Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T19:26:02.544Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  02 February 2023

Richard J. Stevenson
Affiliation:
Macquarie University, Sydney
Heather Francis
Affiliation:
Macquarie University, Sydney
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, K. N., Arnott, C. K., Westbrook, R. F., & Tran, D. M. D. (2019). The effect of high fat, high sugar, and combined high fat-high sugar diets on spatial learning and memory in rodents: A meta-analysis. Neuroscience & Biobehavioral Reviews, 107, 399421.Google Scholar
Abbott, R. D., Webster Ross, G., White, L. R., Sanderson, W. T., Burchfiel, C. M., Kashon, M., & Petrovitch, H. (2003). Environmental, life-style, and physical precursors of clinical Parkinson’s disease: Recent findings from the Honolulu-Asia Aging Study. Journal of Neurology, 250, 3039.Google Scholar
Abdelwahab, M. G., Fenton, K. E., Preul, M. C., Rho, J. M., Lynch, A., Stafford, P., & Scheck, A. C. (2012). The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma. PLoS One, 7, e36197.Google Scholar
Abdelwahab, M. G., Preul, M. C., Rho, J. M., & Scheck, A. C. (2010). The ketogenic diet reverses gene expression patterns and reduces reactive oxygen species levels when used as an adjuvant therapy for glioma. Nutrition & Metabolism, 7, Article 74.Google Scholar
Accurso, E. C., Ciao, A. C., Fitzsimmons-Craft, E. E., Lock, J. D., & Grange, D. L. (2014). Is weight gain really a catalyst for broader recovery? The impact of weight gain on psychological symptoms in the treatment of adolescent anorexia nervosa. Behaviour Research & Therapy, 56, 16.Google Scholar
Adamolekun, B. (1993). Anaphe venata entomophagy and seasonal ataxic syndrome in southwest Nigeria. The Lancet, 341, 629.Google Scholar
Adamolekun, B. (2011). Neurological disorders associated with cassava diet: A review of putative etiological mechanisms. Metabolic Brain Disease, 26, 7985.Google Scholar
Adamse, P., van Egmond, H. P., Noordam, M. Y., Mulder, P. P., & de Nijs, M. (2014). Tropane alkaloids in food: Poisoning incidents. Quality Assurance and Safety of Crops and Foods, 6, 1524.Google Scholar
Adolphus, K., Lawton, C. L., Champ, C. L., & Dye, L. (2016). The effects of breakfast and breakfast composition on cognition in children and adolescents: A systematic review. Advances in Nutrition, 7, 590S612S.Google Scholar
Advani, S. M., Advani, P. G., VonVille, H. M., & Jafri, S. H. (2018). Pharmacological management of cachexia in adult cancer patients: A systematic review of clinical trials. BMC Cancer, 18, 1174.Google Scholar
Agim, Z. S., & Cannon, J. R. (2015). Dietary factors in the etiology of Parkinson’s disease. BioMed Research International, Article 672838.Google Scholar
Agrawal, R., & Gomez-Pinilla, F. (2012). ‘Metabolic syndrome’ in the brain: Deficiency in omega-3 fatty acid exacerbates dysfunctions in insulin receptor signalling and cognition. Journal of Physiology, 590, 24852499.Google Scholar
Aguzzi, A., Baumann, F., & Bremer, J. (2008). The prion’s elusive reason for being. Annual Review of Neuroscience, 31, 439477.Google Scholar
Ahmad, M. (2013). Protective effects of curcumin against lithium-pilocarpine induced status epilepticus, cognitive dysfunction and oxidative stress in young rats. Saudi Journal of Biological Sciences, 20, 155162.Google Scholar
Ahuja, A., Dev, K., Tanwar, R. S., Selwal, K. K., & Tyagi, P. K. (2015). Copper mediated neurological disorder: Visions into amyotrophic lateral sclerosis, Alzheimer and Menkes disease. Journal of Trace Elements in Medicine and Biology, 29, 1123.Google Scholar
Ajith, T. A. (2018). A recent update on the effects of omega-3 fatty acids in Alzheimer’s disease. Current Clinical Pharmacology, 13, 252260.Google Scholar
Al Bulushi, I., Poole, S., Deeth, H. C., & Dykes, G. A. (2009). Biogenic amines in fish: Roles in intoxication, spoilage, and nitrosamine formation – A review. Critical Reviews in Food Science & Nutrition, 49, 369377.Google Scholar
Alaimo, K., Olson, C. M., & Frongillo, E. A. (2002). Family food insufficiency, but not low family income, is positively associated with dysthymia and suicide symptoms in adolescents. Journal of Nutrition, 132, 719725.Google Scholar
AlAmmar, W. A., Albeesh, F. H., Ibrahim, L. M., Algindan, Y. Y., Yamani, L. Z., & Khattab, R. Y. (2021). Effect of omega-3 fatty acids and fish oil supplementation on multiple sclerosis: A systematic review. Nutritional Neuroscience, 24, 569579.Google Scholar
Alamy, M., & Bengelloun, W. (2012). Malnutrition and brain development: An analysis of the effects of inadequate diet during different stages of life in rat. Neuroscience & Biobehavioral Reviews, 36, 14631480.Google Scholar
Alaverdashvili, M., Hackett, M. J., Caine, S., & Paterson, P. G. (2017). Parallel changes in cortical neuron biochemistry and motor function in protein-energy malnourished adult rats. NeuroImage, 149, 275284.Google Scholar
Alaverdashvili, M., Li, X., & Paterson, P. G. (2015). Protein-energy malnutrition causes deficits in motor function in adult male rats. Journal of Nutrition, 145, 25033511.Google Scholar
Alcalay, R. N., Gu, Y., Mejia-Santana, H., Cote, L., Marder, K. S., & Scarmeas, N. (2012). The association between Mediterranean diet adherence and Parkinson’s disease. Movement Disorders, 27, 771774.Google Scholar
