Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-22T20:26:36.807Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 September 2016

J. Hietarinta
Affiliation:
University of Turku, Finland
N. Joshi
Affiliation:
University of Sydney
F. W. Nijhoff
Affiliation:
University of Leeds
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abarenkova, N., Anglès d'Auriac, J.-Ch., Boukraa, S., Hassani, S. and Maillard, J.-M. 1999. Topological entropy and Arnold complexity for two-dimensional mappings. Phys. Lett. A, 262(1), 44–49.Google Scholar
Ablowitz, M. J. and Clarkson, P. A. 1991. Solitons, Nonlinear Evolution Equations and Inverse Scattering. London Mathematical Society Lecture Note Series, vol. 149. Cambridge, UK: Cambridge University Press.
Ablowitz, M. J. and Fokas, A. S. 2003. Complex Variables: Introduction and Applications. Cambridge, UK: Cambridge University Press.
Ablowitz, M. J. and Herbst, B. M. 1990. On homoclinic structure and numerically induced chaos for the nonlinear Schrödinger equation. SIAM J. Appl. Math., 50(2), 339–351.Google Scholar
Ablowitz, M. J. and Ladik, J. F. 1976. A nonlinear difference scheme and inverse scattering. Stud. Appl. Math., 55(3), 213–229.Google Scholar
Ablowitz, M. J. and Ladik, J. F. 1976/77. On the solution of a class of nonlinear partial difference equations. Stud. Appl. Math., 57(1), 1–12.Google Scholar
Ablowitz, M. J. and Segur, H. 1977. Exact linearization of a Painlevé transcendent. Phys. Rev. Lett., 38(20), 1103.Google Scholar
Ablowitz, M. J. and Segur, H. 1981. Solitons and the Inverse Scattering Transform. SIAM Studies in Applied Mathematics, vol. 4. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM).
Ablowitz, M. J., Ramani, A. and Segur, H. 1978. Nonlinear evolution equations and ordinary differential equations of Painlevé type. Lett. Nuovo Cimento, 23(9), 333–338.Google Scholar
Ablowitz, M. J., Ramani, A. and Segur, H. 1980a. A connection between nonlinear evolution equations and ordinary differential equations of P-type. I. J. Math. Phys., 21(4), 715–721.Google Scholar
Ablowitz, M. J., Ramani, A. and Segur, H. 1980b. A connection between nonlinear evolution equations and ordinary differential equations of P-type. II. J. Math. Phys., 21(5), 1006–1015.Google Scholar
Ablowitz, M. J., Halburd, R. and Herbst, B. 2000. On the extension of the Painlevé property to difference equations. Nonlinearity, 13(3), 889–905.Google Scholar
Abramowitz, M. and Stegun, I. A. 1970. Handbook of Mathematical Functions. NewYork: Dover.
Adler, M. and van Moerbeke, P. 1999. Vertex operator solutions to the discrete KPhierarchy. Commun. Math. Phys., 203(1), 185–210.Google Scholar
Adler, V. E. 1998. Bäcklund transformation for the Krichever-Novikov equation. Int. Math. Res. Not., 1998(1), 1–4.Google Scholar
Adler, V. E. 2001. Discrete equations on planar graphs. J. Phys. A: Math. Gen., 34(48), 10453–10460.Google Scholar
Adler, V. E. 2006. Some incidence theorems and integrable discrete equations. Discrete Comput. Geom., 36(3), 489–498.Google Scholar
Adler, V. E. and Suris, Yu. B. 2004. Q4: integrable master equation related to an elliptic curve. Int. Math. Res. Not., 2004(47), 2523–2553.Google Scholar
Adler, V. E. and Veselov, A. P. 2004. Cauchy problem for integrable discrete equations on quad-graphs. Acta Appl. Math., 84(2), 237–262.Google Scholar
Adler, V. E., Marikhin, V. G. and Shabat, A. B. 2001. Lagrangian chains and canonical Bäcklund transformations. Theor. Math. Phys., 129(2), 1448–1465.Google Scholar
Adler, V. E., Bobenko, A. I. and Suris, Yu. B. 2003. Classification of integrable equations on quad-graphs. The consistency approach. Commun. Math. Phys., 233(3), 513–543.Google Scholar
Adler, V. E., Bobenko, A. I. and Suris, Yu. B. 2004. Geometry of Yang–Baxter maps: pencils of conics and quadrirational mappings. Commun. Anal. Geom., 12(5), 967–1007.Google Scholar
Adler, V. E., Bobenko, A. I. and Suris, Yu. B. 2009. Discrete nonlinear hyperbolic equations: classification of integrable cases. Funktsional. Anal. i Prilozhen., 43(1), 3–21.Google Scholar
Adler, V. E., Bobenko, A. I. and Suris, Yu. B. 2012. Classification of integrable discrete equations of octahedron type. Int. Math. Res. Not. 2012(8), 1822–1889.Google Scholar
Agafonov, S. I. 2003. Imbedded circle patterns with the combinatorics of the square grid and discrete Painlevé equations. Discrete Comput. Geom., 29(2), 305–319.Google Scholar
Agafonov, S. I. 2005. Asymptotic behavior of discrete holomorphic maps zc and log(z) . J. Nonlinear Math. Phys., 12, Supp 2, 1–14.Google Scholar
Agafonov, S. I., and Bobenko, A. I. 2000. Discret. zγ and Painlevé equations. Int. Math. Res. Not., 2000(4), 165–193.Google Scholar
Agafonov, S. I. and Bobenko, A. I. 2003. Hexagonal circle patterns with constant intersection angles and discrete Painlevé and Riccati equations. J. Math. Phys., 44(8), 3455–3469.Google Scholar
Ahlfors, L. V. 1953. Complex Analysis, an Introduction to the Theory of Analytic Functions of One Complex Variable. New York: McGraw-Hill Book Company.
Airault, H., McKean, H. P. and Moser, J. 1977. Rational and elliptic solutions of the Korteweg–de Vries equation and a related many-body problem. Commun. Pure Appl. Math., 30(1), 95–148.Google Scholar
Akhiezer, N. I. 1990. Elements of the Theory of Elliptic Functions. Translations of Mathematical Monographs, vol. 79. Providence, RI: American Mathematical Society. Translated from the second Russian edition by H. H., McFaden.
Akritas, A. G., Akritas, E. K. and Malaschonok, G. I. 1996. Various proofs of Sylvester's (determinant) identity. Math. Comput. Simul., 42(4), 585–593.Google Scholar
Ando, H., Hay, M., Kajiwara, K. and Masuda, T. 2014. An explicit formula for the discrete power function associated with circle patterns of Schramm type. Funkcial. Ekvac., 57(1), 1–41.Google Scholar
Andrews, G. E., Askey, R. and Roy, R. 1999. Special Functions. Encyclopedia of Mathematics and Its Applications. Cambridge, UK: Cambridge University Press.
Anglès d'Auriac, J.-Ch., Maillard, J.-M., and Viallet, C. M. 2006. On the complexity of some birational transformations. J. Phys. A: Math. Gen., 39(14), 3641.Google Scholar
Arinkin, D. and Borodin, A. 2006. Moduli spaces o. d-connections and difference Painlevé equations. Duke Math. J., 134(3), 515–556.Google Scholar
Arnold, V. I. 1990. Dynamics of complexity of intersections. Bol. Soc. Brasil. Mat. (N.S.), 21(1), 1–10.Google Scholar
Arnold, V. I. 1997. Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics, vol. 60. New York: Springer.
Atkinson, J. 2008a. Bäcklund transformations for integrable lattice equations. J. Phys. A: Math. Theor., 41(13), 135202, 8pp.
Atkinson, J. 2008b. Integrable Lattice Equations: Connection to the Möbius Group, Bäcklund Transformations and Solutions. Ph.D. thesis, University of Leeds.
Atkinson, J. 2012. A multidimensionally consistent version of Hirota's discrete KdV equation. J. Phys. A: Math. Theor., 45(22), 222001.Google Scholar
Atkinson, J. and Joshi, N. 2013. Singular-boundary reductions of type-Q ABS equations. Int. Math. Res. Not., 2013(7), 1451–1481.Google Scholar
Atkinson, J. and Nieszporski, M. 2014. Multi-quadratic quad equations: integrable cases from a factorized-discriminant hypothesis. Int. Math. Res. Not., 2014(15), 4215–4240.Google Scholar
Atkinson, J. and Nijhoff, F. W. 2010. A constructive approach to the soliton solutions of integrable quadrilateral lattice equations. Commun Math. Phys., 299(2), 283–304.Google Scholar
Atkinson, J., Hietarinta, J. and Nijhoff, F. W. 2007. Seed and soliton solutions for Adler's lattice equation. J. Phys. A: Math. Theor., 40(1), F1–F8.Google Scholar
Atkinson, J., Hietarinta, J. and Nijhoff, F. W. 2008. Soliton solutions for Q3. J. Phys. A: Math. Theor., 41(14), 142001, 11pp.Google Scholar
Atkinson, J., Lobb, S. B. and Nijhoff, F. W. 2012. An integrable multicomponent quadequation and its Lagrangian formulation. Theor. Math. Phys., 173(3), 1644–1653.Google Scholar
Babelon, O., Bernard, D. and Talon, M. 2003. Introduction to Classical Integrable Systems. Cambridge, UK: Cambridge University Press.
Babelon, O., Talon, M. and Peyranére, M. C. 2010. Kowalevski's analysis of the swinging Atwood's machine. J. Phys. A: Math. Theor., 43(8), 085207.Google Scholar
Bäcklund, A. V. 1883. Om ytor med konstant negative krökning. Lund Univ. Årsskrift, 19, 1–48.Google Scholar
Baker, G. A. 1975. Essentials of Padé Approximants. New York: Academic Press.
Barnett, D. C., Halburd, R. G., Morgan, W. and Korhonen, R. J. 2007. Nevanlinna theory for th. q-difference operator and meromorphic solutions of q-difference equations. Proc. R. Soc. Edinburgh Sect. A, 137(3), 457–474.Google Scholar
Bauer, F. L. 1959. Sequential reduction to tridiagonal form. J. Soc. Indust. Appl. Math., 7, 107–113.Google Scholar
Baxter, R. J. 1982. Exactly Solved Models in Statistical Mechanics. London: Academic Press Inc.
Bazhanov, V. V. and Sergeev, S. M. 2012a. Elliptic gamma-function and multi-spin solutions of the Yang–Baxter equation. Nucl. Phys. B, 856(2), 475–496.
Bazhanov, V. V. and Sergeev, S. M. 2012b. A master solution of the quantum Yang–Baxter equation and classical discrete integrable equations. Adv. Theor. Math. Phys., 16(1), 65–95.Google Scholar
Bellon, M. P. and Viallet, C.-M. 1999. Algebraic entropy. Commun. Math. Phys., 204(2), 425–437.Google Scholar
Bender, C.M. and Orszag, S. A. 1978. Advanced Mathematical Methods for Scientists and Engineers. New York: McGraw-Hill.
Bessis, D., Orszag, S. A. and Zuber, J.-B. 1980. Quantum field theory techniques in graphical enumeration. Adv. Appl. Math., 1(2), 109–157.Google Scholar
Bianchi, L. 1899. Vorlesungen über Differentialgeometrie. Leipzig: B.G. Teubner.
Birkhoff, G. D. 1913. The generalized Riemann problem for linear differential equations and the allied problems for linear difference and q-difference equations. Proc. Am. Acad. Arts Sci., 49(9), 521–568.Google Scholar
Bluman, G. W. and Cole, J. D. 1974. Similarity Methods for Differential Equations, vol. 13. Berlin: Springer.
Bobenko, A. I. 1999. Discrete conformal maps and surfaces. In P., Clarkson and F. W., Nijhoff (eds), Symmetries and Integrability of Difference Equations. London Mathematical Society Lecture Note Series, vol. 255, Cambridge, UK: Cambridge University Press, 97–108.
Bobenko, A. I., and Pinkall, U. 1996a. Discrete isothermic surfaces. J. Reine Angew. Math., 475, 187–208.Google Scholar
Bobenko, A. I., and Pinkall, U. 1996b. Discrete surfaces with constant negative Gaussian curvature and the Hirota equation. J. Differ. Geom., 43(3), 527–611.Google Scholar
Bobenko, A. I. and Suris, Yu. B. 2002. Integrable systems on quad-graphs. Int. Math. Res. Not., 2002(11), 573–611.Google Scholar
Bobenko, A. I. and Suris, Yu. B. 2008. Discrete Differential Geometry. Graduate Studies in Mathematics, vol. 98. Providence, RI: American Mathematical Society.
Bobenko, A. I. and Suris, Yu. B. 2010. On the Lagrangian structure of integrable quadequations. Lett. Math. Phys., 92, 17–31.Google Scholar
Bobenko, A. I. and Suris, Yu. B. 2015. Discrete pluriharmonic functions as solutions of linear pluri-Lagrangian systems. Commun. Math. Phys., 336(1), 199–215.Google Scholar
Bobenko, A. I.,Mercat, C., and Suris, Yu. B. 2005. Linear and nonlinear theories of discrete analytic functions. Integrable structure and isomonodromic Green's function. J. Reine Angew. Math., 2005(583), 117–161.Google Scholar
Boelen, L. and van Assche, W. 2010. Discrete Painlevé equations for recurrence coefficients of semiclassical Laguerre polynomials. Proc. Am. Math. Soc., 138(4), 1317–1331.Google Scholar
Boelen, L., Smet, C. and van Assche, W. 2010. q-discrete Painlevé equations for recurrence coefficients of modified q-Freud orthogonal polynomials. J. Differ. Equ. Appl., 16(1), 37–53.Google Scholar
Bogdanov, L. V. and Konopelchenko, B. G. 1998a. Analytic-bilinear approach to integrable hierarchies. I. Generalized KP hierarchy. J. Math. Phys., 39(9), 4683–4700.Google Scholar
Bogdanov, L. V. and Konopelchenko, B. G. 1998b. Analytic-bilinear approach to integrable hierarchies. II. Multicomponent KP and 2D Toda lattice hierarchies. J. Math. Phys., 39(9), 4701–4728.Google Scholar
Boiti, M., Pempinelli, F., Prinari, B. and Spire, A. 2001. An integrable discretization of KdV at large times. Inverse Prob., 17(3), 515–526.Google Scholar
Boll, R. 2011. Classification of 3D consistent quad-equations. J. Nonlinear Math. Phys., 18(3), 337–365.Google Scholar
Boll, R. 2012. On multidimensional consistent systems of asymmetric quad-equations. arXiv e-prints arXiv:1201.1203.
