Published online by Cambridge University Press: 05 August 2015
Introduction
Frequency synthesizers are pervasively utilized in almost every electronic system for generation of the well-defined clock frequencies of interest. For instance, in the modern wireless transceiver, a phase-locked loop (PLL) is commonly used to generate RF frequencies to up-convert and down-convert the analog signal. On the baseband side, the mixed-signal circuit, such as switched-capacitor filters, as well as digital VLSI also require PLLs to synthesize various clock domains. Moreover, the trend of future electronic design will continue to integrate more functionality, support multiple standards, and multi-channels in a system-on-chip (SoC) platform, which will inevitably increase the number of frequency synthesizers for various analog and digital circuit blocks. As a result, minimizing the power and area consumption of a frequency synthesizer becomes increasingly critical, or it can become the dominant cost factor in the overall system.
This system trend has been driving PLL design towards more reconfigurability, wider tuning range and lower cost. The digitally-assisted PLL design concept becomes a natural consequence of this trend, as the flexibility offered via digital means is always appealing. Conventionally, the frequency synthesizer is implemented using an analog approach, i.e., the charge-pump PLL, as shown in Figure 4.1(a). The basic operation of this type of PLL has been well documented in textbooks and the literature [1, 2]. In brief, it processes the phase information in the analog domain via a phase frequency detector and a charge-pump circuit, so that the phase difference turns into current pulses. This current signal is then converted into voltage form via the analog loop filter, which typically consists of capacitor and resistor array. Some degree of digitally-assisted concept was adopted for this type of PLL, mainly to digitally reconfigure the analog loop filter and voltage-controlled oscillator (VCO). For example, the PLL may be required to support different PLL loop bandwidths and/or a wide VCO tuning range. The digitally switched capacitor or resistor bank is a common choice to support this kind of operation. While this analog PLL topology has been widely adopted and proven in both the literature and commercial products, it presents a challenge to scale with technology. The analog loop filter is typically composed of bulky passive components whose values are determined by the desirable PLL loop bandwidth, and cannot be arbitrarily reduced.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.