Algarin, C., Karunakaran, K. D., Reyes, S., Morales, C., Lozoff, B., Peirano, P., & Biswal, B. (2017). Differences on brain connectivity in adulthood are present in subjects with iron deficiency anemia in infancy. Frontiers in Aging Neuroscience, 9, 54.Google Scholar
Algarin, C., Nelson, C. A., Peirano, P., Westerlund, A., Reyes, S., & Lozoff, B. (2013). Iron-deficiency anemia in infancy and poorer cognitive inhibitory control at age 10 years. Developmental Medicine & Child Neurology, 55, 453458.Google Scholar
Alisi, L., Cao, R., & de Angelis, C. (2019). The relationships between vitamin K and cognition: A review of current evidence. Frontiers in Neurology, 10, 239.Google Scholar
Aliu, E., Kanungo, S., & Arnold, G. L. (2018). Amino acid disorders. Annals of Translational Medicine, 6, 471.Google Scholar
Allen, V. J., Methven, L., & Gosney, M. A. (2013). Use of nutritional complete supplements in older adults with dementia: Systematic review and meta-analysis of clinical outcomes. Clinical Nutrition, 32, 950957.Google Scholar
Almaas, A. N., Tamnes, C. K., Nakstad, B., Henriksen, C., Walhovd, K. B., Fjell, A. M., & Iversen, P. O. (2015). Long-chain polyunsaturated fatty acids and cognition in VLBW infants at 8 years: An RCT. Pediatrics, 135, 972980.Google Scholar
Al-Naama, N., Mackeh, R., & Kino, T. (2020). C2H2-type zinc finger proteins in brain development, neurodevelopmental, and other neuropsychiatric disorders: Systematic literature-based analysis. Frontiers in Neurology, 11, 32.Google Scholar
Alpert, J. E., & Fava, M. (1997). Nutrition and depression. Nutrition Reviews, 55, 145149.Google Scholar
Alshurafa, N., Lin, A. W., Zhu, F., Ghaffari, R., Hester, J., Delp, E., Rogers, J., & Spring, B. (2019). Counting bites with bits: Expert’s workshop addressing calorie and macronutrient intake monitoring. Journal of Medical Internet Research, 21, e14904.Google Scholar
Alsiö, J., Olszewski, P. K., Levine, A. S., & Schiöth, H. B. (2012). Feed-forward mechanisms: Addiction-like behavioral and molecular adaptations in overeating. Frontiers in Neuroendocrinology, 33, 127139.Google Scholar
Altmann, P., Cunningham, J., & Dhanesha, U. (1999). Disturbances of cerebral function in people exposed to drinking water contaminated with aluminium sulphate: Retrospective study of the Camelford water incident. British Medical Journal, 319, 807811.Google Scholar
Al-Zubaidi, A., Heldmann, M., Mertins, A., Jauch-Chara, K., & Münte, T. F. (2018). Influences of hunger, satiety, and oral glucose on functional brain connectivity: A multimethod resting-state fMRI study. Neuroscience, 382, 8092.Google Scholar
Amani, R., Tabmasebi, K., & Nazari, Z. (2019). Association of cognitive function with nutritional zinc status in adolescent female students. Progress in Nutrition, 21, 8693.Google Scholar
Amenta, F., & Tayebati, S. K. (2008). Pathways of acetylcholine synthesis, transport and release as targets for treatment of adult-onset cognitive dysfunction. Current Medicinal Chemistry, 15, 488498.Google Scholar
Amin, S. B., Orlando, M., Eddins, A., MacDonald, M., Monczynski, C., & Wang, H. (2010). In utero iron status and auditory neural maturation in premature infants as evaluated by auditory brainstem response. Journal of Pediatrics, 156, 377381.Google Scholar
Amissah, E. A., Brown, J., & Harding, J. E. (2018). Protein supplementation of human milk for promoting growth in preterm infants. Cochrane Database of Systematic Reviews, CDD000433.Google Scholar
Anderson, C., Checkoway, H., & Franklin, G. M. (1999). Dietary factors in Parkinson’s disease: The role of food groups and specific foods. Movement Disorders, 14, 2127.Google Scholar
Anderson, G., Berk, M., Dean, O., Moylan, S., & Maes, M. (2014). Role of immune-inflammatory and oxidative and nitrosative stress pathways in the etiology of depression: Therapeutic implications. CNS Drugs, 28, 110.Google Scholar
Anderson, R. M., Donnelly, C. A., & Ferguson, N. M. (1996). Transmission dynamics and epidemiology of BSE in British cattle. Nature, 382, 779788.Google Scholar
Andrade, J. P., Madeira, M. D., & Paula-Barbosa, M. M. (1995a). Evidence of reorganisation in the hippocampal mossy fiber synapses of adult rats rehabilitated after prolonged undernutrition. Experimental Brain Research, 104, 249261.Google Scholar
Andrade, J. P., Madeira, M. D., & Paula-Barbosa, M. M. (1995b). Effects of long-term malnutrition and rehabilitation on the hippocampal formation of the adult rat: A morphometric study. Journal of Anatomy, 187, 379393.Google Scholar
Andreeva, V. A., Galan, P., & Arnaud, J. (2013). Midlife iron status is inversely associated with subsequent cognitive performance, particularly in perimenopausal women. Journal of Nutrition, 143, 19741981.Google Scholar
Angulo-Barroso, R. M., Li, M., Santos, D. C., Bian, Y., Sturza, J., Jiang, Y., & Lozoff, B. (2016). Iron supplementation in pregnancy or infancy and motor development: A randomized controlled trial. Pediatrics, 137, 4.Google Scholar
Anjum, I., Jaffery, S. S., Fayyaz, M., Samoo, Z., & Anjum, S. (2018). The role of vitamin D in brain health: A mini literature review. Cureus, 10, e2960.Google Scholar