Boll, R., Petrera, M. and Suris, Yu. B. 2013a. What is integrability of discrete variational systems? Proc. R. Soc. London, Ser. A, 470, 30550.Google Scholar
Boll, R., Petrera, M. and Suris, Yu. B. 2013b. Multi-time Lagrangian 1-forms for families of Bäcklund transformations: Toda-type systems. J. Phys. A: Math. Theor., 46(27), 275204.Google Scholar
Boll, R., Petrera, M., and Suris, Yu. B. 2015. Multi-time Lagrangian 1-forms for families of Bäcklund transformations. Relativistic Toda-type systems. J. Phys. A: Math. Theor., 48(8), 085203.Google Scholar
Boll, R., Petrera, M. and Suris, Yu. B. 2016. On integrability of discrete variational systems. Octahedron relations. Int. Math. Res. Not., 2016(3), 645–668.Google Scholar
Boole, G. 1860. A Treatise on the Calculus of Finite Differences. London: McMillan & Co. Borodin, A. 2004. Isomonodromy transformations of linear systems of difference equations. Ann. Math., 1141–1182.
Boukraa, S., and Maillard, J.-M. 1995. Factorization properties of birational mappings. Physica A, 220(3), 403–470.Google Scholar
Boukraa, S., Maillard, J.-M. and Rollet, G. 1994. Integrable mappings and polynomial growth. Physica A, 209(1), 162–222.Google Scholar
Boussinesq, J. 1877. Essai sur la théorie des eaux courantes. Mémoires présentés par divers savants à l'Académie des sciences de l'Institut national de France, vol. XXIII. Imprimerie Nationale.
Brezin, E. and Kazakov, V. A. 1990. Exactly solvable field theories of closed strings. Phys. Lett., 236(2), 144–150.Google Scholar
Brezinski, C. 1977. Accélération de la Convergence en Analyse Numérique. Lecture Notes in Mathematics, vol. 584. Berlin Heidelberg: Springer-Verlag.
Brezinski, C. 2013. Padé-Type Approximation and General Orthogonal Polynomials. International Series of Numerical Mathematics. Basel: Birkhäuser.
Brezinski, C., He, Y., Hu, X. B., Redivo-Zaglia, M. and Sun, J. Q. 2012. Multiste. ε-algorithm, Shanks' transformation, and the Lotka-Volterra system by Hirota's method. Math. Comput., 81(279), 1527–1549.Google Scholar
Brualdi, R. A. and Schneider, H. 1983. Determinantal identities: Gauss, Schur, Cauchy, Sylvester, Kronecker, Jacobi, Binet, Laplace, Muir, and Cayley. Linear Algebra Appl., 52–53(0), 769–791.Google Scholar
Bruschi, M., Ragnisco, O., Santini, P. M. and Tu, G. Z. 1991. Integrable symplectic maps. Physica D, 49(3), 273–294.Google Scholar
Bustamante, M. D. and Hojman, S. A. 2003. Multi-Lagrangians, hereditary operators and Lax pairs for the Korteweg–de Vries positive and negative hierarchies. J. Math. Phys., 44(10), 4652–4671.Google Scholar
Butler, S. 2012a. A discrete inverse scattering transform for Q3δ. arXiv preprint arXiv:1210.1869.
Butler, S. 2012b. Multidimensional inverse scattering of integrable lattice equations. Nonlinearity, 25(6), 1613.Google Scholar
Butler, S. and Joshi, N. 2010. An inverse scattering transform for the lattice potential KdV equation. Inverse Prob., 26(11), 115012.Google Scholar
Cadzow, J. A. 1970. Discrete calculus of variations. J. Control, 11(3), 393–407.Google Scholar
Calogero, F. 1969. Solution of a three-body problem in one dimension. J. Math. Phys., 10(12), 2191–2196.Google Scholar
Calogero, F. and Degasperis, A. 1982. Spectral Transform and Solitons, vol. 1. Amsterdam: North-Holland Publ.
Cao, C., and Xu, X. 2012. A finite genus solution of the H1 model. J. Phys. A: Math. Theor., 45(5), 055213.Google Scholar
Cao, C. and Zhang, G. 2012. A finite genus solution of the Hirota equation via integrable symplectic maps. J. Phys. A: Math. Theor., 45(9), 095203.Google Scholar
Capel, H. W. and Sahadevan, R. 2001. A new family of four-dimensional symplectic and integrable mappings. Physica A, 289(1–2), 86–106.Google Scholar
Capel, H. W., Nijhoff, F. W. and Papageorgiou, V. G. 1991. Complete integrability of Lagrangian mappings and lattices of KdV type. Phys. Lett. A, 155(6–7), 377–387.Google Scholar
Carmichael, R. D. 1912. The general theory of linear q-difference equations. Am. J. Math., 34, 147–168.Google Scholar
Chihara, T. S. 2014. An Introduction to Orthogonal Polynomials. New York: Dover Publications.
Choodnovsky, D. V. and Choodnovsky, G. V. 1977. Pole expansions of nonlinear partial differential equations. Il Nuovo Cimento B Series 11, 40(2), 339–353.Google Scholar
Clarkson, P. A., Hone, A. N. W. and Joshi, N. 2003. Hierarchies of difference equations and Bäcklund transformations. J. Nonlinear Math. Phys., 10, Supp 2, 13–26.Google Scholar
Conte, R. M. 1999. The Painlevé Property: One Century Later. CRM Series in Mathematical Physics. New York: Springer.
Conte, R. M. and Musette, M. 2008. The Painlevé Handbook. Netherlands: Springer.
Courant, R., Friedrichs, K. and Lewy, H. 1928. Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann., 100(1), 32–74.Google Scholar
Cresswell, C. and Joshi, N. 1999a. The discrete first, second and thirty-fourth Painlevé hierarchies. J. Phys. A: Math. Gen., 32(4), 655.Google Scholar
Cresswell, C. and Joshi, N. 1999b. The discrete Painlevé I hierarchy. In P., Clarkson and F. W., Nijhoff (eds), Symmetries and Integrability of Difference Equations. London Mathematical Society Lecture Note Series, vol. 255, Cambridge, UK: Cambridge University Press, 197–205.
Darboux, G. 1914. Leçons sur la Théorie Générale des Surfaces et les Applications Géométriques du Calcul Infinitésimal. Première partie: Généralités. Coordonnées curvilignes. Surfaces minima. Paris: Gauthier-Villars.
Date, E., Kashiwara, M. and Miwa, T. 1981. Vertex operators an. τfunctions transformation groups for soliton equations, II. Proc. Japan Acad. Ser. A Math. Sci., 57(8), 387–392.Google Scholar
Date, E., Jimbo, M. and Miwa, T. 1982a. Method for generating discrete soliton equations. I. J. Phys. Soc. Japan, 51(12), 4116–4124.Google Scholar
Date, E., Jimnbo, M. and Miwa, T. 1982b. Method for generating discrete soliton equations. II. J. Phys. Soc. Japan, 51(12), 4125–4131.Google Scholar
Date, E., Jimbo, M. and Miwa, T. 1983a. Method for generating discrete soliton equations. III. J. Phys. Soc. Japan, 52(2), 388–393.Google Scholar
Date, E., Jimbo, M. and Miwa, T. 1983b. Method for generating discrete soliton equations. IV. J. Phys. Soc. Japan, 52(3), 761–765.Google Scholar
Date, E., Jimbo, M. and Miwa, T. 1983c. Method for generating discrete soliton equations. V. J. Phys. Soc. Japan, 52(3), 766–771.Google Scholar
David, Jr., E., E., et al. 1984. Renewing US mathematics: critical resource for the future. Not. Am. Math. Soc., 31(5), 435–466.Google Scholar
Deift, P., Li, L. C. and Tomei, C. 1989. Matrix factorizations and integrable systems. Commun. Pure Appl. Math., 42(4), 443–521.Google Scholar
Di Vizio, L., Ramis, J.-P., Sauloy, J. and Zhang, C. 2003. Équations au. q-différences. Gaz. Math., 96, 20–49.Google Scholar
Dickey, L. A. 1990. General Zakharov–Shabat equations, multi-time Hamiltonian formalism, and constants of motion. Commun. Math. Phys., 132(3), 485–497.Google Scholar
Dickey, L. A. 2003. Soliton Equations and Hamiltonian Systems, 2nd ed. Advanced Series in Mathematical Physics, vol. 26. River Edge, NJ:World Scientific Publishing Co. Inc.
Diller, J. and Favre, C. 2001. Dynamics of bimeromorphic maps of surfaces. Amer. J. Math. 123(6), 1135–1169.Google Scholar
DLMF. 2010. NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.9 of 201408-29. Online companion to Olver et al. (2010).
Doliwa, A. 2005. On τ -function of conjugate nets. J. Nonlinear Math. Phys., 12, Supp 1, 244–252.Google Scholar
Doliwa, A. 2009. Th. τ-function of the quadrilateral lattice. J. Phys. A: Math. Theor., 42(40), 404008, 9pp.Google Scholar
Doliwa, A. 2010. Desargues maps and the Hirota–Miwa equation. Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci., 466(2116), 1177–1200.Google Scholar
Doliwa, A. and Santini, P. M. 1997. Multidimensional quadrilateral lattices are integrable. Phys. Lett. A, 233(4–6), 365–372.Google Scholar
Doliwa, A. and Santini, P. M. 1999. Planarity and integrability. In Degasperis, A. and Gaeta, G. (eds), Symmetry and Perturbation Theory (Rome, 1998). River Edge, NJ: World Scientific Publishing Co. Inc., 167–177.
Doliwa, A. and Santini, P. M. 2000. Integrable discrete geometry: the quadrilateral lattice, its transformations and reductions. In Levi, D. and Ragnisco, O. (eds), SIDE III – Symmetries and Integrability of Difference Equations (Sabaudia, 1998). CRM Proc. Lecture Notes, vol. 25. Providence, RI: American Mathematical Society, 101–119.
Doliwa, A., Mañas, M. and Alonso, L. M. 1999. Generating quadrilateral and circular lattices in KP theory. Phys. Lett. A, 262(4), 330–343.Google Scholar
Doliwa, A., Santini, P. M. and Mañas, M. 2000. Transformations of quadrilateral lattices. J. Math. Phys., 41(2), 944–990.Google Scholar
Doliwa, A., Alonso, L. M. and Santini, P. M. 2004. Geometric discretization of the Bianchi system. J. Geom. Phys., 52(3), 217–240.Google Scholar
Doliwa, A., Grinevich, P., Alonso, L. M. and Santini, P. M. 2007. Integrable lattices and their sublattices: from the discrete Moutard (discrete Cauchy–Riemann) 4-point equation to the self-adjoint 5-point scheme. J. Math. Phys., 48(1), 013513, 28.Google Scholar
Dorfman, I. Ya. and Nijhoff, F. W. 1991. On a (2 + 1)-dimensional version of the Krichever-Novikov equation. Phys. Lett. A, 157(2–3), 107–112.Google Scholar
Dragovíc, V. and Gajíc, B. 2008. Hirota-Kimura type discretization of the classical nonholonomic Suslov problem. Regul. Chaotic Dyn., 13(4), 250–256.Google Scholar
Dragovíc, V. and Radnovíc, M. 2011. Poncelet Porisms and Beyond: Integrable Billiards, Hyperelliptic Jacobians and Pencils of Quadrics. Frontiers in Mathematics. Basel: Springer.
Drazin, P. G. and Johnson, R. S. 1989. Solitons: An Introduction. Cambridge Texts in Applied Mathematics. Cambridge, UK: Cambridge University Press.
Drinfeld, V. G. 1992. On some unsolved problems in quantum group theory. In P. P., Kulish (ed), Quantum Groups. Lecture Notes in Mathematics, vol. 1510. Berlin Heidelberg: Springer, 1–8.
Drinfel'd, V. G. and Sokolov, V. V. 1985. Lie algebras and equations of Korteweg–de Vries type. J. Sov. Math., 30(2), 1975–2036.Google Scholar
Duistermaat, J. J. 2010. Discrete Integrable Systems: QRT and Elliptic Surfaces. New York: Springer.
Duistermaat, J. J. and Joshi, N. 2011. Okamoto's space for the first Painlevé equation in Boutroux coordinates. Arch. Ration. Mech. Anal., 202(Dec.), 707–785.Google Scholar
Etingof, P., Schedler, T. and Soloviev, A. 1999. Set-theoretical solutions to the quantum Yang–Baxter equation. Duke Math. J., 100(2), 169–209.Google Scholar
Euler, L. 1761. De integratione aequationis differentialis √mdx 1-x 4 = √ndy 1-y 4 . Nov. Comm. Acad. Sci. Petr., 6, 35–57.Google Scholar
Faddeev, L. D. and Takhtajan, L. A. 2007. Hamiltonian Methods in the Theory of Solitons. English ed. Classics in Mathematics. Berlin: Springer. Translated from the 1986 Russian original by A. G., Reyman.
Falqui, G. and Viallet, C.-M. 1993. Singularity, complexity, and quasi-integrability of rational mappings. Commun. Math. Phys., 154(1), 111–125.Google Scholar
Ferapontov, E. V., Novikov, V. S. and Roustemoglou, I. 2014. On the classification of discrete Hirota-type equations in 3D. Int. Math. Res. Not., 2015(13): 4933–4974.Google Scholar
Field, C. M. and Nijhoff, F. W. 2003. A note on modified Hamiltonians for numerical integrations admitting an exact invariant. Nonlinearity, 16(5), 1673.Google Scholar
Field, C. M., Joshi, N. and Nijhoff, F. W. 2008. q-Difference equations of KdV type and Chazy-type second-degree difference equations. J. Phys. A: Math. Theor., 41(33), 332005,13pp.Google Scholar
Flanders, H. 1963. Differential Forms with Applications to the Physical Sciences. New York: Dover Publications.
