Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T07:39:17.963Z Has data issue: false hasContentIssue false

5 - The Fourier Analysis Point of View

from Part 1 - Bohr’s Problem and Complex Analysis on Polydiscs

Published online by Cambridge University Press:  19 July 2019

Andreas Defant
Affiliation:
Carl V. Ossietzky Universität Oldenburg, Germany
Domingo García
Affiliation:
Universitat de València, Spain
Manuel Maestre
Affiliation:
Universitat de València, Spain
Pablo Sevilla-Peris
Affiliation:
Universitat Politècnica de València, Spain
Get access

Summary

We work with integrable functions on the polytorus, both in finite and infinitely many variables. For such a function and a multi-index the corresponding Fourier coefficient is defined. For each 1 ≤ p ≤ ∞ the Hardy space H_p consists of those functions in L_p having non-zero Fourier coefficients only for multi-indices in the positive cone. The Hardy space H_\infty on the infinite dimensional polytorus and the space of bounded holomorphic functions on Bc0 are isometrically isomorphic. To prove this the Poisson kernel in several variables is defined, and the Poisson operator (defined through convolution with this kernel) is considered. With these it is shown that the trigonometric polynomials are dense in L_p for 1 ≤ p < ∞ and weak*-dense in L_\infty, and that so also are the analytic trigonometric polynomials in H_p and H_∞. The isometry between the two spaces is first established for the finite dimensional polytorus/polydisc and then, using a version of Hilbert’s criterion (see Chapter 2), raised to the infinite-dimensional case. The density of the polynomials can be proved using the Féjer kernel instead of the Poisson one.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×