Annweiler, C., Allali, G., & Allain, P.(2009). Vitamin D and cognitive performance in adults: A systematic review. European Journal of Neurology, 16, 10831089.Google Scholar
Annweiler, C., Dursun, E., & Feron, F.(2015). Vitamin D and cognition in older adults: Updated international recommendations. Journal of Internal Medicine, 277, 4557.Google Scholar
Anton, K., Baehring, J. M., & Mayer, T. (2012). Glioblastoma multiforme: Overview of current treatment and future perspectives. Hematology/Oncology Clinics, 26, 825853.Google Scholar
Anton, S. D., Han, H., & York, E. (2009). Effect of calorie restriction on subjective ratings of appetite. Journal of Human Nutrition and Dietetics, 22, 141147.Google Scholar
Aoki, Y. (2001). Polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, and polychlorinated dibenzofurans as endocrine disrupters: What we have learnt from Yusho disease. Environmental Research Section, 86, 211.Google Scholar
Appelberg, K. S., Hovda, D. A., & Prins, M. L. (2009). The effects of a ketogenic diet on behavioral outcome after controlled cortical impact injury in the juvenile and adult rat. Journal of Neurotrauma, 26, 497506.Google Scholar
Arab, A., Khorvash, F., Kazemi, M., Heidari, Z., & Askari, G. (2021). Effects of the dietary approaches to stop hypertension (DASH) diet on clinical, quality of life, and mental health outcomes in women with migraine: A randomised controlled trial. British Journal of Nutrition, 128.Google Scholar
Armario, A., Montero, J. L., & Jolin, T. (1987). Chronic food restriction and the circadian rhythms of pituitary-adrenal hormones, growth hormone and thyroid-stimulating hormone. Annals of Nutrition & Metabolism, 31, 8187.Google Scholar
Armony-Sivan, R., Eidelman, A. I., Lanir, A., Sredni, D., & Yehuda, S. (2004). Iron status and neurobehavioral development of premature infants. Journal of Perinatology, 24, 757762.Google Scholar
Arnulf, I., Quintin, P., & Alvarez, J. C. (2002). Mid-morning tryptophan depletion delays REM sleep onset in healthy subjects. Neuropsychopharmacology, 27, 843851.Google Scholar
Arranz, S., Chiva-Blanch, G., Valderas-Martínez, P., Medina-Remón, A., Lamuela-Raventós, R. M., & Estruch, R. (2012). Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients, 4, 759781.Google Scholar
Arthur, J. R., Beckett, G. J., & Mitchell, J. H. (1999). The interactions between selenium and iodine deficiencies in man and animals. Nutrition Research Reviews, 12, 5573.Google Scholar
Arts, N. J. M., Walvoort, S. J. W., & Kessels, R. P. C. (2017). Korsakoff’s syndrome: A critical review. Neuropsychiatric Disease & Treatment, 13, 28752890.Google Scholar
Ashley, S., Bradburn, S., & Murgatroyd, C. (2019). A meta-analysis of peripheral tocopherol levels in age-related cognitive decline and Alzheimer’s disease. Nutritional Neuroscience, 10.1080/1028415X.2019.1681066Google Scholar
Attuquayefio, T., & Stevenson, R. J. (2015). A systematic review of longer-term dietary interventions on human cognitive function: Emerging patterns and future directions. Appetite, 95, 554570.Google Scholar
Attuquayefio, T., Stevenson, R. J., Boakes, R. A., Oaten, M. J., Yeomans, M. R., Mahmut, M., & Francis, H. M. (2016). A high-fat high-sugar diet predicts poorer hippocampal related memory and a reduced ability to suppress wanting under satiety. Journal of Experimental Psychology: Animal Learning & Cognition, 42, 415428.Google Scholar
Attuquayefio, T., Stevenson, R. J., Oaten, M. J., & Francis, H. M. (2017). A four-day Western-style dietary intervention causes reductions in hippocampal-dependent learning and memory and interoceptive sensitivity. PLoS One, 12, e0172645.Google Scholar
Authority, E. F. S. (2004). Opinion of the scientific panel on dietetic products, nutrition and allergies [NDA] related to the tolerable upper intake level of boron (sodium borate and boric acid). EFSA Journal, 2, 80.Google Scholar
Auvinen, H. E., Romijn, J. A., Biermasz, N. R., Pijl, H., Havekes, L. M., Smit, J. W., & Pereira, A. M. (2012). The effects of high fat diet on the basal activity of the hypothalamus-pituitary-adrenal axis in mice. Journal of Endocrinology, 214, 191197.Google Scholar
Avena, N. M., Rada, P., & Hoebel, B. G. (2009). Sugar and fat bingeing have notable differences in addictive-like behavior. The Journal of Nutrition, 139, 623628.Google Scholar
Avitzur, Y., & Courtney-Martin, G. (2016). Enteral approaches in malabsorption. Best Practice & Research Clinical Gastroenterology, 30, 295307.Google Scholar
Azary, S., Schreiner, T., Graves, J., Waldman, A., Belman, A., Guttman, B. W., & Waubant, E. (2018). Contribution of dietary intake to relapse rate in early paediatric multiple sclerosis. Journal of Neurology Neurosurgery & Psychiatry, 89, 2833.Google Scholar
Babur, E., Tan, B., & Yousef, M. (2019). Deficiency but not supplementation of selenium impairs the hippocampal long-term potentiation and hippocampus-dependent learning. Biological Trace Element Research, 192, 252262.Google Scholar
Bachar, E., Canetti, L., & Berry, E. M. (2005). Lack of long-lasting consequences of starvation on eating pathology in Jewish Holocaust survivors of Nazi concentration camps. Journal of Abnormal Psychology, 114, 165169.Google Scholar
Badawy, A. A. (2014). Pellagra and alcoholism: A biochemical perspective. Alcohol & Alcoholism, 49, 238250.Google Scholar