Flaschka, H. 1974. The Toda lattice. II. Existence of integrals. Phys. Rev. B, 9(Feb), 1924–1925.Google Scholar
Flaschka, H. and Newell, A. C. 1980. Monodromy- and spectrum-preserving deformations I. Commun. Math. Phys., 76(1), 65–116.Google Scholar
Flaschka, H. and Newell, A. C. 1981. Multiphase similarity solutions of integrable evolution equations. Physica D, 3(1), 203–221.Google Scholar
Fokas, A. S. and Ablowitz, M. J. 1981. Linearization of the Korteweg–de Vries and Painlevé II equations. Phys. Rev. Lett., 47(Oct), 1096–1100.Google Scholar
Fokas, A. S. and Ablowitz, M. J. 1982. On a unified approach to transformations and elementary solutions of Painlevé equations. J. Math. Phys., 23(11), 2033–2042.Google Scholar
Fokas, A. S. and Ablowitz, M. J. 1983. The inverse scattering transform for multidimensional (2 + 1) problems. In Wolf, K. B. (ed), Nonlinear Phenomena (Oaxtepec, 1982). Lecture Notes in Physics, vol. 189. Berlin: Springer, 137–183.
Fokas, A. S., Its, A. R. and Zhou, X. 1992a. Continuous and discrete Painlevé equations. In Levi, D. and Winternitz, P. (eds), Painlevé Transcendents, Their Asymptotics and Physical Applications. New York: Springer Science+Business Media, 33–47.
Fokas, A. S., Its, A. R. and Kitaev, A. V. 1992b. The isomonodromy approach to matrix models in 2D quantum gravity. Commun. Math. Phys., 147(2), 395–430.Google Scholar
Fokas, A. S., Grammaticos, B. and Ramani, A. 1993. From continuous to discrete Painlevé equations. J. Math. Anal. Appl., 180(2), 342–360.Google Scholar
Fokas, A. S., Its, A. R., Kapaev, A. A. and Novokshenov, V. Yu. 2006. Painlevé Transcendents: A Riemann–Hilbert Approach. Providence, RI: American Mathematical Society.
Fomin, S. and Zelevinsky, A. 2002a. Cluster algebras I: foundations. J. Am. Math. Soc., 15(2), 497–529.Google Scholar
Fomin, S. and Zelevinsky, A. 2002b. The Laurent Phenomenon. Adv. Appl. Math., 28(2), 119–144.Google Scholar
Fomin, S. and Zelevinsky, A. 2003. Cluster algebras II: finite type classification. Invent. Math., 154(1), 63–121.Google Scholar
Fordy, A. P. and Hone, A. N. W. 2014. Discrete integrable systems and Poisson algebras from cluster maps. Commun. Math. Phys., 325(2), 527–584.Google Scholar
Fordy, A. P. and Kassotakis, P. G. 2006. Multidimensional maps of QRT type. J. Phys. A: Math. Gen., 39(34), 10773.Google Scholar
Fordy, A. P. and Marsh, R. J. 2011. Cluster mutation-periodic quivers and associated Laurent sequences. J. Alg. Comb., 34, 19–66.Google Scholar
Forrester, P. J. 2003. Growth models, random matrices and Painlevé transcendents. Nonlinearity, 16(6), R27.Google Scholar
Forrester, P. J. 2010. Log-Gases and Random Matrices (LMS-34). Princeton, NJ: Princeton University Press.
Forrester, P. J. and Witte, N. S. 2004. Discrete Painlevé equations, orthogonal polynomials on the unit circle, and N-recurrences for averages over U(N) - PIII_ and P. τ-functions. Int. Math. Res. Not., 2004(4), 159–183.Google Scholar
Forrester, P. J. and Witte, N. S. 2006. Random matrix theory and the sixth Painlevé equation. J. Phys. A: Math. Gen., 39(39), 12211.Google Scholar
Freeman, N. C. and Nimmo, J. J. C. 1983. Soliton solutions of the Korteweg–de Vries and Kadomtsev–Petviashvili equations: The wronskian technique. Phys. Lett. A, 95(1), 1–3.Google Scholar
Freud, G. 1976. On the coefficients in the recursion formulae of orthogonal polynomials. Proc. R. Irish Acad. Sec. A, 76, 1–6.Google Scholar
Frobenius, G. 1881. Ueber Relationen zwischen den Näherungsbrüchen von Potenzreihen. J. Reine Angew. Math., 90, 1–17.Google Scholar
Fuchs, R. 1905. Sur quelques équations différentielles linéaires du second ordre. C. R. . Acad. Sci. Prais, 141, 555–558.Google Scholar
Fuchs, R. 1907. Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen. Math Ann., 63, 301–321.Google Scholar
Fukuda, A., Ishiwata, E., Iwasaki, M. and Nakamura, Y. 2009. The discrete hungry Lotka–Volterra system and a new algorithm for computing matrix eigenvalues. Inverse Prob., 25(1), 015007, 17.Google Scholar
Fukuda, A., Ishiwata, E., Yamamoto, Y., Iwasaki, M. and Nakamura, Y. 2013. Integrable discrete hungry systems and their related matrix eigenvalues. Ann. Mat. Pura Appl., 192(3), 423–445.Google Scholar
Gaeta, G. 2012. Nonlinear Symmetries and Nonlinear Equations. Mathematics and Its Applications. Netherlands: Springer.
Gambier, B. 1906a. Sur les équations différentielles dont l'intégrale générale est uniforme, C.R. Acad. Sc. Paris, 142, 1403–1406.Google Scholar
Gambier, B. 1906b. Sur les équations différentielles du deuxième ordre et du premier degré dont l'intégrale générale est uniforme, C.R. Acad. Sc. Paris, 142, 1497–1500.Google Scholar
Gambier, B. 1910. Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes. Acta Math., 33(1), 1–55.Google Scholar
Garabedian, P. R. 1964. Partial Differential Equations. New York: JohnWiley & Sons Inc.
Gardner, C. S., Greene, J. M., Kruskal, M. D. and Miura, R. M. 1967. Method for solving the Korteweg-deVries equation. Phys. Rev. Lett., 19(Nov), 1095–1097.Google Scholar
Garnier, R. 1912. Sur des équations différentielles du troisième ordre dont l'intégrale générale est uniforme et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale a ses points critiques fixes. Ann. Sci. Éc. Norm. Supér. (3), 29, 1–126.CrossRefGoogle Scholar
Gasper, G. and Rahman, M. 2004. Basic Hypergeometric Series. Encyclopedia of Mathematics and Its Applications. Cambridge, UK: Cambridge University Press.
Gelfand, I. M. and Fomin, S. V. 2000. Calculus of Variations. Dover Books on Mathematics. New York: Dover Publications.
Gelfand, I. M., Kapranov, M. and Zelevinsky, A. 2008. Discriminants, Resultants, and Multidimensional Determinants. New York: Springer Science & Business Media.
Gilson, C. R., Nimmo, J. J. C. and Ohta, Y. 2007. Quasideterminant solutions of a non-Abelian Hirota–Miwa equation. J. Phys. A: Math. Theor., 40(42), 12607.Google Scholar
Glasser, M. L., Papageorgiou, V. G. and Bountis, T. C. 1989. Mel'nikov's function for two-dimensional mappings. SIAM J. Appl. Math., 49(3), 692–703.Google Scholar
Goldstein, H. 1950. Classical Mechanics. Boston: Addison-Wesley.
Goncharenko, V. M. and Veselov, A. P. 2004. Yang-Baxter maps and matrix solitons. In Shabat, A.B., González-López, A., Mañas, M., Martínez Alonso, L. and Rodríguez, M.A. (eds), New Trends in Integrability and Partial Solvability. Nato Science Series II, vol. 132. US: Springer, 191–197.
Gragg, W. B. 1972. The Padé table and its relation to certain algorithms of numerical analysis. SIAM Rev., 14, 1–16.Google Scholar
Grammaticos, B. and Ramani, A. 1996. The Gambier mapping. Physica A, 223(1–2), 125–136.Google Scholar
Grammaticos, B. and Ramani, A. 1999. On a novel q-discrete analogue of the Painlevé VI equation. Phys. Lett. A, 257(5–6), 288–292.Google Scholar
Grammaticos, B. and Ramani, A. 2004. Discrete Painlevé equations: a review. In Grammaticos, B., Tamizhmani, T., and Kosmann-Schwarzbach, Y. (eds), Discrete Integrable Systems, Lecture Notes in Physics, Vol. 644, Berlin: Springer, 245–321.
Grammaticos, B., Ramani, A. and Papageorgiou, V. G. 1991. Do integrable mappings have the Painlevé property. Phys. Rev. Lett., 67(14), 1825–1828.Google Scholar
Grammaticos, B., Ramani, A. and Moreira, I. 1993. Delay-differential equations and the Painlevé transcendents. Physica A, 196(4), 574–590.Google Scholar
Grammaticos, B., Ramani, A. and Hietarinta, J. 1994. Multilinear operators: the natural extension of Hirota's bilinear formalism. Phys. Lett. A, 190(1), 65–70.Google Scholar
Grammaticos, B., Ohta, Y., Ramani, A. and Sakai, H. 1998. Degeneration through coalescence of the q-Painlevé VI equation. J. Phys. A: Math. Gen., 31(15), 3545.Google Scholar
Grammaticos, B., Nijhoff, F. W. and Ramani, A. 1999. Discrete Painlevé equations. In Conte, R. M. (ed), The Painlevé Property: One Century Later. CRM Series in Mathematical Physics. New York: Springer, 413–516.
Grammaticos, B., Ramani, A. and Tamizhmani, K. M. 2000. Deautonomisation of differential-difference equations and discrete Painlevé equations. Chaos, Solitons Fractals, 11(5), 757–764.Google Scholar
Grammaticos, B., Kosmann-Schwarzbach, Y. and Tamizhmani, T. 2004. Discrete Integrable Systems. Lecture Notes in Physics, vol. 644. Berlin Heidelberg: Springer.
Grammaticos, B., Ramani, A., Satsuma, J.,Willox, R. and Carstea, A. S. 2005. Reductions of integrable lattices. J. Nonlinear Math. Phys., 12, Supp 1, 363–371.Google Scholar
Grammaticos, B., Halburd, R. G., Ramani, A. and Viallet, C.-M. 2009. How to detect the integrability of discrete systems. J. Phys. A: Math. Theor., 42(45), 454002.Google Scholar
Grammaticos, B., Ramani, A., Satsuma, J. and Willox, R. 2012. Discretising the Painlevé equations à la Hirota–Mickens. J. Math. Phys., 53(2), 023506.Google Scholar
Grammaticos, B., Ramani, A., Willox, R., Mase, T. and Satsuma, J. 2015. Singularity confinement and full-deautonomisation: A discrete integrability criterion. Phys. D, 313, 11–25.Google Scholar
Graves-Morris, P. R. and Roberts, D. E. 1997. Problems and progress in vector Padé approximation. J. Comput. Appl. Math., 77(1–2), 173–200.Google Scholar
Griffiths, D. J. 2005. Introduction to Quantum Mechanics, 2nd ed. Harlow, UK: Pearson Education.
Gromak, V. I. and Tsegel'nik, V. V. 1994. Functional relations between solutions of equations of P-type. Differ. Uravn., 30(7), 1118–1124, 1284.Google Scholar
Gromak, V. I., Laine, I. and Shimomura, S. 2002. Painlevé Differential Equations in the Complex Plane. De Gruyter Studies in Mathematics. Berlin: De Gruyter.
Gutknecht, M. H. and Parlett, B. N. 2011. From qd to LR, or, how were the qd and LR algorithms discovered. IMA J. Numer. Anal., 31(3), 741–754.Google Scholar
Hairer, E., Lubich, C. and Wanner, G. 2006. Geometric Numerical Integration: Structure- Preserving Algorithms for Ordinary Differential Equations. Springer Series in Computational Mathematics. Berlin Heidelberg: Springer.
Halburd, R. G. 2005. Diophantine integrability. J. Phys. A: Math. Gen., 38(16), L263–L269.Google Scholar
Halburd, R. G. and Korhonen, R. J. 2006. Existence of finite-order meromorphic solutions as a detector of integrability in difference equations. Phys. D, 218(2), 191–203.Google Scholar
Halburd, R. G. and Korhonen, R. J. 2007a. Finite-order meromorphic solutions and the discrete Painlevé equations. Proc. London Math. Soc. (3), 94(2), 443–474.Google Scholar
Halburd, R. G. and Korhonen, R. J. 2007b.Meromorphic solutions of difference equations, integrability and the discrete Painlevé equations. J. Phys. A: Math. Theor., 40(6), R1–R38.Google Scholar
Hartshorne, R. 1977. Algebraic Geometry, Graduate texts in mathematics: 52. New York: Springer.
Hasselblatt, B. and Propp, J. 2007. Degree-growth of monomial maps. Ergod. Theor. Dyn. Syst., 27(05), 1375–1397.Google Scholar
Hay, M., Hietarinta, J., Joshi, N. and Nijhoff, F. W. 2007. A Lax pair for a lattice modified KdV equation, reductions t. q-Painlevé equations and associated Lax pairs. J. Phys. A: Math. Theor., 40(2), F61–F73.Google Scholar
Hay, M., Kajiwara, K. and Masuda, T. 2011. Bilinearization and special solutions to the discrete Schwarzian KdV equation. Journal of Math-for-Industry, 3 (2011A-5), 53–62.Google Scholar
He, Y., Hu, X.-B., Sun, J. Q. and Weniger, E. J. 2011. Convergence acceleration algorithm via an equation related to the lattice boussinesq equation. SIAM J. Sci. Comput., 33(3), 1234–1245.Google Scholar
Herbst, B. M. and Ablowitz, M. J. 1989. Numerically induced chaos in the nonlinear Schrödinger equation. Phys. Rev. Lett., 62(18), 2065.Google Scholar
Herbst, B M., Varadi, F. and Ablowitz, M. J. 1994. Symplectic methods for the nonlinear Schrödinger equation. Math. Comput. Simul., 37(4), 353–369.Google Scholar
Hertrich-Jeromin, U., McIntosh, I., Norman, P. and Pedit, F. 2001. Periodic discrete conformal maps. J. Reine Angew Math., 534, 129–153.Google Scholar
Hietarinta, J. 1987a. A search for bilinear equations passing Hirota's three-soliton condition. I. KdV-type bilinear equations. J. Math. Phys., 28(8), 1732–1742.Google Scholar
Hietarinta, J. 1987b. A search for bilinear equations passing Hirota's three-soliton condition. II. mKdV-type bilinear equations. J. Math. Phys., 28(9), 2094–2101.Google Scholar
Hietarinta, J. 1987c. A search for bilinear equations passing Hirota's three-soliton condition. III. Sine-Gordon-type bilinear equations. J. Math. Phys., 28(11), 2586–2592.Google Scholar
Hietarinta, J. 1997. Permutation-type solutions to the Yang-Baxter and othe. n-simplex equations. J. Phys. A: Math. Gen., 30(13), 4757–4771.Google Scholar
Hietarinta, J. 2004. A new two-dimensional lattice model that is ‘consistent around a cube’. J. Phys. A: Math. Gen., 37(6), L67–L73.Google Scholar
Hietarinta, J. 2005. Searching for CAC-maps. J. Nonlinear Math. Phys., 12, Supp 2, 223–230.Google Scholar
Hietarinta, J. 2011. Boussinesq-like multi-component lattice equations and multi-dimensional consistency. J. Phys. A: Math. Theor., 44(16), 165204, 22pp.Google Scholar
Hietarinta, J. and Kruskal, M. D. 1992. Hirota forms for the six Painlevé equations from singularity analysis. In Levi, D. and Winternitz, P. (eds), Painlevé Transcendents, Their Asymptotics and Physical Applications. New York: Springer Science+Business Media, 175–185.
