product in trans. J Bacteriol 160: 192–198Google ScholarPubMed
Mise, K., and Nakajima, K. (1984) Isolation of restriction enzyme EcoVIII, an isoschizomer of HindIII, produced by Escherichia coli E1585–68. Gene 30: 79–85CrossRefGoogle ScholarPubMed
Moore, D., Hamilton, C. M., Maneewannakul, K., Mintz, Y., Frost, L. S., and Ippen-Ihler, K. (1993) The Escherichia coli K-12 F plasmid gene traX is required for acetylation of F pilin. J Bacteriol 175: 1375–1383CrossRefGoogle ScholarPubMed
Mori, H., Kondo, A., Ohshima, A., Ogura, T., and Hiraga, S. (1986) Structure and function of the F plasmid genes essential for partitioning. J Mol Biol 192: 1–15CrossRefGoogle Scholar
Murotsu, T., Tsutsui, H., and Matsubara, K. (1984) Identification of the minimal essential region for the replication origin of miniF plasmid. Mol Gen Genet 196: 373–378CrossRefGoogle ScholarPubMed
Nagai, H., and Roy, C. R. (2003) Show me the substrates: Modulation of host cell function by type IV secretion systems. Cell Microbiol. 5: 373–383CrossRefGoogle ScholarPubMed
Nelson, W. C., Howard, M. T., Sherman, J. A., and Matson, S. W. (1995) The traY gene product and integration host factor stimulate Escherichia coli DNA helicase I-catalyzed nicking at the F plasmid oriT. J. Biol. Chem. 270: 28374–28380Google ScholarPubMed
Nielsen, A. K., Thorsted, P., Thisted, T., Wagner, E. G., and Gerdes, K. (1991) The rifampicin-inducible genes srnB from F and pnd from R483 are regulated by antisense RNAs and mediate plasmid maintenance by killing of plasmid-free segregants. Mol Microbiol 5: 1961–1973CrossRefGoogle Scholar
Nieto, J. M., Prenafeta, A., Miquelay, E., Torrades, S., and Juarez, A. (1998) Sequence, identification and effect on conjugation of the rmoA gene of plasmid R100–1. FEMS Microbiol. Lett. 169: 59–66CrossRefGoogle ScholarPubMed
Nieto, J. M., Madrid, C., Miquelay, E., Parra, J. L., Rodriguez, S., and Juarez, A. (2002) Evidence for direct protein–protein interaction between members of the enterobacterial Hha/YmoA and H-NS families of proteins. J Bacteriol 184: 629–635CrossRefGoogle ScholarPubMed
Nomura, N., Masai, H., Inuzuka, M., Miyazaki, C., Ohtsubo, E., Itoh, T.. (1991) Identification of eleven single-strand initiation sequences (ssi) for priming of DNA replication in the F, R6K, R100 and ColE2 plasmids. Gene 108: 15–22Google Scholar
O'Connor, M. B., and Malamy, M. H. (1984) Role of the F factor oriV1 region in recA-independent illegitimate recombination. Stable replicon fusions of the F derivative pOX38 and pBR322-related plasmids. J Mol Biol 175: 263–284CrossRefGoogle Scholar
Ogura, T., and Hiraga, S. (1983) Partition mechanism of F plasmid: Two plasmid gene-encoded products and a cis-acting region are involved in partition. Cell 32: 351–360CrossRefGoogle Scholar
Oshima, T., Wada, C., Kawagoe, Y., Ara, T., Maeda, M., Masuda, Y.. (2002) Genome-wide analysis of deoxyadenosine methyltransferase-mediated control of gene expression in Escherichia coli. Mol Microbiol 45: 673–695CrossRefGoogle ScholarPubMed
Pansegrau, W., Schroder, W., and Lanka, E. (1993) Relaxase (TraI) of IncP alpha plasmid RP4 catalyzes a site-specific cleaving-joining reaction of single-stranded DNA. Proc. Natl. Acad. Sci. U S A 90: 2925–2929CrossRefGoogle ScholarPubMed
Paranchych, W., Finlay, B. B., and Frost, L. S. (1986) Studies on the regulation of IncF plasmid transfer operon expression. Banbury Rep. 24: 117–129Google Scholar
Pogliano, J., Lynch, A. S., Belin, D., Lin, E. C., and Beckwith, J. (1997) Regulation of Escherichia coli cell envelope proteins involved in protein folding and degradation by the Cpx two-component system. Genes Dev. 11: 1169–1182CrossRefGoogle ScholarPubMed
Polzleitner, E., Zechner, E. L., Renner, W., Fratte, R., Jauk, B., Hogenauer, G., and Koraimann, G. (1997) TraM of plasmid R1 controls transfer gene expression as an integrated control element in a complex regulatory network. Mol Microbiol 25: 495–507CrossRefGoogle Scholar