Baggott, M. J., Childs, E., Hart, A. B., de Bruin, E., Palmer, A. A., Wilkinson, J. E., & de Wit, H. (2013). Psychopharmacology of theobromine in healthy volunteers. Psychopharmacology, 228, 109118.Google Scholar
Bailes, J. E., & Mills, J. D. (2010). Docosahexaenoic acid reduces traumatic axonal injury in a rodent head injury model. Journal of Neurotrauma, 27, 16171624.Google Scholar
Baker, L. B., Nuccio, R. P., & Jeukendrup, A. E. (2014). Acute effects of dietary constituents on motor skills and cognitive performance in athletes. Nutrition Reviews, 72, 790802.Google Scholar
Baker, M. (2016). Is there a reproducibility crisis? Nature, 533, 452454.Google Scholar
Bakir, F., Damluji, S. F., & Amin-Zaki, L. (1973). Methylmercury poisoning in Iraq. Science, 181, 230241.Google Scholar
Balion, C., Griffith, L. E., & Strifler, L. (2012). Vitamin D, cognition, and dementia: A systematic review and meta-analysis. Neurology, 79, 13971405.Google Scholar
Balk, E. M., Raman, G., & Tatsioni, A. (2007). Vitamin B6, B12, and folic acid supplementation and cognitive function: A systematic review of randomized trials. Archives of Internal Medicine, 167, 2130.Google Scholar
Bambini-Junior, V., Zanatta, G., Della Flora Nunes, G., Mueller de Melo, G., Michels, M., Fontes-Dutra, M., & Gottfried, C. (2014). Resveratrol prevents social deficits in animal model of autism induced by valproic acid. Neuroscience Letters, 583, 176181.Google Scholar
Banji, D., Banji, O. J., Abbagoni, S., Hayath, M. S., Kambam, S., & Chiluka, V. L. (2011). Amelioration of behavioral aberrations and oxidative markers by green tea extract in valproate induced autism in animals. Brain Research, 1410, 141151.Google Scholar
Banks, W. A., Owen, J. B., & Erickson, M. A. (2012). Insulin in the brain: There and back again. Pharmacology & Therapeutics, 136, 8293.Google Scholar
Barbano, M. F., & Cador, M. (2007). Opioids for hedonic experience and dopamine to get ready for it. Psychopharmacology, 191, 467506.Google Scholar
Barceloux, D. G., Bond, G. R., Krenzelok, E. P., Cooper, H., & Vale, J. A. (2002). American Academy of Clinical Toxicology practice guidelines on the treatment of methanol poisoning. Journal of Toxicology: Clinical Toxicology, 40, 415446.Google Scholar
Barichella, M., Cereda, E., Cassani, E., Pinelli, G., Iorio, L., Ferri, V., & Pezzoli, G. (2017). Dietary habits and neurological features of Parkinson’s disease patients: Implications for practice. Clinical Nutrition, 36, 10541061.Google Scholar
Barona, M., Brown, M., & Clark, C. (2019). White matter alterations in anorexia nervosa: Evidence from a voxel-based meta-analysis. Neuroscience & Biobehavioral Reviews, 100, 285295.Google Scholar
Barra, R., Morgan, C., Saez-Briones, P., Reyes-Parada, M., Burgos, H., Morale, B., & Hernandez, A. (2018). Facts and hypotheses about the programming of neuroplastic deficits by prenatal malnutrition. Nutrition Review, 77, 6580.Google Scholar
Barrientos, R. M., Higgins, E. A., Biedenkapp, J. C., Sprunger, D. B., Wright-Hardesty, K. J., Watkins, L. R., & Maier, S. F. (2006). Peripheral infection and aging interact to impair hippocampal memory consolidation. Neurobiology of Aging, 27, 723732.Google Scholar
Barros, A. S., Crispim, R. Y. G., Cavalcanti, J. U., Souza, R. B., Lemos, J. C., Cristino Filho, G., & Aguiar, L. M. V. (2017). Impact of the chronic omega-3 fatty acids supplementation in hemiparkinsonism model induced by 6-hydroxydopamine in rats. Basic Clinical Pharmacology & Toxicology, 120, 523531.Google Scholar
Barrow, M. V., Simpson, C. F., & Miller, E. J. (1974). Lathyrism: A review. Quarterly Review of Biology, 49, 101128.Google Scholar
Başoğlu, M., Yetimalar, Y., & Gürgör, N.,(2006). Neurological complications of prolonged hunger strike. European Journal of Neurology, 13, 10891097.Google Scholar
Basu, S., McKee, M., Galea, G., & Stuckler, D. (2013). Relationship of soft drink consumption to global overweight, obesity, and diabetes: A cross-national analysis of 75 countries. American Journal of Public Health, 103, 20712077.Google Scholar
Bavarsad, K., Hosseini, M., Hadjzadeh, M. A. R., & Sahebkar, A. (2018). The effects of thyroid hormones on memory impairment and Alzheimer’s disease. Journal of Cellular Physiology, 234, 1463314640.Google Scholar
Bayer-Carter, J. L., Green, P. S., Montine, T. J., VanFossen, B., Baker, L. D., Watson, G. S., & Craft, S. (2011). Diet intervention and cerebrospinal fluid biomarkers in amnestic mild cognitive impairment. Archives of Neurology, 68, 743752.Google Scholar
Bayes, J., Schloss, J., & Sibbritt, D. (2020). Effects of polyphenols in a Mediterranean diet on symptoms of depression: A systematic literature review. Advances in Nutrition, 11, 602615.Google Scholar
Bayram, E., Topcu, Y., & Karakaya, P. (2013). Molybdenum cofactor deficiency: Review of 12 cases (MoCD and review). European Journal of Paediatric Neurology, 17, 16.Google Scholar
Bazinet, R. P., & Laye, S. (2014). Polyunsaturated fatty acids and their metabolites in brain function and disease. Nature Reviews Neuroscience, 15, 771785.Google Scholar
Beard, J. L., & Connor, J. R. (2003). Iron status and neural functioning. Annual Review of Nutrition, 23, 4158.Google Scholar