Hietarinta, J. and Viallet, C. 1998. Singularity confinement and chaos in discrete systems. Phys. Rev. Lett., 81(Jul), 325–328.Google Scholar
Hietarinta, J. and Viallet, C. 2000. Discrete Painlevé I and singularity confinement in projective space. Chaos, Solitons Fractals, 11(1–3), 29–32.Google Scholar
Hietarinta, J. and Viallet, C. 2012. Weak Lax pairs for lattice equations. Nonlinearity, 25(7), 1955–1966.Google Scholar
Hietarinta, J. and Zhang, D. J. 2009. Soliton solutions for ABS lattice equations. II. Casoratians and bilinearization. J. Phys. A: Math. Theor., 42(40), 404006, 30pp.Google Scholar
Hietarinta, J. and Zhang, D. J. 2011. Soliton taxonomy for a modification of the lattice Boussinesq equation. SIGMA 7, 061, 14pp.Google Scholar
Hietarinta, J. and Zhang, D. J. 2013. Hirota's method and the search for integrable partial difference equations. 1. Equations on a 3x3 stencil. J. Differ. Equ. Appl., 19(8), 1292–1316.Google Scholar
Hildebrand, F. B. 1968. Finite-Difference Equations and Simulations. Englewood Cliffs, NJ: Prentice-Hall Inc.
Hille, E. 1976. Ordinary Differential Equations in the Complex Domain. NewYork: Dover.
Hirota, R. 1971. Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons. Phys. Rev. Lett., 27(Nov), 1192–1194.Google Scholar
Hirota, R. 1973. Exact three-soliton solution of the two-dimensional sine-gordon equation. J. Phys. Soc. Japan, 35(5), 1566–1566.Google Scholar
Hirota, R. 1974. A new form of Bäcklund transformations and its relation to the inverse scattering problem. Prog. Theor. Phys., 52(5), 1498–1512.Google Scholar
Hirota, R. 1977a. Nonlinear partial difference equations. I. A difference analogue of the Korteweg-de Vries equation. J. Phys. Soc. Japan, 43(4), 1424–1433.Google Scholar
Hirota, R. 1977b. Nonlinear partial difference equations. II. Discrete-time Toda equation. J. Phys. Soc. Japan, 43(6), 2074–2078.Google Scholar
Hirota, R. 1977c. Nonlinear partial difference equations. III. Discrete sine-Gordon equation. J. Phys. Soc. Japan, 43(6), 2079–2086.Google Scholar
Hirota, R. 1981. Discrete analogue of a generalized Toda equation. J. Phys. Soc. Japan, 50(11), 3785–3791.Google Scholar
Hirota, R. 1986. Reduction of soliton equations in bilinear form. Physica D, 18(1–3), 161–170.Google Scholar
Hirota, R. 2004. The Direct Method in Soliton Theory. Cambridge Tracts in Mathematics, vol. 155. Cambridge, UK: Cambridge University Press. Translated from the 1992 Japanese original and edited by A., Nagai, J., Nimmo and C., Gilson.
Hirota, R. and Ito, M. 1981. A direct approach to multi-periodic wave solutions to nonlinear evolution equations. J. Phys. Soc. Japan, 50(1), 338–342.Google Scholar
Hirota, R. and Kimura, K. 2000. Discretization of the Euler top. J. Phys. Soc. Japan, 69(3), 627–630.Google Scholar
Hirota, R. and Satsuma, J. 1976. A variety of nonlinear network equations generated from the Bäcklund transformation for the toda lattice. Prog. Theor. Phys. Supp., 59, 64–100.Google Scholar
Hirota, R. Tsujimoto, S. and Imai, T. 1993. Difference scheme of soliton equations. In Christiansen, P. L., Eilbeck, J. C., and Parmentier, R. D. (eds), Future Directions of Nonlinear Dynamics in Physical and Biological Systems. NATO ASI Series, vol. 312. US: Springer, 7–15.
Hirota, R., Kimura, K. and Yahagi, H. 2001. How to find the conserved quantities of nonlinear discrete equations. J. Phys. A: Math. Gen., 34(48), 10377–10386.Google Scholar
Hone, A. N. W. 2007. Sigma function solution of the initial value problem for Somos 5 sequences. Trans. Am. Math. Soc., 359(10), 5019–5034.Google Scholar
Hone, A. N. W. and Petrera, M. 2009. Three-dimensional discrete systems of Hirota-Kimura type and deformed Lie-Poisson algebras. J. Geom. Mech., 1(1), 55–85.Google Scholar
Hone, A. N. W. and Swart, C. 2008. Integrality and the Laurent phenomenon for Somos 4 and Somos 5 sequences. Math. Proc. Cambridge Philos. Soc., 145(7), 65–85.Google Scholar
Humphreys, J. E. 1992. Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics. Cambridge, UK: Cambridge University Press.
Hydon, P. E. 2014. Difference Equations by Differential Equations Methods. Cambridge Monographs on Applied and Computational Mathematics, vol. 149. Cambridge, UK: Cambridge University Press.
Hydon, P. E. and Viallet, C.-M. 2010. Asymmetric integrable quad-graph equations. Appl. Anal., 89(4), 493–506.Google Scholar
Iatrou, A. and Roberts, J. A. G. 2001. Integrable mappings of the plane preserving biquadratic invariant curves. J. Phys. A: Math. Gen., 34(34), 6617–6636.Google Scholar
Ince, E. L. 1956. Ordinary Differential Equations. Dover Books on Science. New York: Dover Publications Incorporated.
Ismail, M. 2005. Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and Its Applications. vol. 98. Cambridge, UK: Cambridge University Press.
Its, A. R., Kitaev, A. V. and Fokas, A. S. 1990. The isomonodromy approach in the theory of two-dimensional quantum gravitation. Russ. Math. Surv., 45(6), 155–157.Google Scholar
Iwasaki, K., Kimura, H., Shimemura, S. and Yoshida, M. 1991. From Gauss to Painlevé: A Modern Theory of Special Functions. Aspects of Mathematics. Braunschweig: Vieweg+Teubner Verlag.
Jacobi, C. G. J. 1846. Uber die Darstellung einer Reihe gegebener Werthe durch eine gebrochene rationale Function. J. Reine Angew. Math., 30, 127–156.Google Scholar
Jimbo, M. and Miwa, T. 1981. Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. Physica D, 2, 407–448.Google Scholar
Jimbo, M. and Miwa, T. 1983. Solitons and infinite-dimensional Lie algebras. Publ. Res. Inst. Math. Sci., 19(3), 943–1001.Google Scholar
Jimbo, M. and Sakai, H. 1996. q-analog of the sixth Painlevé equation. Lett. Math. Phys., 38(2), 145–154.Google Scholar
Joshi, N. 1997. A local asymptotic analysis of the discrete first Painlevé equation as the discrete independent variable approaches infinity. Methods Appl. Anal., 4(2), 124–133.Google Scholar
Joshi, N. 2009. Direct “delay” reductions of the Toda equation. J. Phys. A: Math. Theor., 42(2), 022001.Google Scholar
Joshi, N. 2015. Quicksilver solutions of. q-difference first Painlevé equation. Stud. Appl. Math, 134(2), 233–251.Google Scholar
Joshi, N. and Kruskal, M. D. 1994. A direct proof that solutions of the six Painlevé equations have no movable singularities except poles. Stud. Appl. Math., 93(3), 187–207.Google Scholar
Joshi, N. and Lobb, S. B. 2016. Singular dynamics of. q-difference Painlevé equation in its initial-value space. J. Phys. A: Math. Theor, 49(1), 014002.Google Scholar
Joshi, N. and Lustri, C. J. 2015. Stokes phenomena in discrete Painlevé I. Proc. R. Soc. London A Math. Phys. Eng. Sci., 471(2177), 20140874.Google Scholar
Joshi, N. and Shi, Y. 2011. Exact solutions of a q-discrete second Painlevé equation from its iso-monodromy deformation problem: I. Rational solutions. Proc. R. Soc. London A Math. Phys. Eng. Sci., rspa20110167.
Joshi, N. and Shi, Y. 2012. Exact solutions of a q-discrete second Painlevé equation from its iso-monodromy deformation problem. II. Hypergeometric solutions. Proc. R. Soc. London A Math. Phys. Eng. Sci., 468(2146), 3247–3264.Google Scholar
Joshi, N., Burtonclay, D. and Halburd, R. G. 1992. Nonlinear nonautonomous discrete dynamical systems from a general discrete isomonodromy problem. Lett. Math. Phys., 26(2), 123–131.Google Scholar
Joshi, N., Ramani, A. and Grammaticos, B. 1998. A bilinear approach to discrete Miura transformations. Phys. Lett. A, 249(1–2), 59–62.Google Scholar
Joshi, N., Grammaticos, B., Tamizhmani, T. and Ramani, A. 2006. From integrable lattices to non-QRT mappings. Lett. Math. Phys., 78(1), 27–37.Google Scholar
Joshi, N., Nakazono, N. and Shi, Y. 2014. Geometric reductions of ABS equations on an n-cube to discrete Painlevé system. J. Phys A: Math. Theor., 47(50), 505201.Google Scholar
Joshi, N., Nakazono, N., and Shi, Y. 2015. Lattice equations arising from discrete Painlevé systems. I. (A2 + A(1) and (A1 + A1)(1) cases. J. Math. Phys., 56(9), 092705.Google Scholar
Kac, M. and van Moerbeke, P. 1975. On an explictly soluble system fo nonlinear differential equations related to certain Toda lattices. Adv. Math., 16, 160–169.Google Scholar
Kac, V. G. 1994. Infinite-Dimensional Lie Algebras. Cambridge, UK: Cambridge university Press.
Kahan, W. 1993. Unconventional numerical methods for trajectory calculations. Lecture notes, CS Division, Department of EECS.
Kajiwara, K. and Ohta, Y. 2008. Bilinearization and casorati determinant solution to the non-autonomous discrete KdV equation. J. Phys. Soc. Japan, 77(5), 054004.Google Scholar
Kajiwara, K., Maruno, K. and Oikawa, M. 2000. Bilinearization of discrete soliton equations through the singularity confinement test. Chaos, Solitons & Fractals, 11(1–3), 33–39.Google Scholar
Kajiwara, K., Noumi, M. and Yamada, Y. 2001. A study on the fourt. q-Painlevé equation. J. Phys. A: Math. Gen., 34(41), 8563–8581.Google Scholar
Kajiwara, K., Noumi, M. and Yamada, Y. 2002. q-Painlevé systems arising from q-KP hierarchy. Lett. Math. Phys., 62(3), 259–268.Google Scholar
Kajiwara, K., Masuda, T. Noumi, M. Ohta, Y. and Yamada, Y. 2003. 10E9 solution to the elliptic Painlevé equation. J. Phys. A: Math. Gen., 36(17), L263–L272.Google Scholar
Kajiwara, K., Masuda, T., Noumi, M., Ohta, Y. and Yamada, Y. 2004. Hypergeometric solutions to th. q-Painlevé equations. Int. Math. Res. Not., 2004(47), 2497–2521.Google Scholar
Kajiwara, K., Masuda, T., Noumi, M., Ohta, Y. and Yamada, Y. 2005a. Construction of hypergeometric solutions to the q-Painlevé equations. Int. Math. Res. Not., 2005(24), 1439–1463.Google Scholar
Kajiwara, K., Masuda, T., Noumi, M., Ohta, Y. and Yamada, Y. 2005b. A geometric description of the elliptic Painleve equation. Rokko Lect. Math., 18, 43–48.Google Scholar
Kajiwara, K.,Masuda, T., Noumi, M., Ohta, Y. and Yamada, Y. 2006. Point configurations, Cremona transformations and the elliptic difference Painlevé equation. In Delabaere, E. and Lodauy-Richaud, M. (ed), Théories asymptotiques et équations de Painlevé, Seminaires et Congres Sémin. Congr, vol. 14. Paris: SMF, 169–198.
Kajiwara, K., Noumi, M. and Yamada, Y. 2015. Geometric aspects of Painlevé equations. arXiv:1509.08186, 168pp.Google Scholar
Kakei, S., Nimmo, J. J. C. and Willox, R. 2009. Yang–Baxter maps and the discrete KP hierarchy. Glasg. Math. J., 51(2), 107–119.Google Scholar
Kakei, S., Nimmo, J. J. C. and Willox, R. 2010. Yang–Baxter maps from the discrete BKP equation. SIGMA 6, 028, 11pp.Google Scholar
Kanki, M. 2013. Studies on the Discrete Integrable Equations over Finite Fields. Ph.D. thesis, University of Tokyo.
Kassotakis, P. and Alonso, L. M. 2011. Families of integrable equations. SIGMA 7, 100, 14pp.Google Scholar
Kassotakis, P. and Alonso, L. M. 2012. On non-multiaffine consistent-around-the-cube lattice equations. Phys. Lett. A, 376(45), 3135–3140.Google Scholar
Kay, I. and Moses, H. E. 1956. Reflectionless transmission through dielectrics and scattering potentials. J. Appl. Phys., 27(12), 1503–1508.Google Scholar
Kelley, W. G., and Peterson, A. C. 2001. Difference Equations: An Introduction with Applications. San Diego: Harcourt/Academic Press.