Porter, R. D. (1981) Enhanced recombination between F42lac and lambda plac5: Dependence on F42lac fertility functions. Mol Gen Genet 184: 355–358CrossRefGoogle ScholarPubMed
Porter, R. D., Low, B., and McLaughlin, T. (1978) Transduction versus' “conjuduction”: Evidence for multiple roles for exonuclease V in genetic recombination in Escherichia coli. Cold Spring Harb. Symp. Quant. Biol. 43: 1043–1047CrossRefGoogle Scholar
Raivio, T. L., Laird, M. W., Joly, J. C., and Silhavy, T. J. (2000) Tethering of CpxP to the inner membrane prevents spheroplast induction of the Cpx envelope stress response. Mol Microbiol 37: 1186–1197CrossRefGoogle ScholarPubMed
Raivio, T. L., and Silhavy, T. J. (1997) Transduction of envelope stress in Escherichia coli by the Cpx two-component system. J Bacteriol 179: 7724–7733CrossRefGoogle ScholarPubMed
Raivio, T. L., and Silhavy, T. J. (2001) Periplasmic stress and ECF sigma factors. Annu. Rev. Microbiol. 55: 591–624CrossRefGoogle ScholarPubMed
Reisner, A., Haagensen, J. A., Schembri, M. A., Zechner, E. L., and Molin, S. (2003) Development and maturation of Escherichia coli K-12 biofilms. Mol Microbiol 48: 933–946CrossRefGoogle ScholarPubMed
Rice, P. A., Yang, S., Mizuuchi, K., and Nash, H. A. (1996) Crystal structure of an IHF-DNA complex: A protein-induced DNA U-turn. Cell 87: 1295–1306CrossRefGoogle ScholarPubMed
Rokeach, L. A., Sogaard-Andersen, L., and Molin, S. (1985) Two functions of the E protein are key elements in the plasmid F replication control system. J Bacteriol 164: 1262–1270Google Scholar
Roth, J. R., Kofoid, E., Roth, F. P., Berg, O. G., Seger, J., and Andersson, D. I. (2003) Regulating general mutation rates. Examination of the hypermutable state model for cairnsian adaptive mutation. Genetics 163: 1483–1496Google ScholarPubMed
Rotman, G. S., Cooney, R., and Malamy, M. H. (1983) Cloning of the pif region of the F sex factor and identification of a pif protein product. J Bacteriol 155: 254–264Google Scholar
Saadi, S., Maas, W. K., Hill, D. F., and Bergquist, P. L. (1987) Nucleotide sequence analysis of RepFIC, a basic replicon present in IncFI plasmids P307 and F, and its relation to the RepA replicon of IncFII plasmids. J Bacteriol 169: 1836–1846CrossRefGoogle Scholar
Sandercock, J. R., and Frost, L. S. (1998) Analysis of the major domains of the F fertility inhibition protein, FinO. Mol Gen Genet 259: 622–629CrossRefGoogle Scholar
Santini, J. M., and Stanisich, V. A. (1998) Both the fipA gene of pKM101 and the pifC gene of F inhibit conjugal transfer of RP1 by an effect on traG. J Bacteriol 180: 4093–4101Google ScholarPubMed
Saul, D., Spiers, A. J., McAnulty, J., Gibbs, M. G., Bergquist, P. L., and Hill, D. F. (1989) Nucleotide sequence and replication characteristics of RepFIB, a basic replicon of IncF plasmids. J Bacteriol 171: 2697–2707CrossRefGoogle ScholarPubMed
Savvides, S. N., Yeo, H. J., Beck, M. R., Blaesing, F., Lurz, R., Lanka, E., Buhrdorf, R.. (2003) VirB11 ATPases are dynamic hexameric assemblies: New insights into bacterial type IV secretion. EMBO J. 22: 1969–1980CrossRefGoogle ScholarPubMed
Scaife, J., and Gross, J. D. (1962) Inhibition of multiplication of an Flac factor in Hfr cells in Escherichia coli K-12. Biochem. Biophys. Res. Commun. 7: 403–407CrossRefGoogle ScholarPubMed
Schroder, G., and Lanka, E. (2003) TraG-like proteins of type IV secretion systems: Functional dissection of the multiple activities of TraG (RP4) and TrwB (R388). J Bacteriol 185: 4371–4381CrossRefGoogle Scholar
Seifert, H. S., and Porter, R. D. (1984) Enhanced recombination between lambda plac5 and F42lac: Identification of cis- and trans-acting factors. Proc. Natl. Acad. Sci. U S A 81: 7500–7504CrossRefGoogle ScholarPubMed