Beard, J., Erikson, K. M., & Jones, B. C. (2003). Neonatal iron deficiency results in irreversible changes in dopamine function in rats. Journal of Nutrition, 133, 11741179.Google Scholar
Beasley, A. N. (2012). Tensions in the field: The politics of researching kuru in New Guinea. History & Anthropology, 23 6389.Google Scholar
Becker, C. B., Middlemass, K., Taylor, B., Johnson, C., & Gomez, F. (2017). Food insecurity and eating disorder pathology. International Journal of Eating Disorders, 50, 10311040.Google Scholar
Beilharz, J. E., Kaakoush, N. O., Maniam, J., & Morris, M. J. (2016a). The effect of short-term exposure to energy-matched diets enriched in fat or sugar on memory, gut microbiota and markers of brain inflammation and plasticity. Brain Behavior & Immunity, 57, 304313.Google Scholar
Beilharz, J. E., Kaakoush, N. O., Maniam, J., & Morris, M. J. (2018). Cafeteria diet and probiotic therapy: Cross talk among memory, neuroplasticity, serotonin receptors and gut microbiota in the rat. Molecular Psychiatry, 23, 351361.Google Scholar
Beilharz, J. E., Maniam, J., & Morris, M. J. (2016b). Short-term exposure to a diet high in fat and sugar, or liquid sugar, selectively impairs hippocampal-dependent memory, with differential impacts on inflammation. Behavioural Brain Research, 306, 17.Google Scholar
Belarbi, K., Cuvelier, E., Destée, A., Gressier, B., & Chartier-Harlin, M. C. (2017). NADPH oxidases in Parkinson’s disease: A systematic review. Molecular Degeneration, 12, 84.Google Scholar
Belfort, M., Anderson, P., Nowak, V., Lee, K., Molesworth, C., Thompson, D., Doyle, L., & Inder, T. (2016). Breast milk feeding, brain development and neurocognitive outcomes: A 7-year longitudinal study in infnts born at less than 30 weeks. Journal of Pediatrics, 177, 133139.Google Scholar
Bellinger, F. P., Madamba, S. G., Campbell, I. L., & Siggins, G. R. (1995). Reduced long-term potentiation in the dentate gyrus of transgenic mice with cerebral overexpression of interleukin-6. Neuroscience Letters, 198, 9598.Google Scholar
Benarroch, E. E. (2014). Brain glucose transporters: Implications for neurologic disease. Neurology, 82, 13741379.Google Scholar
Benau, E. M., Orloff, N. C., Janke, E. A., Serpell, L., & Timko, C. A. (2014). A systematic review of the effects of experimental fasting on cognition. Appetite, 77, 5261.Google Scholar
Benitez-Bribiesca, L., De la Rosa-Alvarez, A., & Mansilla-Olivares, A. (1999). Debdritic spine pathology in infants with severe protein-calorie malnutrition. Pediatrics, 104, e21.Google Scholar
Bent, S., Bertoglio, K., & Hendren, R. L. (2009). Omega-3 fatty acids for autistic spectrum disorder: A systematic review. Journal of Autism & Developmental Disorders, 39, 11451154.Google Scholar
Benton, D. (2007). The impact of diet on anti-social, violent and criminal behaviour. Neuroscience & Biobehavioral Reviews, 31, 752774.Google Scholar
Benton, D. (2008a). Mirconutrient status, cognition and behavioral problems in childhood. European Journal of Nutrition, 47, 3850.Google Scholar
Benton, D. (2008b). Sucrose and behavioral problems. Critical Reviews in Food Science & Nutrition, 48, 385401.Google Scholar
Benton, D. (2012). Symposium 1: Vitamins and cognitive development and performance : Vitamins and neural and cognitive development outcomes in children. Proceedings of the Nutrition Society, 71, 1426.Google Scholar
Benton, D., & Brock, H. (2010). Mood and the macro-nutrient composition of breakfast and the mid-day meal. Appetite, 55, 436440.Google Scholar
Benton, D., & Donohoe, R. (1999). The effects of nutrients on mood. Public Health Nutrition, 2, 403409.Google Scholar
Benton, D., Slater, O., & Donohoe, R. T. (2001). The influence of breakfast and a snack on psychological functioning. Physiology & Behavior, 74, 559571.Google Scholar
Berding, K., Vlckova, K., Marx, W., Schellekens, H., Stanton, C., Clarke, G, Jacka, F., Dinan, T. G., & Cryan, F. J. (2021). Diet and the microbiota-gut-brain axis: Sowing the seeds of good mental health. Advances in Nutrition, 12, 12391285.Google Scholar
Berendsen, A. A., Kang, J. H., van de Rest, O., Feskens, E. J., de Groot, L. C., & Grodstein, F. (2017). The dietary approaches to stop hypertension diet, cognitive function, and cognitive decline in American older women. Journal of the American Medical Directors Association, 18, 427432.Google Scholar
Bergami, M., Rimondini, R., Santi, S., Blum, R., Gotz, M., & Canossa, M. (2008). Deletion of TrkB in adult progenitors alters newborn neuron integration into hippocampal circuits and increases anxiety-like behavior. Proceedings of the National Academy of Sciences of the United States of America, 105, 1557015575.Google Scholar
Berglund, S. K., Chmielewska, A., Starnberg, J., Westrup, B., Hagglof, B., Norman, M., & Domellof, M. (2018). Effects of iron supplementation of low-birth-weight infants on cognition and behavior at 7 years: A randomized controlled trial. Pediatric Research, 83, 111118.Google Scholar
Bernal, J. (2007). Thyroid hormone receptors in brain development and function. Nature Clinical Practice Endocrinology & Metabolism, 3, 249259.Google Scholar
Berr, C., Arnaud, J., & Akbaraly, T. N. (2012). Selenium and cognitive impairment: A brief-review based on results from the EVA study. Biofactors, 38, 139144.Google Scholar