Kimura, K. and Hirota, R. 2000. Discretization of the Lagrange Top. J. Phys. Soc. Japan, 69(10), 3193–3199.Google Scholar
Kimura, K., Yahagi, H., Hirota, R., Ramani, A., Grammaticos, B. and Ohta, Y. 2002. A new class of integrable discrete systems, J. Phys. A: Math. Gen., 35(43), 9205–3212.Google Scholar
King, A. D. and Schief, W. K. 2003. Tetrahedra, octahedra and cubo-octahedra: integrable geometry of multi-ratios. J. Phys. A: Math. Gen., 36(3), 785–802.Google Scholar
King, A. D. and Schief, W. K. 2006. Application of an incidence theorem for conics: Cauchy problem and integrability of the dCKP equation. J. Phys. A: Math. Gen., 39(8), 1899–1913.Google Scholar
Koekoek, R., Lesky, P. A. and Swarttouw, R. F. 2010. Hypergeometric Orthogonal Polynomials and Their q-Analogues. Springer Monographs in Mathematics. Berlin: Springer-Verlag.
Koenigs, G. 1891. Sur les systèmes conjugués à invariants égaux. C. R. Acad. Sci. Paris., 113, 1022–1024.Google Scholar
Koenigs, G. 1892. Sur les réseaux plans à invariants égaux et les lignes asymptotiques. C. R. Acad. Sci. Paris., 114, 55–57.Google Scholar
Kolchin, E. R. 1973. Differential Algebra & Algebraic Groups. Pure and Applied Mathematics. New York and London: Academic Press.
Konopelchenko, B. G. and Schief, W. K. 1998. Three-dimensional integrable lattices in Euclidean spaces: conjugacy and orthogonality. R. Soc. London Proc. Ser. A Math. Phys. Eng. Sci., 454(1980), 3075–3104.Google Scholar
Konopelchenko, B. G. and Schief, W. K. 2002a. Menelaus' theorem, Clifford configurations and inversive geometry of the Schwarzian KP hierarchy. J. Phys. A: Math. Gen., 35(29), 6125–6144.Google Scholar
Konopelchenko, B. G. and Schief, W. K. 2002b. Reciprocal figures, graphical statics, and inversive geometry of the Schwarzian BKP hierarchy. Stud. Appl. Math., 109(2), 89–124.Google Scholar
Konstantinou-Rizos, S. 2014. Darboux transformations, discrete integrable systems and related Yang–Baxter maps. arXiv preprint arXiv:1410.5013.
Konstantinou-Rizos, S., and Mikhailov, A. V. 2013. Darboux transformations, finite reduction groups and related Yang–Baxter maps. J. Phys. A: Math. Theor., 46(42), 425201.Google Scholar
Konstantinou-Rizos, S., Mikhailov, A. V. and Xenitidis, P. 2015. Reduction groups and related integrable difference systems of NLS type. arXiv:1503.06406.
Korepin, V. E., Bogoliubov, N. M. and Izergin, A.G. 1997. Quantum Inverse Scattering Method and Correlation Functions. Cambridge, UK: Cambridge University Press.
Korteweg, D. J. and de Vries, G. 1895. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. Ser. 5, 39(240), 422–443.Google Scholar
Kouloukas, T. E. and Papageorgiou, V. G. 2009. Yang–Baxter maps with first-degree-polynomial 2× 2 Lax matrices. J. Phys. A:Math. Theor., 42(40), 404012.Google Scholar
Kouloukas, T. E., and Papageorgiou, V. G. 2012. 3D compatible ternary systems and Yang–Baxter maps. J. Phys. A: Math. Theor., 45(34), 345204.Google Scholar
Kowalevski, S. 1889. Sur le probleme de la rotation d'un corps solide autour d'un point fixe. Acta Math., 12(1), 177–232.Google Scholar
Kowalevski, S. 1890. Sur une propriété du système d'équations différentielles qui définit la rotation d'un corps solide autour d'un point fixe. Acta Math., 14(1), 81–93.Google Scholar
Krichever, I. M. 1978. Rational solutions of the Kadomtsev–Petviashvili equation and integrable systems of N particles on a line. Funct. Anal. Appl., 12(1), 59–61.Google Scholar
Krichever, I. M. 1980. Elliptic solutions of the Kadomtsev-Petviashvili equation and integrable systems of particles. Funct. Anal. Appl., 14(4), 282–290.Google Scholar
Krichever, I. M. and Novikov, S. P. 1979. Holomorphic fiberings and nonlinear equations. Finite zone solutions of rank 2. Sov. Math. Dokl, 20(4), 650–654.Google Scholar
Krichever, I. M. and Novikov, S. P. 1980. Holomorphic bundles over algebraic curves and non-linear equations. Russ. Math. Surv., 35(6), 53–79.Google Scholar
Krichever, I. M., Wiegmann, P. and Zabrodin, A. 1998. Elliptic solutions to difference non-linear equations and related many-body problems. Commun. Math. Phys., 193(2), 373–396.Google Scholar
Kruskal, M. D. and Clarkson, P. A. 1992. The Painlevé-Kowalevski and poly-Painlevé tests for integrability. Stud. Appl. Math., 86(2), 87–165.Google Scholar
Kupershmidt, B. A. 2000. KP or mKP: Noncommutative Mathematics of Lagrangian, Hamiltonian, and Integrable Systems. Mathematical surveys and monographs. Providence, RI: American Mathematical Society.
Lafortune, S., Ramani, A., Ohta, Y., Grammaticos, B., and Tamizhmani, K. M. 2001. Blending two discrete integrability criteria: singularity confinement and algebraic entropy. In Coley, A. A., Levi, D., Milson, R., Rogers, C. and Winternitz, P. (eds) Bäcklund and Darboux Transformations. The Geometry of Solitons. CRM Proceedings & Lecture Notes, vol. 29. Providence, RI: American Mathematical Society, 299–311.
Lamb, G. L. 1980. Elements of Soliton Theory. Pure and Applied Mathematics. New York: John Wiley & Sons.
Lax, P. D. 1968. Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Applied Math. 21, 467–490.Google Scholar
LeCaine, J. 1943. The linear q-difference equation of the second order. Am. J. Math., 65, 585–600.Google Scholar
Levi, D. 1981. Nonlinear differential difference equations as Backlund transformations. J. . Phys. A: Math. Gen., 14(5), 1083.Google Scholar
Levi, D. and Benguria, R. 1980. Bäcklund transformations and nonlinear differential difference equations. Proc. Natl. Acad. Sci. U.S.A., 77(9), 5025–5027.Google Scholar
Levi, D. and Petrera, M. 2007. Continuous symmetries of the lattice potential KdV equation. J. Phys. A: Math. Theor., 40(15), 4141.Google Scholar
Levi, D. and Winternitz, P. 1993. Symmetries and conditional symmetries of differential-difference equations., J. Math. Phys. 34, 3713–3730.Google Scholar
Levi, D., andWinternitz, P. 2006. Continuous symmetries of difference equations. J. Phys. A: Math. Gen., 39(2), R1–R63.Google Scholar
Levi, D. and Yamilov, R. 1997. Conditions for the existence of higher symmetries of evolutionary equations on the lattice. J. Math. Phys., 38, 6648.Google Scholar
Levi, D. and Yamilov, R. I. 2009a. The generalized symmetry method for discrete equations. J. Phys. A: Math. Theor., 42(45), 454012, 18pp.Google Scholar
Levi, D. and Yamilov, R. I. 2009b. On a nonlinear integrable difference equation on the square. Ufimsk. Mat. Zh., 1, 101–105.Google Scholar
Levi, D., and Yamilov, R. I. 2011. Generalized symmetry integrability test for discrete equations on the square lattice. J. Phys. A: Math. Theor., 44(14), 145207, 22pp.Google Scholar
Levi, D. Pilloni, L. and Santini, P. M. 1981. Integrable three-dimensional lattices. J. Phys. A: Math. Gen., 14(7), 1567.Google Scholar
Levi, D. Ragnisco, O. and Rodriguez, M. A. 1992. On non-isospectral flows, Painlevé equations, and symmetries of differential and difference equations. Theor. Math. Phys., 93(3), 1409–1414.Google Scholar
Levi, D., Petrera, M. and Scimiterna, C. 2007. The lattice Schwarzian KdV equation and its symmetries. J. Phys. A: Math. Theor., 40(42), 12753.Google Scholar
Levi, D., Olver, P., Thomova, Z. and Winternitz, P. 2011. Symmetries and Integrability of Difference Equations. London Mathematical Society Lecture Note Series, vol. 381. Cambridge, UK: Cambridge University Press.
Levin, A. 2008. Difference Algebra. Algebra and Applications, vol. 8. Berlin: Springer.
Lobb, S. B. 2010. Lagrangian Structures and Multidimensional Consistency. Ph.D. thesis, University of Leeds.
Lobb, S. B. and Nijhoff, F. W. 2009. Lagrangian multiforms and multidimensional consistency. J. Phys. A: Math. Theor., 42(45), 454013.Google Scholar
Lobb, S. B. and Nijhoff, F. W. 2010. Lagrangian multiform structure for the lattice Gel'fand-Dikii hierarchy. J. Phys. A: Math. Theor., 43(7), 072003, 11pp.Google Scholar
Lobb, S. B. and Nijhoff, F.W. 2013. A variational principle for discrete integrable systems. arXiv preprint arXiv:1312.1440.
Lobb, S. B., Nijhoff, F. W. and Quispel, G. R. W. 2009. Lagrangian multiform structure for the lattice KP system. J. Phys. A: Math. Theor., 42(47), 472002.Google Scholar
Logan, J. D. 1973. First integrals in the discrete variational calculus. Aequationes Math., 9, 210–220.Google Scholar
Maeda, S. 1981. Extension of discrete Noether theorem. Math. Japon., 26(1), 85–90.Google Scholar
Magnus, A. P. 1995. Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials. J. Comput. Appl. Math., 57(1), 215–237.Google Scholar
Magnus, A. P. 2009. Rational interpolation to solutions of Riccati difference equations on elliptic lattices. J. Comput. Appl. Math., 233(3), 793–801.Google Scholar
Maillet, J.-M. and Nijhoff, F. W. 1989. Integrability for multidimensional lattice models. Phys. Lett. B, 224(4), 389–396.Google Scholar
Mano, T. 2010. Asymptotic behaviour around a boundary point of the q-Painlevé VI equation and its connection problem. Nonlinearity, 23(7), 1585.Google Scholar
Marsh, R. J. 2013. Lecture Notes on Cluster Algebras. Zurich Lectures in Advanced Mathematics. European Mathematical Society.
Maruno, K. and Quispel, G. R. W. 2006. Construction of integrals of higher-order mappings. J. Phys. Soc. Jpn., 75, 123001–123005.Google Scholar
Maruno, K., Kajiwara, K., Nakao, S. and Oikawa, M. 1997. Bilinearization of discrete soliton equations and singularity confinement. Phys. Lett. A, 229(3), 173–182.Google Scholar
Matveev, V. B. and Salle, M. A. 1991. Darboux Transformations and Solitons. Nonlinear Dynamics Series. Berlin: Springer.
McMillan, E. M. 1971. A problem in the stability of periodic systems. Brittin, W. E. and Odabasi, H. (eds), Topics in Modern Physics. A Tribute to E.U. Condon. Colorado Associated Univ. Press, 219–44.
McMullen, C. T. 2007. Dynamics on blowups of the projective plane. Publ. Math. IHES 105(1), 49–89.Google Scholar
Mercat, C. 2001. Discrete Riemann surfaces and the Ising model. Commun. Math. Phys., 218(1), 177–216.Google Scholar
Mercat, C. 2004. Exponentials form a basis of discrete holomorphic functions on a compact. Bull. Soc. Math. France, 132(2), 305–326.Google Scholar
Mercat, C. 2008. Discrete Riemann surfaces, linear and non-linear. arXiv preprint arXiv:0802.1448.
Mikhailov, A. V., Wang, J. P. and Xenitidis, P. 2011a. Cosymmetries and Nijenhuis recursion operators for difference equations. Nonlinearity, 24(7), 2079–2097.Google Scholar
Mikhailov, A. V., Wang, J. P. and Xenitidis, P. 2011b. Recursion operators, conservation laws, and integrability conditions for difference equations. Theor. Math. Phys., 167(1), 421–443.Google Scholar
Milne-Thomson, L. M. 2000. The Calculus of Finite Differences. Providence, RI: AMS Chelsea Publishing (reprint of the 1933 edition).
Miura, R. M. 1968. Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation. J. Math. Phys., 9, 1202–1204.Google Scholar
Miura, R. M., Gardner, C. S. and Kruskal, M. D. 1968. Korteweg–de vries equation and generalizations. II. Existence of conservation laws and constants of motion. J. Math. Phys., 9(8), 1204–1209.Google Scholar
Miwa, T. 1982. On Hirota's difference equations. Proc. Japan Acad. Ser. A Math. Sci., 58(1), 9–12.Google Scholar
Miwa, T., Jimbo, M. and Date, E. 2000. Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras. Cambridge Tracts in Mathematics, vol. 135. Cambridge, UK: Cambridge University Press. Translated from the 1993 Japanese original by M., Reid.
Moser, J. 1975. Three integrable Hamiltonian systems connected with isospectral deformations. Adv. Math., 16(2), 197–220.Google Scholar
Moser, J. and Veselov, A. P. 1991. Discrete versions of some classical integrable systems and factorization of matrix polynomials. Commun. Math. Phys., 139(2), 217–243.Google Scholar
Muĝan, U., and Santini, P. M. 2011. On the solvability of the discrete second Painlevé equation. J. Phys. A: Math. Theor., 44(18), 185204.Google Scholar
Muir, T. 1890. The Theory of Determinants in the Historical Order of Its Development. vol. I. Determinants in General. Leibniz (1693) to Cayley (1841).London: Macmillan and Co.
