Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T13:14:34.885Z Has data issue: false hasContentIssue false

11 - Asymptotic Methods: Basic Ideas

Published online by Cambridge University Press:  06 July 2010

A. C. King
Affiliation:
University of Birmingham
J. Billingham
Affiliation:
University of Birmingham
S. R. Otto
Affiliation:
University of Birmingham
Get access

Summary

The vast majority of differential equations that arise as models for real physical systems cannot be solved directly by analytical methods. Often, the only way to proceed is to use a computer to calculate an approximate, numerical solution. However, if one or more small, dimensionless parameters appear in the differential equation, it may be possible to use an asymptotic method to obtain an approximate solution. Moreover, the presence of a small parameter often leads to a singular perturbation problem, which can be difficult, if not impossible, to solve numerically.

Small, dimensionless parameters usually arise when one physical process occurs much more slowly than another, or when one geometrical length in the problem is much shorter than another. Examples occur in many different areas of applied mathematics, and we will meet several in Chapter 12. As we shall see, dimensionless parameters arise naturally when we use dimensionless variables, which we discussed at the beginning of Chapter 5. Some other examples are:

  1. — Waves on the surface of a body of fluid or an elastic solid, with amplitude a and wavelength λ, are said to be of small amplitude if ∈ = a/λ ≪ 1. A simplification of the governing equations based on the fact that ∈ ≪ 1 leads to a system of linear partial differential equations (see, for example, Billingham and King, 2001). This is an example of a regular perturbation problem, where the problem is simplified throughout the domain of solution.

  2. […]

Type
Chapter
Information
Differential Equations
Linear, Nonlinear, Ordinary, Partial
, pp. 274 - 302
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×