Bertolino, B., Crupi, R., Impellizzeri, D., Bruschetta, G., Cordaro, M., Siracusa, R., & Cuzzocrea, S. (2017). Beneficial effects of co-ultramicronized palmitoylethanolamide/luteolin in a mouse model of autism and in a case report of autism. CNS Neuroscience Therapeutics, 23, 8798.Google Scholar
Bespalov, A., & Steckler, T. (2018). Lacking quality in research: Is behavioral neuroscience affected more than other areas of biomedical science? Journal of Neuroscience Methods, 300, 49.Google Scholar
Besson, A., Lagisz, M., Senior, A., Hector, K., & Nakagawa, S. (2016). Effect of maternal diet on offspring coping styles in rodents: A systematic review and meta-analysis. Biological Review, 91, 10651080.Google Scholar
Bhandari, R., & Kuhad, A. (2017). Resveratrol suppresses neuroinflammation in the experimental paradigm of autism spectrum disorders. Neurochemical International, 103, 823.Google Scholar
Biasi, E. (2011). The effects of dietary choline. Neuroscience Bulletin, 27, 220342.Google Scholar
Biasini, A., Neri, C., China, M. C., Monti, F., Di Nicola, P., & Bertino, E. (2012). Higher protein intake strategies in human milk fortification for preterm infants feeding. Auzological and neurodevelopmental outcome. Journal of Biological Regulators & Homeostatic Agents, 26, 4347.Google Scholar
Biggio, G., Porceddu, M. L., & Gessa, G. L. (1976). Decrease of homovanillic, dihydroxyphenylacetic acid and cyclic adenosine-3’, 5’-monophosphate content in the rat caudate nucleus induced by the acute administration of an amino acid mixture lacking tyrosine and phenylalanine. Journal of Neurochemistry, 26, 12531255.Google Scholar
Birch, E. E., Garfield, S., Castaneda, Y., Hughbanks-Wheaton, D., Uauy, R., & Hoffman, D. (2007). Visual acuity and cognitive outcomes at 4 years of age in a double-blind, randomized trial of long-chain polyunsaturated fatty acid-supplemented infant formula. Early Human Development, 83, 279284.Google Scholar
Bisanz, J. E., Upadhyay, V., Turnbaugh, J. A., Ly, K., & Turnbaugh, P. J. (2019). Meta-analysis reveals reproducible gut microbiome alterations in response to a high-fat diet. Cell Host and Microbe, 26, 265–272 e264.Google Scholar
Bitanihirwe, B. K. Y., & Cunningham, M. G. (2009). Zinc: The brain’s dark horse. Synapse, 63, 10291049.Google Scholar
Bivona, G., Gambino, C. M., Iacolino, G., & Ciaccio, M. (2019). Vitamin D and the nervous system. Neurological Research, 41, 827835.Google Scholar
Bjork, J. M., Grant, S. J., Chen, G., & Hommer, D. W. (2014). Dietary tyrosine/phenylalanine depletion effects on behavioural and brain signatures of human motivational processing. Neuropsychopharmacology, 39, 595604.Google Scholar
Blaak, E. E., Antoine, J. M., & Benton, D. (2012). Impact of postprandial glycaemia on health and prevention of disease. Obesity Reviews, 13, 923984.Google Scholar
Black, R., Allen, L., Bhutta, Z., Caulfield, L., de Onis, , Ezzat, M., Mathers, C., Rivera, J., for the Maternal and Child Undernutrition Study Group. (2008). Maternal and child undernutrition: Global and regional exposures and health consequences. The Lancet, 371, 243260.Google Scholar
Blaise, S. A., Nedelec, E., Schroeder, H., Alberto, J. M., Bossenmeyer-Pourie, C., Gueant, J. L., & Daval, J. L. (2007). Gestational vitamin B deficiency leads to homocysteine-associated brain apoptosis and alters neurobehavioral development in rats. American Journal of Pathology, 170, 667679.Google Scholar
Blandina, P., Munari, L., Provensi, G., & Passani, M. B. (2012). Histamine neurons in the tuberomamillary nucleus: A whole center or distinct subpopulations? Frontiers in Systems Neuroscience, 6, 33.Google Scholar
Blanton, C. (2014). Improvements in iron status and cognitive function in young women consuming beef or non-beef lunches. Nutrients, 6, 90110.Google Scholar
Bloemendaal, M., Froböse, M. I., & Wegman, J., (2018). Neuro-cognitive effects of acute tyrosine administration on reactive and proactive response inhibition in healthy older adults. eNeuro, 5, 118.Google Scholar
Blumenthal, J. A., Smith, P. J., Mabe, S., Hinderliter, A., Lin, P. H., Liao, L., & Sherwood, A. (2019). Lifestyle and neurocognition in older adults with cognitive impairments: A randomized trial. Neurology, 92, e212e223.Google Scholar
Blusztajn, J. K., & Wurtman, R. J. (1983). Choline and cholinergic neurons. Science, 221, 614620.Google Scholar
Boggiano, M. M., Turan, B., Maldonado, C. R., Oswald, K. D., & Shuman, E. S. (2013). Secretive food concocting in binge eating: Test of a famine hypothesis. International Journal of Eating Disorders, 46, 212225.Google Scholar
Boivin, M. J., Okitundu, D., & Makila-Mabe Bumoko, G. (2013). Neuropsychological effects of konzo: A neuromotor disease associated with poorly processed cassava. Pediatrics, 131, e1231e1239.Google Scholar
Boivin, M. J., Okitundu, D., & Makila-Mabe Bumoko, G. (2017). Cognitive and motor performance in Congolese children with konzo during 4 years of follow-up: A longitudinal analysis. The Lancet Global Health, 5, e936e947.Google Scholar
Bolton, H. M., Burgess, P. W., Gilbert, S. J., & Serpell, L. (2014). Increased set shifting costs in fasted healthy volunteers. PLoS One, 9, e101946.Google Scholar