Murata, M. 2009. Lax forms of the q-Painlevé equations. J. Phys. A: Math. Theor., 42(11), 115201.Google Scholar
Murata, M., Sakai, H. and Yoneda, J. 2003. Riccati solutions of discrete Painlevé equations with Weyl group symmetry of type E(1) 8. J. Math. Phys., 44(3), 1396–1414.Google Scholar
Nagai, A. and Satsuma, J. 1995. Discrete soliton equations and convergence acceleration algorithms. Phys. Lett. A, 209(5–6), 305–312.Google Scholar
Nagai, A., Tokihiro, T. and Satsuma, J. 1998. The Toda molecule equation and th.-algorithm. Math. Comp., 67(224), 1565–1575.Google Scholar
Nakamura, A. 1979. A direct method of calculating periodic wave solutions to nonlinear evolution equations. I. Exact two-periodic wave solution. J. Phys. Soc. Japan, 47(5), 1701–1705.Google Scholar
Nevai, P. 1986. Géza Freud, orthogonal polynomials and Christoffel functions. A case study. J. Approx. Theory, 48(1), 3–167.Google Scholar
Newell, A. C. 1985. Solitons in Mathematics and Physics. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 48. Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM).Google Scholar
Alonso, L. M. 2007. Darboux transformations for a 6-point scheme. J. Phys. A: Math. Theor., 40(15), 4193.Google Scholar
Alonso, L. M. and Santini, P. M. 2005. The self-adjoint 5-point and 7-point difference operators, the associated Dirichlet problems, Darboux transformations and Lelieuvre formulae. Glasg. Math. J., 47(A), 133–147.Google Scholar
Nijhoff, F. W. 1985. Theory of integrable three-dimensional nonlinear lattice equations. Lett. Math. Phys., 9(3), 235–241.Google Scholar
Nijhoff, F. W. 1987. Integrable hierarches, Lagrangian structures and non-commuting Flows. In M., Ablowitz, B., Fuchssteiner and M. D., Kruskal (eds), Topics in Soliton Theory and Exactly Solvable Nonlinear Equations. World Scientific, 150–181.
Nijhoff, F. W. 1997. On some “Schwarzian” equations and their discrete analogues. In Fokas, A. S. and Gelfand, I. M. (eds), Algebraic Aspects of Integrable Systems: In Memory of Irene Dorfman. Progress in nonlinear differential equations and their applications, vol. 26. Boston, MA: Birkhäuser, 237–260.
Nijhoff, F. W. 1999. Discrete Painlevé equations and symmetry reduction on the lattice. In Bobenko, A. I. and Seiler, R. (eds), Discrete Integrable Geometry and Physics (Vienna, 1996). Oxford Lecture Ser. Math. Appl., vol. 16. New York: Oxford University Press, 209–234.
Nijhoff, F. W. 2002. Lax pair for the Adler (lattice Krichever-Novikov) system. Phys. Lett. A, 297(1–2), 49–58.Google Scholar
Nijhoff, F. W. and Atkinson, J. 2010. Elliptic N-soliton solutions of ABS lattice equations. Int. Math. Res. Not., 2010(20), 3837–3895.Google Scholar
Nijhoff, F. W. and Capel, H. W. 1990. The direct linearisation approach to hierarchies of integrable PDEs in 2 + 1 dimensions: I. Lattice equations and the differential-difference hierarchies. Inverse Prob., 6(4), 567.CrossRefGoogle Scholar
Nijhoff, F. W. and Capel, H. 1995. The discrete Korteweg-de Vries equation. Acta Appl. Math., 39(1–3), 133–158.Google Scholar
Nijhoff, F.W. and Enolskii, V. Z. 1999. Integrable mappings of KdV type and hyperelliptic addition theorems. In Clarkson, P. A. and Nijhoff, F. W. (eds), Symmetries and Integrability of Difference Equations. LMS Lecture Note Series 255, 64–78.
Nijhoff, F. W. and Pang, G. D. 1994. A time-discretized version of the Calogero-Moser model. Phys. Lett. A, 191(1–2), 101–107.Google Scholar
Nijhoff, F. W. and Pang, G. D. 1996. Discrete-time Calogero-Moser model and lattice KP equations. In Levi, D., Vinet, L. andWinternitz, P. (eds), Symmetries and Integrability of Difference Equations. CRM Proceedings & Lecture Notes, vol. 9. Providence, RI: American Mathematical Society, 253–264.
Nijhoff, F. W. and Papageorgiou, V. G. 1991. Similarity reductions of integrable lattices and discrete analogues of the Painlevé II equation. Phys. Lett. A, 153(6–7), 337–344.Google Scholar
Nijhoff, F. W. and Puttock, S. E. 2003. On a two-parameter extension of the lattice KdV system associated with an elliptic curve. J. Nonlinear Math. Phys., 10, Supp 1, 107–123.Google Scholar
Nijhoff, F. W. and Walke, A. J. 2001. The discrete and continuous Painlevé VI hierarchy and the Garnier systems. Glasg. Math. J., 43A, 109–123.Google Scholar
Nijhoff, F.W., Quispel, G. R.W. and Capel, H.W. 1983a. Direct linearization of nonlinear difference-difference equations. Phys. Lett. A, 97(4), 125–128.Google Scholar
Nijhoff, F. W., Capel, H. W. and Quispel, G. R. W. 1983b. Integrable lattice version of the massive Thirring model and its linearization. Phys. Lett. A, 98(3), 83–86.Google Scholar
Nijhoff, F. W., Capel, H. W., Wiersma, G. L. and Quispel, G. R. W. 1984. Bäcklund transformations and three-dimensional lattice equations. Phys. Lett. A, 105(6), 267–272.Google Scholar
Nijhoff, F. W., Capel, H. W. and Wiersma, G. L. 1985. Integrable lattice systems in two and three dimensions. In Martini, R. (ed), Geometric Aspects of the Einstein Equations and Integrable Systems (Scheveningen, 1984). Lecture Notes in Phys., vol. 239. Berlin: Springer, 263–302.
Nijhoff, F. W., Papageorgiou, V. G., Capel, H. W. and Quispel, G. R. W. 1992. The lattice Gel'fand-Dikii hierarchy. Inverse Prob., 8(4), 597.Google Scholar
Nijhoff, F. W., Ragnisco, O. and Kuznetsov, V. B. 1996. Integrable time-discretisation of the Ruijsenaars-Schneider model. Commun. Math. Phys., 176(3), 681–700.Google Scholar
Nijhoff, F. W., Hone, A. N. W. and Joshi, N. 2000a. On a Schwarzian PDE associated with the KdV hierarchy. Phys. Lett. A, 267(2–3), 147–156.Google Scholar
Nijhoff, F. W., Joshi, N. and Hone, A. N. W. 2000b. On the discrete and continuous Miura chain associated with the sixth Painlevé equation. Phys. Lett. A, 264(5), 396–406.Google Scholar
Nijhoff, F. W., Ramani, A., Grammaticos, B. and Ohta, Y. 2001. On discrete Painlevé equations associated with the lattice KdV systems and the Painlevé VI equation. Stud. Appl. Math., 106(3), 261–314.Google Scholar
Nijhoff, F. W. Atkinson, J. and Hietarinta, J. 2009. Soliton solutions for ABS lattice equations. I. Cauchy matrix approach. J. Phys. A:Math. Theor., 42(40), 404005, 34pp.Google Scholar
Nimmo, J. J. C. 2006. On a non-Abelian Hirota–Miwa equation. J. Phys. A: Math. Gen., 39(18), 5053.Google Scholar
Nimmo, J. J. C. and Schief, W. K. 1997. Superposition principles associated with the Moutard transformation: an integrable discretization of (2 + 1)-dimensional sine-Gordon system. Proc. R. Soc. London Ser. A, 453(1957), 255–279.Google Scholar
Nishioka, S. 2010. Transcendence of solutions of q-Painlevé equation of type A(1)7. Aequa. Math., 79(1–2), 1–12.Google Scholar
Nishioka, S. 2012. Irreducibility o. q-Painlevé equation of type A(1)6 in the sense of order. J. Differ. Equ. Appl., 18(2), 313–333.Google Scholar
Noether, E. 1918. Variationsprobleme. Nachr. Kong. Gesell. Wissensch. (Göttingen), Math.-Phys. Kl., 2, 235–257.Google Scholar
Nörlund, N. E. 1954. Vorlesungen über Differenzenrechnung. Providence, RI: AMS Chelsea Publishing (reprint of the 1924 edition from Springer, Berlin).
Noumi, M. 2004. Painlevé Equations Through Symmetry. Translations of Mathematical Monographs. Providence, RI: American Mathematical Society.
Noumi, M., Tsujimoto, S. and Yamada, Y. 2013. Padé interpolation for elliptic Painlevé equation. In Iohara, K.,Morier-Genoud, S. and Rémy, B.(eds), Symmetries, Integrable Systems and Representations. Springer, 463–482.
Ohta, Y., Satsuma, J., Takahashi, D. and Tokihiro, T. 1988. An elementary introduction to Sato theory. Prog. Theor. Phys. Suppl., 94, 210–241.Google Scholar
Ohta, Y. Hirota, R. Tsujimoto, S. and Imai, T. 1993. Casorati and discrete Gram type determinant representations of solutions to the discrete KP hierarchy. J. Phys. Soc. Japan, 62(6), 1872–1886.Google Scholar
Ohta, Y., Tamizhmani, K. M., Grammaticos, B. and Ramani, A. 1999. Singularity confinement and algebraic entropy: the case of the discrete Painlevé equations. Phys. Lett. A, 262(2–3), 152–157.Google Scholar
Ohta, Y., Ramani, A. and Grammaticos, B. 2001. An affine Weyl group approach to the eight-parameter discrete Painlevé equation. J. Phys. A: Math. Gen., 34(48), 10523.Google Scholar
Okamoto, K. 1979. Sur les feuilletages associés aux équation du second ordre à points critiques fixes de P. Painlevé. Espaces des conditions initiales. Jpn. J. Math., 5(1), 1–79.CrossRefGoogle Scholar
Okamoto, K. 1981. On th.τ -function of the Painlevé equations. Physica D, 2(3), 525–535.Google Scholar
Okamoto, K. 1986. Studies on the Painlevé equations. Annali di Matematica Pura ed Applicata, 146(1), 337–381.Google Scholar
Okamoto, K. 1999. The Hamiltonians associated to the Painlevé equations. In Conte, R. M. (ed), The Painlevé Property: One Century Later. CRM Series in Mathematical Physics. New York: Springer, 735–787.
Olshanetsky, M. A. and Perelomov, A. M. 1981. Classical integrable finite-dimensional systems related to Lie algebras. Phys. Rep., 71(5), 313–400.Google Scholar
Olver, F.W. J., Lozier, D.W., Boisvert, R. F. and Clark, C.W. (eds). 2010. NIST Handbook of Mathematical Functions. New York, NY: Cambridge University Press. Print companion to DLMF (2010).
Olver, P. J. 2000. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics. New York: Springer.
Orfanidis, S. J. 1978. Sine-Gordon equation and nonlinear σ model on a lattice. Phys. Rev. D (3), 18(10), 3828–3832.Google Scholar
Ormerod, C. M. 2011. A study of the associated linear problem for q-PV. J. Phys. A: Math. Theor., 44(2), 025201.Google Scholar
Ormerod, C. M. 2012. Reductions of lattice mKdV to q-PVI. Phys. Lett. A, 376(45), 2855–2859.Google Scholar
Ormerod, C. M. and Rains, E. M. 2016. A symmetric difference-differential Lax pair for Painlevé VI. arXiv:1603.04393.
Ormerod, C. M.,Witte, N. S. and Forrester, P. J. 2011. Connection preserving deformations and q-semi-classical orthogonal polynomials. Nonlinearity, 24(9), 2405.Google Scholar
Ormerod, C. M., Van der Kamp, P. H. and Quispel, G. R. W. 2013. Discrete Painlevé equations and their Lax pairs as reductions of integrable lattice equations. J. Phys. A: Math. Theor., 46(9), 095204.Google Scholar
Padé, H. 1892. Sur la représentation approchée d'une fonction par des fractions rationnelles. Ann. Sci. Éc. Norm. Supér. (3), 9, 3–93.Google Scholar
Painlevé, P. 1902. Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme. Acta Math., 25(1), 1–85.Google Scholar
Painlevé, P. 1906. Sur les équations différentielles du second ordre á points critiques fixes. C. R. Acad. Sci., 143, 1111–1117.Google Scholar
Papageorgiou, V. G. and Tongas, A. G. 2007. Yang-Baxter maps and multi-field integrable lattice equations. J. Phys. A: Math. Theor., 40(42), 12677–12690.Google Scholar
Papageorgiou, V. G. and Tongas, A. G. 2009. Yang-Baxter maps associated to elliptic curves. arXiv preprint arXiv:0906.3258.
Papageorgiou, V. G., Nijhoff, F. W. and Capel, H. W. 1990. Integrable mappings and nonlinear integrable lattice equations. Phys. Lett. A, 147(2–3), 106–114.Google Scholar
Papageorgiou, V. G., Nijhoff, F. W., Grammaticos, B. and Ramani, A. 1992. Isomonodromic deformation problems for discrete analogues of Painlevé equations. Phys. Lett. A, 164(6), 57–64.Google Scholar
Papageorgiou, V. G., Grammaticos, B. and Ramani, A. 1993. Integrable lattices and convergence acceleration algorithms. Phys. Lett. A, 179(2), 111–115.Google Scholar
Papageorgiou, V. G., Grammaticos, B. and Ramani, A. 1995. Orthogonal polynomial approach to discrete Lax pairs for initial-boundary value problems of the QD algorithm. Phys. Lett. A, 34(2), 91–101.Google Scholar
Papageorgiou, V. G., Grammaticos, B. and Ramani, A. 1996. Integrable difference equations and numerical analysis algorithms. In Levi, D., Vinet, L. and Winternitz, P. (eds), Symmetries and Integrability of Difference Equations. CRM Proceedings & Lecture Notes, vol. 9. Providence, RI: American Mathematical Society, 269–280.