Sharp, P. A., Cohen, S. N., and Davidson, N. (1973) Electron microscope heteroduplex studies of sequence relations among plasmids of Escherichia coli. II. Structure of drug resistance (R) factors and F factors. J Mol Biol 75: 235–255CrossRefGoogle ScholarPubMed
Shimizu, H., Saitoh, Y., Suda, Y., Uehara, K., Sampei, G., and Mizobuchi, K. (2000) Complete nucleotide sequence of the F plasmid: Its implications for organization and diversification of plasmid genomes. GenBank accession number AP001918Google Scholar
Silverman, P. M., Tran, L., Harris, R., and Gaudin, H. M. (1993) Accumulation of the F plasmid TraJ protein in cpx mutants of Escherichia coli. J Bacteriol 175: 921–925CrossRefGoogle Scholar
Silverman, P. M., Wickersham, E., and Harris, R. (1991) Regulation of the F plasmid traY promoter in Escherichia coli by host and plasmid factors. J Mol Biol 218: 119–128CrossRefGoogle Scholar
Silverman, P. M., Wickersham, E., Rainwater, S., and Harris, R. (1991) Regulation of the F plasmid traY promoter in Escherichia coli K12 as a function of sequence context. J Mol Biol 220: 271–279CrossRefGoogle Scholar
Simonsen, L. (1990) Dynamics of plasmid transfer on surfaces. J. Gen. Microbiol. 136 (Pt 6): 1001–1007CrossRefGoogle ScholarPubMed
Snyder, W. B., Davis, L. J., Danese, P. N., Cosma, C. L., and Silhavy, T. J. (1995) Overproduction of NlpE, a new outer membrane lipoprotein, suppresses the toxicity of periplasmic LacZ by activation of the Cpx signal transduction pathway. J Bacteriol 177: 4216–4223CrossRefGoogle ScholarPubMed
Starcic, M., Zgur-Bertok, D., Jordi, B. J., Wosten, M. M., Gaastra, W., and Putten, J. P. (2003) The cyclic AMP–cyclic AMP receptor protein complex regulates activity of the traJ promoter of the Escherichia coli conjugative plasmid pRK100. J Bacteriol 185: 1616–1623CrossRefGoogle ScholarPubMed
Starcic-Erjavec, M., Putten, J. P., Gaastra, W., Jordi, B. J., Grabnar, M., and Zgur-Bertok, D. (2003) H-NS and Lrp serve as positive modulators of traJ expression from the Escherichia coli plasmid pRK100. Mol. Genet. Genomics 270: 94–102CrossRefGoogle ScholarPubMed
Stern, J. C., and Schildbach, J. F. (2001) DNA recognition by F factor TraI36: Highly sequence-specific binding of single-stranded DNA. Biochemistry 40: 11586–11595CrossRefGoogle ScholarPubMed
Street, L. M., Harley, M. J., Stern, J. C., Larkin, C., Williams, S. L., Miller, D. L.. (2003) Subdomain organization and catalytic residues of the F factor TraI relaxase domain. Biochim. Biophys. Acta 1646: 86–99CrossRefGoogle Scholar
Strohmaier, H., Noiges, R., Kotschan, S., Sawers, G., Hogenauer, G., Zechner, E. L., and Koraimann, G. (1998) Signal transduction and bacterial conjugation: Characterization of the role of ArcA in regulating conjugative transfer of the resistance plasmid R1. J Mol Biol 277: 309–316CrossRefGoogle ScholarPubMed
Tani, T. H., Khodursky, A., Blumenthal, R. M., Brown, P. O., and Matthews, R. G. (2002) Adaptation to famine: A family of stationary-phase genes revealed by microarray analysis. Proc. Natl. Acad. Sci. U S A 99: 13471–13476CrossRefGoogle ScholarPubMed
Teter, B., Goodman, S. D., and Galas, D. J. (2000) DNA bending and twisting properties of integration host factor determined by DNA cyclization. Plasmid 43: 73–84CrossRefGoogle ScholarPubMed
Thisted, T., Nielsen, A. K., and Gerdes, K. (1994) Mechanism of post-segregational killing: Translation of Hok, SrnB and Pnd mRNAs of plasmids R1, F and R483 is activated by 3′-end processing. EMBO J. 13: 1950–1959Google ScholarPubMed
Thompson, T. L., Centola, M. B., and Deonier, R. C. (1989) Location of the nick at oriT of the F plasmid. J Mol Biol 207: 505–512CrossRefGoogle ScholarPubMed
Tolun, A., and Helinski, D. R. (1981) Direct repeats of the F plasmid incC region express F incompatibility. Cell 24: 687–694CrossRefGoogle Scholar
Torkelson, J., Harris, R. S., Lombardo, M. J., Nagendran, J., Thulin, C., and Rosenberg, S. M. (1997) Genome-wide hypermutation in a subpopulation of stationary-phase cells underlies recombination-dependent adaptive mutation. EMBO J. 16: 3303–3311CrossRefGoogle Scholar