Bond, L., Mayerl, C., Stricklen, B., German, R., & Gould, F. (2020). Changes in the coordination between respiration and swallowing from suckling through weaning. Biology Letters, 16, 20190942.Google Scholar
Bondy, S. C. (2010). The neurotoxicity of environmental aluminium is still an issue. Neurotoxicity, 31, 575581.Google Scholar
Bondy, S. C. (2016). Low levels of aluminium can lead to behavioral and morphological changes associated with Alzheimer’s disease and age-related neurodegeneration. NeuroToxicology, 52, 222229.Google Scholar
Bonello, M., & Ray, P. (2016). A case of ataxia with isolated vitamin E deficiency initially diagnosed as Friedreich’s ataxia. Case Reports in Neurological Medicine, 2016, 8342653.Google Scholar
Boonstra, E., de Kleijn, R., Colzato, L. S., Alkemade, A., Forstmann, B. U., & Nieuweenhuis, S. (2015). Neurotransmitters as food supplements: The effects of GABA on brain and behaviour. Frontiers in Psychology, 6, 1520.Google Scholar
Booth, S. L. (2009). Roles for vitamin K beyond coagulation. Annual Review of Nutrition, 29, 89110.Google Scholar
Borea, P. A., Gessi, S., Merighi, S., Vincenzi, F., & Varani, K. (2018). Pharmacology of adenosine receptors: The state of the art. Physiological Reviews, 98, 15911625.Google Scholar
Borge, T., Aase, H., Brantsaeter, A., & Biele, G. (2017). The importance of maternal diet quality during pregnancy on cognitive and behavioural outcomes in children: A systematic review and meta-analysis. BMJ Open, 7, e016777.Google Scholar
Borghammer, P. (2018). How does Parkinson’s disease begin? Perspectives eon neuroanatomical pathways, prions, and histology. Movement Disorders, 33, 4857.Google Scholar
Borowitz, S. (2021). First bites – Why, when and what solid foods to fee infants. Frontiers in Pediatrics, 9, 654171.Google Scholar
Boswell, R. G., & Kober, H. (2016). Food cue reactivity and craving predict eating and weight gain: A meta-analytic review. Obesity Reviews, 17, 159177.Google Scholar
Botez, M. I., Botez, T., & Maag, U. (1984). The Weschler subtests in mild organic brain-damage associated with folate-deficiency. Psychological Medicine, 14, 431437.Google Scholar
Bouayed, J., Rammal, H., Dicko, A., Younos, C., & Soulimani, R. (2007). Chlorogenic acid, a polyphenol from Prunus domestica (Mirabelle), with coupled anxiolytic and antioxidant effects. Journal of the Neurological Sciences, 262, 7784.Google Scholar
Bough, K. J., Wetherington, J., Hassel, B., Pare, J. F., Gawryluk, J. W., Greene, J. G., & Dingledine, R. J. (2006). Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Annals of Neurology, 60, 223235.Google Scholar
Boukouvalas, G., Gerozissis, K., & Kitraki, E. (2010). Adult consequences of post-weaning high fat feeding on the limbic-HPA axis of female rats. Cellular & Molecular Neurobiology, 30, 521530.Google Scholar
Bourg, E. L. (2018). Does calorie restriction in primates increase lifespan? Revisiting studies on macaques (Macaca mulatta) and mouse lemurs (Microcebus murinus). BioEssays, 40, 1800111.Google Scholar
Bourgeois, F. T., Murthy, S., & Mandl, K. D. (2010). Outcome reporting among drug trials registered in ClinicalTrials.gov. Annals of Internal Medicine, 153, 158166.Google Scholar
Boyle, N. B., Lawton, C. L., Allen, R., Croden, F., Smith, K., & Dye, L. (2016). No effects of ingesting or rinsing sucrose on depleted self-control performance. Physiology & Behavior, 154, 151160.Google Scholar
Boyle, N. B., Lawton, C. L., & Dye, L. (2018). The effects of carbohydrates, in isolation and combined with caffeine, on cognitive performance and mood–current evidence and future directions. Nutrients, 10, 192.Google Scholar
Bradley, S. J., Taylor, M. J., & Rovet, J. F. (1997). Assessment of brain function in adolescent anorexia nervosa before and after weight gain. Journal of Clinical and Experimental Neuropsychology, 19, 2033.Google Scholar
Bragg, C., Desbrow, B., Hall, S., & Irwin, C. (2017). Effect of meal glycemic load and caffeine consumption on prolonged monotonous driving performance. Physiology & Behavior, 181, 110116.Google Scholar
Brands, A. M. A., Biessels, G. J., de Haan, E. H. F., Kappelle, L. J., & Keessels, R. P. C. (2005). The effects of type 1 diabetes on cognitive performance. Diabetes Care, 28, 726735.Google Scholar
Brandt, K. R. (2015). Effects of glucose administration on category exclusion recognition. Journal of Psychopharmacology, 29, 777782.Google Scholar
Brenner, E. D., Stevenson, D. W., & Twigg, R. W. (2003). Cycads: Evolutionary innovations and the role of plant-derived neurotoxins. Trends in Plant Science, 8, 446452.Google Scholar
Brickman, A. M., Khan, U. A., Provenzano, F. A., Yeung, L. K., Suzuki, W., Schroeter, H., & Small, S. A. (2014). Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults. Nature Neuroscience, 17, 17981803.Google Scholar
Brock, J. W., & Prasad, C. (1992). Alterations in dendritic spine density in the rat brain associated with protein malnutrition. Developmental Brain Research, 66, 266269.Google Scholar
Brouwer-Brolsma, E. M., & de Groot, L. (2015). Vitamin D and cognition in older adults: An update of recent findings. Current Opinion in Clinical Nutrition & Metabolic Care, 18, 1116.Google Scholar