Papageorgiou, V. G., Tongas, A. G. and Veselov, A. P. 2006. Yang–Baxter maps and symmetries of integrable equations on quad-graphs. J. Math. Phys., 47(8), 083502, 16.Google Scholar
Papageorgiou, V. G., Suris, Yu. B., Tongas, A. G. and Veselov, A. P. 2010. On quadrirational Yang-Baxter maps. SIGMA 6, 033, 9pp.Google Scholar
Periwal, V. and Shevitz, D. 1990. Unitary-matrix models as exactly solvable string theories. Phys. Rev. Lett., 64(12), 1326.Google Scholar
Perk, J. H. H. 1980. Quadratic identities for Ising model correlations. Phys. Lett. A, 79(1), 3–5.Google Scholar
Petrera, M. and Suris, Yu. B. 2010. On the Hamiltonian structure of Hirota-Kimura discretization of the Euler top. Math. Nachr., 283(11), 1654–1663.Google Scholar
Petrera, M., Pfadler, A. and Suris, Yu. B. 2009. On integrability of Hirota–Kimura-type discretizations: experimental study of the discrete Clebsch system. Experiment. Math., 18(2), 223–247.Google Scholar
Petrera, M., Pfadler, A. and Suris, Yu. B. 2011. On integrability of Hirota-Kimura type discretizations. Regu. Chaotic Dyn., 16(3–4), 245–289.Google Scholar
Picard, É. 1887. Sur une classe d'équations différentielles. C. R. Acad. Sci. Paris, 104, 41–43.Google Scholar
Picard, É. 1890. Sur une classe d'équations différentielles dont l'intégrale générale est uniforme. C. R. Acad. Sci. Paris, 110, 877–880.Google Scholar
Quispel, G. R. W. 2003. An alternating integrable map whose square is the QRT map. Phys. Lett. A, 307(1), 50–54.Google Scholar
Quispel, G. R.W., Nijhoff, F.W., Capel, H.W. and van ver Linden, J. 1984. Linear integral equations and nonlinear difference-difference equations. Physica A, 125(2–3), 344–380.Google Scholar
Quispel, G. R. W., Roberts, J. A. G. and Thompson, C. J. 1988. Integrable mappings and soliton equations. Phys. Lett. A, 126(7), 419–421.Google Scholar
Quispel, G. R. W., Roberts, J. A. G. and Thompson, C. J. 1989. Integrable mappings and soliton equations. II. Phys. D, 34(1–2), 183–192.Google Scholar
Quispel, G. R. W., Capel, H. W., Papageorgiou, V. G. and Nijhoff, F. W. 1991. Integrable mappings derived from soliton equations. Physica A, 173(1–2), 243–266.Google Scholar
Quispel, G. R. W., Capel, H. W. and Sahadevan, R. 1992. Continuous symmetries of differential-difference equations: the Kac-van Moerbeke equation and Painlevé reduction. Phys. Lett. A, 170(5), 379–383.Google Scholar
Rains, E. M. 2008. An isomonodromy interpretation of the elliptic Painlevé equation. I. arXiv preprint arXiv:0807.0258.
Rains, E. M. 2011. An isomonodromy interpretation of the hypergeometric solution of the elliptic Painlevé equation (and generalizations). SIGMA 7, 088, 24pp.Google Scholar
Ramani, A. and Grammaticos, B. 1996. Discrete Painlevé equations: coalescences, limits and degeneracies. Physica A, 228(1–4), 160–171.Google Scholar
Ramani, A., Dorizzi, B. and Grammaticos, B. 1982. Painlevé conjecture revisited. Phys. Rev. Lett., 49(Nov), 1539–1541.Google Scholar
Ramani, A., Grammaticos, B. and Hietarinta, J. 1991. Discrete versions of the Painlevé equations. Phys. Rev. Lett., 67(14), 1829–1832.Google Scholar
Ramani, A., Grammaticos, B. and Satsuma, J. 1992. Integrability of multidimensional discrete systems. Phys. Lett. A, 169(5), 323–328.Google Scholar
Ramani, A., Grammaticos, B. and Satsuma, J. 1995. Bilinear discrete Painlevé equations. J. Phys. A: Math. Gen., 28(16), 4655.Google Scholar
Ramani, A., Grammaticos, B. and Papageorgiou, V. G. 1996. Singularity confinement. In Levi, D., Vinet, L. andWinternitz, P. (eds), Symmetries and Integrability of Difference References 433 Equations. CRM Proceedings & Lecture Notes, vol. 9. Providence, RI: American Mathematical Society, 303–318.
Ramani, A., Grammaticos, B., Lafortune, S. and Ohta, Y. 2000. Linearizable mappings and the low-growth criterion. J. Phys. A: Math. Gen., 33(31), L287.Google Scholar
Ramani, A., Carstea, A. S., Grammaticos, B. and Ohta, Y. 2002. On the autonomous limit of discrete Painlevé equations. Physica A, 305(3–4), 437–444.Google Scholar
Ramani, A., Grammaticos, B., Tamizhmani, T. and Tamizhmani, K. M. 2003. The road to the discrete analogue of the Painlevé property: Nevanlinna meets singularity confinement. Comput. Math. Appl., 45(6–9), 1001–1012.Google Scholar
Ramani, A., Joshi, N., Grammaticos, B. and Tamizhmani, T. 2006. Deconstructing an integrable lattice equation. J. Phys. A: Math. Gen., 39(8), L145–L149.Google Scholar
Ramani, A., Grammaticos, B., Willox, R., Mase, T. and Kanki, M. 2015. The redemption of singularity confinement. J. Phys. A: Math. Theor., 48(11), 11FT02, 8pp.Google Scholar
Ramis, J.-P., Sauloy, J. and Zhang, C. 2013. Local Analytic Classification of q-Difference Equations. 355.Providence, RI: American Mathematical Society.
Rasin, A. G. 2010. Infinitely many symmetries and conservation laws for quad-graph equations via the Gardner method. J. Phys. A: Math. Theor., 43(23), 235201.Google Scholar
Rasin, O. G. and Hydon, P. E. 2005. Conservation laws of discrete Korteweg-de Vries equation. SIGMA 1, 026, 6pp.Google Scholar
Rasin, O. G. and Hydon, P. E. 2006. Conservation laws of NQC-type difference equations. J. Phys. A: Math. Gen., 39(45), 14055–14066.Google Scholar
Rasin, O. G. and Hydon, P. E. 2007a. Conservation laws for integrable difference equations. J. Phys. A: Math. Theor., 40(42), 12763–12773.Google Scholar
Rasin, O. G. and Hydon, P. E. 2007b. Symmetries of integrable difference equations on the quad-graph. Stud. Appl. Math., 119(3), 253–269.Google Scholar
Rasin, A. G. and Schiff, J. 2009. Infinitely many conservation laws for the discrete KdV equation. J. Phys. A: Math. Theor., 42(17), 175205.Google Scholar
Reid, W. T. 1972. Riccati Differential Equations. New York: Academic Press.
Ritt, J. F. 1934. Algebraic difference equations. Bull. Am. Math. Soc., 40(4), 303–308.Google Scholar
Ritt, J. F. and Doob, J. L. 1933. Systems of algebraic difference equations. Am. J. Math., 55, 505–514.Google Scholar
Roberts, J. A. G. 1990. Order and Chaos in Reversible Dynamical Systems. Ph.D. thesis, University of Melbourne.
Roberts, J. A. G. and Quispel, G. R. W. 1992. Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems. Phys. Rep., 216(2–3), 63–177.Google Scholar
Roberts, J. A. G. and Quispel, G. R. W. 2006. Creating and relating three-dimensional integrable maps. J. Phys. A: Math. Gen., 39(42), L605–L615.Google Scholar
Roberts, J. A. G. and Vivaldi, F. 2003. Arithmetical method to detect integrability in maps. Phys. Rev. Lett., 90(Jan), 034102.Google Scholar
Rogers, C. and Schief, W. K. 2002. Bäcklund and Darboux Transformations. Cambridge, UK: Cambridge University Press.
Ruijsenaars, S. N. M. 2002. A new class of reflectionless second-order A Os and its relation to nonlocal solitons. Regul. Chaotic Dyn., 7(4), 351–391.Google Scholar
Ruijsenaars, S. N. M. and Schneider, H. 1986. A new class of integrable systems and its relation to solitons. Ann. Phys., 170(2), 370–405.Google Scholar
Rutishauser, H. 1954a. Der Quotienten-Differenzen-Algorithmus. Zeitschrift für angewandte Mathematik und Physik ZAMP, 5(3), 233–251.Google Scholar
Rutishauser, H. 1954b. Ein infinitesimales Analogon zum Quotienten-Differenzen- Algorithmus. Arch. Math. (Basel), 5, 132–137.Google Scholar
Sahadevan, R. and Capel, H. W. 2003. Complete integrability and singularity confinement of nonautonomous modified Korteweg-de Vries and sine-Gordon mappings. Physica A, 330(3–4), 373–390.Google Scholar
Sakai, H. 2001. Rational surfaces associated with affine root systems and geometry of the Painlevé equations. Commun. Math. Phys., 220(1), 165–229.Google Scholar
Sakai, H. 2005. q-analog of the Garnier system. Funkcial. Ekvac., 48(2), 273–297.Google Scholar
Sanz-Serna, J. M. and Calvo, P. 1994. Numerical Hamiltonian Problems. Applied mathematics and mathematical computation. London: Chapman & Hall.
Sauer, R. 1970. Differenzengeometrie. Berlin Heidelberg: Springer.
Sauloy, J. 1999. Théorie de Galois des equations aux q-differences fuchsiennes. Ph.D. thesis, Université de Toulouse 3, Toulouse.
Schief, W. K. 1996. The Tzitzeica equation: a Bäcklund transformation interpreted as truncated Painlevé expansion. J. Phys. A: Math. Gen., 29(16), 5153–5155.Google Scholar
Schief, W. K. 2003. Lattice geometry of the discrete Darboux, KP, BKP and CKP equations. Menelaus' and Carnot's theorems. J. Nonlinear Math. Phys., 10, Supp 2, 194–208.Google Scholar
Schief, W. K. 2006. On a maximum principle for minimal surfaces and their integrable discrete counterparts. J. Geom. Phys., 56(9), 1484–1495.Google Scholar
Schief, W. K. 2007. Discrete Chebyshev nets and a universal permutability theorem. J. Phys. A: Math. Theor., 40(18), 4775–4801.Google Scholar
Schief, W. K. and Rogers, C. 1999. Binormal motion of curves of constant curvature and torsion. Generation of soliton surfaces. R. Soc. London Proc. Ser. A Math. Phys. Eng. Sci., 455(1988), 3163–3188.Google Scholar
Schiff, L. I. 1968. Quantum Mechanics, 3rd ed. New York: McGraw-Hill.
Schmidt, R. J. 1941. On the numerical solution of linear simultaneous equations by an iterative method. Philos. Mag. (7), 32, 369–383.Google Scholar
Scott, R. F. 1904. The Theory of Determinants and Their Applications. Cambridge, UK: Cambridge University Press.
Shabat, A. B. 1992. The infinite-dimensional dressing dynamical system. Inverse Prob., 8(2), 303.Google Scholar
Shabat, A. B. 2002. Discretization of the Schrödinger spectral problem. Inverse Prob., 18(4), 1003.Google Scholar
Shabat, A. B. and Yamilov, R. I. 1990. Symmetries of nonlinear lattices. Algebra i Analiz, 2(2), 183–208.Google Scholar
Shanks, D. 1955. Non-linear transformations of divergent and slowly convergent sequences. J. Math. and Phys., 34, 1–42.Google Scholar
Shi, Y., Zhang, D. J. and Zhao, S. L. 2014. Solutions to the non-autonomous ABS lattice equations – Casoratians and bilinearization. Sci. Sin. Math., 44(1), 37.Google Scholar
Shohat, J. A. 1939. A differential equation for orthogonal polynomials. Duke Math. J., 5(2), 401–417.Google Scholar
Shohat, J. A. and Tamarkin, J. D. 1943. The Problem of Moments. Mathematical Surveys and Monographs. Providence, RI: American Mathematical Society.
Smirnov, S. 2010. Discrete complex analysis and probability. arXiv preprint arXiv:1009.6077.
Sogo, K. 1993. Toda molecule equation and quotient-difference method. J. Phys. Soc. Jpn., 62(4), 1081–1084.Google Scholar
Spicer, P. E., Nijhoff, F. W. and van der Kamp, P. H. 2011. Higher analogues of the discrete-time Toda equation and the quotient-difference algorithm. Nonlinearity, 24(8), 2229–2263.Google Scholar
Spiegel, M. R. 1971. Schaum's Outline of Theory and Problems of Calculus of Finite Differences and Difference Equations. Schaum's outline series. New York: McGraw-Hill.
Spiridonov, V. P. and Zhedanov, A. S. 2007. Elliptic grids, rational functions, and the Padé interpolation. Ramanujan J., 13(1-3), 285–310.Google Scholar
Stephani, H. 1989. Differential Equations: Their Solution Using Symmetries. Cambridge, UK: Cambridge University Press.
Suris, Yu. B. 1989. Integrable mappings of standard type. Funktsional. Anal. i Prilozhen., 23(1), 84–85.Google Scholar
Suris, Yu. B. 1997a. A note on an integrable discretization of the nonlinear Schrödinger equation. Inverse Prob., 13(4), 1121.Google Scholar
Suris, Yu. B. 1997b. On an integrable discretization of the modified Korteweg–de Vries equation. Phys. Lett. A, 234(2), 91–102.Google Scholar
Suris, Yu. B. 2003. The Problem of Integrable Discretization: Hamiltonian Approach. Progress in Mathematics, vol. 219. Basel: Birkhäuser Verlag.
Suris, Yu. B. 2012. Variational formulation of commuting Hamiltonian flows: multi-time Lagrangian 1-forms. arXiv preprint arXiv:1212.3314.
Suris, Yu. B. 2013. Variational symmetries and pluri-Lagrangian systems. arXiv preprint arXiv:1307.2639.
Suris, Yu. B. and Veselov, A. P. 2003. Lax matrices for Yang–Baxter maps. J. Nonlinear Math. Phys., 10, Supp 2, 223–230.Google Scholar
Symes, W. W. 1982. The QR algorithm and scattering for the finite nonperiodic Toda lattice. Physica D, 4(2), 275–280.Google Scholar
Szegö, G. 1939. Orthogonal Polynomials. American Mathematical Society Colloquium Publications, no. nid. 23. Providence, RI: American Mathematical Society.
Taha, T. R. 1991. A numerical scheme for the nonlinear Schrödinger equation. Comput. Math. Appl., 22(9), 77–84.Google Scholar
Taha, T. R. and Ablowitz, M. J. 1984a. Analytical and numerical aspects of certain nonlinear evolution equations. I. Analytical. J. Comput. Phys., 55(2), 192–202.