Torreblanca, J., Marques, S., and Casadesus, J. (1999) Synthesis of FinP RNA by plasmids F and pSLT is regulated by DNA adenine methylation. Genetics 152: 31–45Google ScholarPubMed
Traxler, B. A., and Minkley, E. G. Jr. (1988) Evidence that DNA helicase I and oriT site-specific nicking are both functions of the F TraI protein. J Mol Biol 204: 205–209CrossRefGoogle ScholarPubMed
Uga, H., Matsunaga, F., and Wada, C. (1999) Regulation of DNA replication by iterons: An interaction between the ori2 and incC regions mediated by RepE-bound iterons inhibits DNA replication of mini-F plasmid in Escherichia coli. EMBO J. 18: 3856–3867CrossRefGoogle ScholarPubMed
Biesen, T., and Frost, L. S. (1992) Differential levels of fertility inhibition among F-like plasmids are related to the cellular concentration of finO mRNA. Mol Microbiol 6: 771–780CrossRefGoogle ScholarPubMed
Biesen, T., and Frost, L. S. (1994) The FinO protein of IncF plasmids binds FinP antisense RNA and its target, traJ mRNA, and promotes duplex formation. Mol Microbiol 14: 427–436CrossRefGoogle ScholarPubMed
Biesen, T., Soderbom, F., Wagner, E. G., and Frost, L. S. (1993) Structural and functional analyses of the FinP antisense RNA regulatory system of the F conjugative plasmid. Mol Microbiol 10: 35–43CrossRefGoogle ScholarPubMed
Workum, M., Dooren, S. J., Oldenburg, N., Molenaar, D., Jensen, P. R., Snoep, J. L., and Westerhoff, H. V. (1996) DNA supercoiling depends on the phosphorylation potential in Escherichia coli. Mol Microbiol 20: 351–360CrossRefGoogle ScholarPubMed
Watanabe, T. (1963) Infective heredity of multiple drug resistance in bacteria. Bacteriol. Rev. 27: 87–115Google ScholarPubMed
Watanabe, T. (1966) Infectious drug resistance in enteric bacteria. N. Engl. J. Med. 275: 888CrossRefGoogle ScholarPubMed
Weber, R. F., and Silverman, P. M. (1988) The Cpx proteins of Escherichia coli K12. Structure of the CpxA polypeptide as an inner membrane component. J Mol Biol 203: 467–478CrossRefGoogle ScholarPubMed
Westerhoff, H. V., O'Dea, M. H., Maxwell, A., and Gellert, M. (1988) DNA supercoiling by DNA gyrase. A static head analysis. Cell Biophys. 12: 157–181CrossRefGoogle ScholarPubMed
Wilkins, B. M., and Frost, L. S. (2001) Mechanisms of gene exchange between bacteria. In Sussman, M. (ed). Molecular medical microbiology.London: Academic Press, pp. 355–400Google Scholar
Will, W. R., Lu, J. and Frost, L. S.The role of H-NS in silencing F transfer gene expression during entry into stationary phase. Mol Microbiol 54: 769–782CrossRef
Willetts, N. (1977) The transcriptional control of fertility in F-like plasmids. J Mol Biol 112: 141–148CrossRefGoogle ScholarPubMed
Willetts, N., and Maule, J. (1986) Specificities of IncF plasmid conjugation genes. Genet. Res. 47: 1–11CrossRefGoogle ScholarPubMed
Willetts, N., and Skurray, R. (1987) Structure and function of the F factor and mechanism of conjugation. In Neidhardt, F. C.., (eds). Escherichia coli and Salmonella typhimurium: Cellular and molecular biology.Washington, DC: American Society for Microbiology, pp. 1110–1133Google Scholar
Willetts, N., and Wilkins, B. (1984) Processing of plasmid DNA during bacterial conjugation. Microbiol. Rev. 48: 24–41Google ScholarPubMed
Yoshioka, Y., Ohtsubo, H., and Ohtsubo, E. (1987) Repressor gene finO in plasmids R100 and F: Constitutive transfer of plasmid F is caused by insertion of IS3 into F finO. J Bacteriol 169: 619–623CrossRefGoogle Scholar
Zechner, E. L., de la Cruz, F., Eisenbrandt, R., Grahn, A. M., Koraimann, G., Lanka, E., et al. (2000) Conjugative-DNA transfer processes. In Thomas, C. M. (ed). The horizontal gene pool: Bacterial plasmids and gene spread.Amsterdam: Harwood Academic Publishers, pp. 87–174CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×