Book contents
- Frontmatter
- Contents
- Acknowledgements
- Preface
- Notation
- Introduction
- 0 Duality and Fourier analysis
- 1 Background philosophy
- 2 Operator norm inequalities
- 3 Dual norm inequalities
- 4 Exercises: Including the Large Sieve
- 5 The method of the stable dual (1): Deriving the approximate functional equations
- 6 The method of the stable dual (2): Solving the approximate functional equations
- 7 Exercises: Almost linear, Almost exponential
- 8 Additive functions of class ℒα. A first application of the method
- 9 Multiplicative functions of the class ℒα: First Approach
- 10 Multiplicative functions of the class ℒα: Second Approach
- 11 Multiplicative functions of the class ℒα: Third Approach
- 12 Exercises: Why the form?
- 13 Theorems of Wirsing and Halász
- 14 Again Wirsing's Theorem
- 15 Exercises: The prime number theorem
- 16 Finitely distributed additive functions
- 17 Multiplicative functions of the class ℒα. Mean value zero
- 18 Exercises: Including logarithmic weights
- 19 Encounters with Ramanujan's function τ(n)
- 20 The operator T on L2
- 21 The operator T on Lα and other spaces
- 22 Exercises: The operator D and differentiation. The operator T and the convergence of measures
- 23 Pause: Towards the discrete derivative
- 24 Exercises: Multiplicative functions on arithmetic progressions. Wiener phenomenon
- 25 Fractional power Large Sieves. Operators involving primes
- 26 Exercises: Probability seen from number theory
- 27 Additive functions on arithmetic progressions: Small moduli
- 28 Additive functions on arithmetic progressions: Large moduli
- 29 Exercises: Maximal inequalities
- 30 Shift operators and orthogonal duals
- 31 Differences of additive functions. Local inequalities
- 32 Linear forms in shifted additive functions
- 33 Exercises: Stability. Correlations of multiplicative functions
- 34 Further readings
- 35 Rückblick (after the manner of Johannes Brahms)
- References
- Author index
- Subject index
7 - Exercises: Almost linear, Almost exponential
Published online by Cambridge University Press: 05 November 2011
- Frontmatter
- Contents
- Acknowledgements
- Preface
- Notation
- Introduction
- 0 Duality and Fourier analysis
- 1 Background philosophy
- 2 Operator norm inequalities
- 3 Dual norm inequalities
- 4 Exercises: Including the Large Sieve
- 5 The method of the stable dual (1): Deriving the approximate functional equations
- 6 The method of the stable dual (2): Solving the approximate functional equations
- 7 Exercises: Almost linear, Almost exponential
- 8 Additive functions of class ℒα. A first application of the method
- 9 Multiplicative functions of the class ℒα: First Approach
- 10 Multiplicative functions of the class ℒα: Second Approach
- 11 Multiplicative functions of the class ℒα: Third Approach
- 12 Exercises: Why the form?
- 13 Theorems of Wirsing and Halász
- 14 Again Wirsing's Theorem
- 15 Exercises: The prime number theorem
- 16 Finitely distributed additive functions
- 17 Multiplicative functions of the class ℒα. Mean value zero
- 18 Exercises: Including logarithmic weights
- 19 Encounters with Ramanujan's function τ(n)
- 20 The operator T on L2
- 21 The operator T on Lα and other spaces
- 22 Exercises: The operator D and differentiation. The operator T and the convergence of measures
- 23 Pause: Towards the discrete derivative
- 24 Exercises: Multiplicative functions on arithmetic progressions. Wiener phenomenon
- 25 Fractional power Large Sieves. Operators involving primes
- 26 Exercises: Probability seen from number theory
- 27 Additive functions on arithmetic progressions: Small moduli
- 28 Additive functions on arithmetic progressions: Large moduli
- 29 Exercises: Maximal inequalities
- 30 Shift operators and orthogonal duals
- 31 Differences of additive functions. Local inequalities
- 32 Linear forms in shifted additive functions
- 33 Exercises: Stability. Correlations of multiplicative functions
- 34 Further readings
- 35 Rückblick (after the manner of Johannes Brahms)
- References
- Author index
- Subject index
Summary
When I began actively pursuing the application of approximate functional equations to number theory, in the early seventies, results of the Ulam–Hyers type were sparse. Moreover, they did not lend themselves to the problems which I had to hand.
It should be emphasised that the method of the stable dual is not concerned with the approximate functional equations that arise, for example, in the theory of the Riemann zeta function. In that theory approximate functional equations are established for certain given functions, mainly sums of exponentials. In a sense an analytic reciprocity law is derived. In the method of the stable dual an unknown function is assumed to satisfy a weak global constraint, and as far as possible the local nature of the function is then determined.
As applied to number theory the method of the stable dual typically gives rise to a complicated approximate functional equation involving several functions and many variables. The first step is to tease out an approximate equation of a more manageable type. This step depends upon the number theoretic and distributional properties of the objects under consideration. The appropriate notion of stability is then determined by the number theoretic application in view. My aim was usually towards an equation with continuous rather than discrete variables. Although by 1980 I had developed a tolerable technique for treating approximate functional equations arising in the study of arithmetic functions, I felt the need to better understand some of the arguments.
- Type
- Chapter
- Information
- Duality in Analytic Number Theory , pp. 68 - 78Publisher: Cambridge University PressPrint publication year: 1997
- 1
- Cited by