Taha, T. R. and Ablowitz, M. J. 1984b. Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation. J. Comput. Phys., 55(2), 203–230.Google Scholar
Takenawa, T. 2001a. Algebraic entropy and the space of initial values for discrete dynamical systems. J. Phys. A: Math. Gen., 34(48), 10533.Google Scholar
Takenawa, T. 2001b. A geometric approach to singularity confinement and algebraic entropy. J. Phys. A: Math. Gen., 34(10), L95.Google Scholar
Takenawa, T. 2004. Discrete dynamical systems associated with the configuration space of 8 points in P3(C). Commun. Math. Phys., 246(1), 19–42.Google Scholar
Takenawa, T., Eguchi, M., Grammaticos, B., Ohta, Y., Ramani, A. and Satsuma, J. 2003. The space of initial conditions for linearizable mappings. Nonlinearity, 16(2), 457.Google Scholar
Tamizhmani, K. M., Tamizhmani, T., Grammaticos, B. and Ramani, A. 2004. Special Solutions for Discrete Painlevé equations. In Grammaticos, B., Tamizhmani, T., and Kosmann-Schwarzbach, Y. (eds), Discrete Integrable Systems, Lecture Notes in Physics, vol. 644, Berlin: Springer. 323–381.
Toda, M. 1967. Vibration of a chain with nonlinear interaction. J. Phys. Soc. Japan, 22(2), 431–436.Google Scholar
Toda, M. 1989. Theory of Nonlinear Lattices. Springer Series in Solid-State Sciences, vol. 20. Berlin: Springer-Verlag.Google Scholar
Tongas, A. 2007. On the symmetries of integrable partial difference equations. In Elaydi, S., Cushing, J., Lasser, R., Papageorgiou, V. G., Ruffing, A. and van Assche, W. (eds), Difference Equations, Special Functions and Orthogonal Polynomials, World Scientific, 654–663.
Tongas, A. and Nijhoff, F.W. 2005a. The Boussinesq integrable system: compatible lattice and continuum structures. Glasg. Math. J., 47(A), 205–219.Google Scholar
Tongas, A. and Nijhoff, F. W. 2005b. Generalized hyperbolic Ernst equations for an Einstein–Maxwell–Weyl field. J. Phys. A: Math. Gen., 38(4), 895.Google Scholar
Tongas, A. and Nijhoff, F. W. 2006. A discrete Garnier type system from symmetry reduction on the lattice. J. Phys. A: Math. Gen., 39(39), 12191.Google Scholar
Tongas, A., Tsoubelis, D. and Xenitidis, P. 2001a. A family of integrable nonlinear equations of hyperbolic type. J. Math. Phys., 42(12), 5762–5784.Google Scholar
Tongas, A., Tsoubelis, D. and Xenitidis, P. 2001b. Integrability aspects of a Schwarzian PDE. Phys. Lett. A, 284(6), 266–274.Google Scholar
Tongas, A., Tsoubelis, D. and Papageorgiou, V. G. 2005. Symmetries and group invariant reductions of integrable partial difference equations. In Ibrahimov, N. H., Sophocleous, C. and P. A. Damianou, P. A. (eds), Proceedings of the 10th International Conference in Modern Group Analysis (MOGRAN X), Nicosia: University of Cyprus, 222–230.
Tongas, A., Tsoubelis, D. and Xenitidis, P. 2007. Affine linear and D4 symmetric lattice equations: symmetry analysis and reductions. J. Phys. A: Math. Theor., 40(44), 13353.Google Scholar
Tremblay, S., Grammaticos, B. and Ramani, A. 2001. Integrable lattice equations and their growth properties. Phys. Lett. A, 278(6), 319–324.Google Scholar
Trjitzinsky, W. J. 1933. Analytic theory of linear q-difference equations. Acta Math., 61(1), 1–38.Google Scholar
Tsoubelis, D. and Xenitidis, P. 2009. Continuous symmetric reductions of the Adler–Bobenko–Suris equations. J. Phys. A: Math. Theor., 42(16), 165203.Google Scholar
Tsuda, T. 2004. Integrable mappings via rational elliptic surfaces. J. Phys. A: Math. Gen., 37(7), 2721.Google Scholar
van Assche, W. and Foupouagnigni, M. 2003. Analysis of non-linear recurrence relations for the recurrence coefficients of generalized Charlier polynomials. J. Nonlinear Math. Phys., 10, Supp 2, 231–237.Google Scholar
van der Kamp, P. H. 2009. Initial value problems for lattice equations. J. Phys. A: Math. Theor., 42(40), 404019, 16pp.Google Scholar
van der Kamp, P. H. 2015. Initial value problems for quad equations. J. Phys. A: Math. Theor., 48(6), 065204.Google Scholar
van der Kamp, P. H. and Quispel, G. R. W. 2010. The staircase method: integrals for periodic reductions of integrable lattice equations. J. Phys. A: Math. Theor., 43(46), 465207, 34pp.Google Scholar
van der Put, M. and Singer, M. F. 1997. Galois Theory of Difference Equations. Lecture Notes in Mathematics, vol. 1666. Berlin: Springer-Verlag.
Vein, R. and Dale, P. 1999. Determinants and Their Applications in Mathematical Physics. Applied Mathematical Sciences, vol. 134. New York: Springer-Verlag.
Vereschagin, V. L. 1996. Asymptotics of solutions of the discrete string equation. Physica D, 95(3), 268–282.Google Scholar
Vermeeren, M. 2014. On the Pluri-Lagrangian Structure of the KdV Hierarchy. M.Phil. thesis, Technische Universität Berlin.
Veselov, A. P. 1987. Integrable mappings and Lie algebras. Dokl. Akad. Nauk SSSR, 292(6), 1289–1291.Google Scholar
Veselov, A. P. 1991a. Integrable maps. Russ. Math. Surv., 46(5), 1–51.Google Scholar
Veselov, A. P. 1991b. What is an integrable mapping? In Zakharov, V. E. (ed), What Is Integrability? Springer Series in Nonlinear Dynamics. Berlin Heidelberg: Springer, 251–272.
Veselov, A. P. 1992. Growth and integrability in the dynamics of mappings. Commun. Math. Phys., 145(1), 181–193.Google Scholar
Veselov, A. P. 2003. Yang–Baxter maps and integrable dynamics. Phys. Lett. A, 314(3), 214–221.Google Scholar
Veselov, A. P. and Shabat, A. B. 1993. Dressing chains and spectral theory of the schroödinger operator. Funkts. Anali. Prilozh., 27(2), 1–21.Google Scholar
Viallet, C.-M. 2006. Algebraic entropy for lattice equations. arXiv:math-ph/0609043v2.
Viallet, C.-M. 2009. Integrable lattice maps: QV, a rational version of Q4. Glasg. Math. J., 51(A), 157–163.Google Scholar
VonWestenholz, C. 2009. Differential Forms in Mathematical Physics, vol. 3. Amsterdam: Elsevier (reprint of the 1978 edition).
Wadati, M. and Toda, M. 1972. The exact N-soliton solution of the Korteweg-de Vries equation. J. Phys. Soc. Japan., 32(5), 1403–1411.Google Scholar
Wahlquist, H. D. and Estabrook, F. B. 1973. Bäcklund transformation for solutions of the Korteweg-de Vries equation. Phys. Rev. Lett., 31, 1386–1390.Google Scholar
Walker, A. J. 2001. Similarity Reductions and Integrable Lattice Equations. Ph.D. thesis, University of Leeds.
Wallenberg, G. 1917. Über Riccatische Differenzengleichungen. Stzber. Berliner math. Ges., 16, 17–28.Google Scholar
Wallenberg, G. 1918. Zur Theorie der Riccatische und Schwarzschen Differenzengleichungen. Stzber. Berliner math. Ges., 17, 14–22.Google Scholar
Whittaker, E. T. and Watson, G. N. 1902. A Course of Modern Analysis. Cambridge, UK: Cambridge University Press.
Wiersma, G. L. and Capel, H. W. 1987a. Lattice equations, hierarchies and Hamiltonian structures. Physica A, 142(1–3), 199–244.Google Scholar
Wiersma, G. L. and Capel, H. W. 1987b. Lattice equations, hierarchies and hamiltonian structures: The Kadomtsev-Petviashvili equation. Phys. Lett. A, 124(3), 124–130.CrossRefGoogle Scholar
Wiersma, G. L. and Capel, H. W. 1988a. Lattice equations, hierarchies and Hamiltonian structures: II. KP-type of hierarchies on 2D lattices. Physica A, 149(1–2), 49–74.Google Scholar
Wiersma, G. L. and Capel, H. W. 1988b. Lattice equations, hierarchies and Hamiltonian structures: III. The 2D toda and KP hierarchies. Physica A, 149(1–2), 75–106.Google Scholar
Willox, R. 2000. A direct linearization of the KP hierarchy and an initial value problem for tau functions. RIMS Kokyuroku, 1170, 111–118.Google Scholar
Willox, R. and Satsuma, J. 2004. Sato theory and transformation groups. a unified approach to integrable systems. In Grammaticos, B., Tamizhmani, T., and Kosmann- Schwarzbach, Y. (eds), Discrete Integrable Systems. Lecture Notes in Physics, vol. 644. Berlin Heidelberg: Springer, 17–55.
Willox, R., Tokihiro, T. and Satsuma, J. 1997. Darboux and binary Darboux transformations for the nonautonomous discrete KP equation. J. Math. Phys., 38(12), 6455–6469.Google Scholar
Witte, N. S. 2012. Semi-classical orthogonal polynomial systems on non-uniform lattices, deformations of the Askey table and analogs of isomonodromy. arXiv preprint arXiv:1204.
Wojciechowski, S. 1982. The analogue of the Backlund transformation for integrable many-body systems. J. Phys. A: Math. Gen., 15(12), L653.Google Scholar
Wunderlich, W. 1951. Zur Differenzengeometrie der Flächen konstanter negativer Krümmung. Österreich. Akad. Wiss. Math.-Nat. Kl. S.-B. IIa., 160, 39–77.Google Scholar
Wynn, P. 1961. The epsilon algorithm and operational formulas of numerical analysis. Math. Comp., 15, 151–158.Google Scholar
Xenitidis, P. 2009. Integrability and symmetries of difference equations: the Adler-Bobenko-Suris case. arXiv preprint arXiv:9902.3954.
Xenitidis, P. 2011. Symmetries and conservation laws of the ABS equations and corresponding differential-difference equations of Volterra type. J. Phys. A: Math. Theor., 44(43), 435201, 22pp.Google Scholar
Xenitidis, P. and Nijhoff, F. W. 2012. Symmetries and conservation laws of lattice Boussinesq equations. Phys. Lett. A, 376(35), 2394–2401.Google Scholar
Xenitidis, P. and Papageorgiou, V. G. 2009. Symmetries and integrability of discrete equations defined on a black-white lattice. J. Phys. A: Math. Theor., 42(45), 454025, 13pp.Google Scholar
Xenitidis, P., Nijhoff, F. W. and Lobb, S. B. 2011. On the Lagrangian formulation of multidimensionally consistent systems. Proc. R. Soc. London Ser. A Math. Phys. Eng. Sci., 467(2135), 3295–3317.Google Scholar
Xu, D. D., Zhang, D. J. and Zhao, S. L. 2014. The Sylvester equation and integrable equations: I. The Korteweg-de Vries system and sine-Gordon equation. J. Nonlinear Math. Phys., 21(3), 382–406.Google Scholar
Yamada, Y. 2009. A Lax formalism for the elliptic difference Painlevé equation. SIGMA 5, 042, 15pp.Google Scholar
Yamilov, R. 2006. Symmetries as integrability criteria for differential difference equations. J. Phys. A: Math. Gen., 39(45), R541.Google Scholar
Yoo-Kong, S. 2011. Calogero–Moser Type Systems, Associated KP Systems, and Lagrangian Structures. Ph.D. thesis, University of Leeds.
Yoo-Kong, S. and Nijhoff, F. W. 2011. Discrete-time Ruijsenaars–Schneider system and Lagrangian 1-form structure. arXiv preprint arXiv:1112.4576.
Yoo-Kong, S. and Nijhoff, F. W. 2013. Elliptic (N, N')-soliton solutions of the lattice Kadomtsev-Petviashvili equation. J. Math. Phys., 54(4), 043511.Google Scholar
Yoo-Kong, S., Lobb, S. B. and Nijhoff, F. W. 2011. Discrete-time Calogero–Moser system and Lagrangian 1-form structure. J. Phys. A: Math. Theor., 44(36), 365203.Google Scholar
Yoshida, H. 1990. Construction of higher order symplectic integrators. Phys. Lett. A, 150(5–7), 262–268.Google Scholar
Zabrodin, A. 1997a. Hirota difference equations. Teoret. Mat. Fiz., 113(2), 179–230.Google Scholar
Zabrodin, A. 1997b. Zero curvature representation for classical lattice sine-Gordon model via quantum R matrix. J. Exp. Theor. Phys. Lett., 66(9), 653–659.Google Scholar
Zabrodin, A. 1998. Tau-function for discrete sine-Gordon equation and quantum R-matrix. arXiv preprint solv-int/9810003.
Zabusky, N. J. and Kruskal, M. D. 1965. Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett., 15(Aug), 240–243.Google Scholar
Zakharov, V. E. and Manakov, S. V. 1985. Construction of higher-dimensional nonlinear integrable systems and of their solutions. Funct. Anal. Appl., 19(2), 89–101.Google Scholar
Zakharov, V. E. and Mikhailov, A. V. 1980. Variational principle for equations integrable by the inverse problem method. Funct. Anal. Appl., 14(1), 43–44.Google Scholar
Zhang, D. J. and Zhao, S. L. 2013. Solutions to ABS lattice equations via generalized Cauchy matrix approach, Stud. Appl. Math., Wiley Online Library, 131(1), 72–103.Google Scholar
Zhang, D. J., Zhao, S. L. and Nijhoff, F. W. 2012. Direct linearization of extended lattice BSQ systems. Stud. Appl. Math., 129(2), 220–248.Google Scholar
Zhang, D. J., Cheng, J. W. and Sun, Y. Y. 2013. Deriving conservation laws for ABS lattice equations from Lax pairs. J. Phys. A: Math. Theor., 46(26), 265202, 19pp.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • J. Hietarinta, University of Turku, Finland, N. Joshi, University of Sydney, F. W. Nijhoff, University of Leeds
  • Book: Discrete Systems and Integrability
  • Online publication: 05 September 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781107337411.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • J. Hietarinta, University of Turku, Finland, N. Joshi, University of Sydney, F. W. Nijhoff, University of Leeds
  • Book: Discrete Systems and Integrability
  • Online publication: 05 September 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781107337411.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • J. Hietarinta, University of Turku, Finland, N. Joshi, University of Sydney, F. W. Nijhoff, University of Leeds
  • Book: Discrete Systems and Integrability
  • Online publication: 05 September 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781107337411.018
Available formats
×