Brown, J. M., Bland, R., Jonsson, E., & Greenshaw, A. J. (2019). The standardization of diagnostic criteria for Fetal Alcohol Syndrome Disorder (FASD): Implications for research, clinical practice and population health. Canadian Journal of Psychiatry, 64, 169176.Google Scholar
Brown, K., DeCoffe, D., Molcan, E., & Gibson, D. L. (2012). Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients, 4, 10951119.Google Scholar
Brown, T. M. (2010). Pellagra: An old enemy of timeless importance. Psychosomatics, 51, 9397.Google Scholar
Brown, T. M. (2015). Neuropsychiatric scurvy. Psychosomatics, 56, 1220.Google Scholar
Brubacher, D., Monsch, A. U., & Stähelin, H. B. (2004). Weight change and cognitive performance. International Journal of Obesity, 28, 11631167.Google Scholar
Bruner, A. N., Joffe, A., Duggan, A. K., Casella, J. F., & Brandt, J. (1996). Randomised study of cognitive effects of iron supplementation in non-anaemic adolescent girls. The Lancet, 348, 992996.Google Scholar
Bryan, J., Calvaresi, E., & Hughes, D. (2002). Short-term folate, vitamin B-12 or vitamin B-6 supplementation slightly affects memory performance but not mood in women of various ages. Journal of Nutrition, 132, 13451356.Google Scholar
Bryan, J., & Tiggemann, M. (2001). The effect of weight-loss dieting on cognitive performance and psychological well-being in overweight women. Appetite, 36, 147156.Google Scholar
Budney, A. J., Lee, D. C., & Juliano, L. M. (2015). Evaluating the validity of caffeine use disorder. Current Psychiatry Reports, 17, 74.Google Scholar
Buffenstein, R., Karklin, A., & Driver, H. S. (2000). Beneficial physiological and performance responses to a month of restricted energy intake in healthy overweight women. Physiology & Behavior, 68, 439444.Google Scholar
Bunevičius, R., & Prange, A. J. (2010). Thyroid disease and mental disorders: Cause and effect or only comorbidity? Current Opinion in Psychiatry, 23, 363368.Google Scholar
Burger, G. C. E., Sandstead, H. R., & Drummond, J. (1945). Starvation in Western Holland: 1945. The Lancet, 2, 282283.Google Scholar
Burger, K. S., & Stice, E. (2012). Frequent ice cream consumption is associated with reduced striatal response to receipt of an ice cream-based milkshake. American Journal of Clinical Nutrition, 95, 810817.Google Scholar
Burger, K. S., & Stice, E. (2014). Neural responsivity during soft drink intake, anticipation, and advertisement exposure in habitually consuming youth. Obesity, 22, 441450.Google Scholar
Burkle, F. M., Chan, J. T. S., & Yeung, R. D. S. (2013). Hunger strikers: Historical perspectives from the emergency management of refugee camp asylum seekers. Prehospital and Disaster Medicine, 28, 625629.Google Scholar
Burley, V. J., Kreitzman, S. N., Hill, A. J., & Blundell, J. E. (1992). Across-the-day monitoring of mood and energy intake before, during, and after a very-low-calorie diet. The American Journal of Clinical Nutrition, 56, 277S278S.Google Scholar
Burrows, T. L., Ho, Y. Y., Rollo, M. E., & Collins, C. E. (2019). Validity of dietary assessment methods when compared to the method of doubly labelled water: A systematic review in adults. Frontiers in Endocrinology, 10, e00850.Google Scholar
Butterly, J., & Shepherd, J. (2010). Hunger: The Biology and Politics of Starvation. Lebanon, PA: Dartmouth College Press.Google Scholar
Cahill, G. F. (1970). Starvation in man. New England Journal of Medicine, 282, 668675.Google Scholar
Callahan, L. S., Thibert, K. A., Wobken, J. D., & Georgieff, M. K. (2013). Early-life iron deficiency anemia alters the development and long-term expression of parvalbumin and perineuronal nets in the rat hippocampus. Developmental Neuroscience, 35, 427436.Google Scholar
Calugi, S., Miniati, M., & Milanese, C. (2017). The Starvation Symptom Inventory: Development and psychometric properties. Nutrients, 9, 967.Google Scholar
Canda, E., Ucar, S. K., & Coker, M. (2020). Biotinidase deficiency: Prevalence, impact and management strategies. Pediatric Health, Medicine & Therapeutics, 11, 127133.Google Scholar
Canhada, S., Castro, K., Perry, I. S., & Luft, V. C. (2018). Omega-3 fatty acids’ supplementation in Alzheimer’s disease: A systematic review. Nutritional Neuroscience, 21, 529538.Google Scholar
Cannell, J. J. (2008). Autism and vitamin D. Medical Hypotheses, 70, 750759.Google Scholar
Capewell, S., & Lloyd-Williams, F. (2018). The role of the food industry in health: Lessons from tobacco? British Medical Bulletin, 125, 131143.Google Scholar
Cappelletti, S., Piacentino, D., Fineschi, V., Frati, P., Cipolloni, L., & Aromatario, M. (2018). Caffeine-related deaths: Manner of deaths and categories at risk. Nutrients, 10, 611.Google Scholar
Cappello, S., Cereda, E., & Rondanelli, M. (2017). Elevated plasma vitamin B12 concentrations are independent predictors of in-hospital mortality in adult patients at nutritional risk. Nutrients, 9, 1.Google Scholar
Cardoso, A., Castro, J. P., Pereira, P. A., & Andrade, J. P. (2013). Prolonged protein deprivation, but not food restriction, affects parvalbumin-containing interneurons in the dentate gyrus of adult rats. Brain Research, 1522, 2230.Google Scholar
Cardoso, B. R., Ong, T. P., & Jacob-Filho, W. (2010). Nutritional status of selenium in Alzheimer’s disease patients. British Journal of Nutrition, 103, 803806.Google Scholar
Cardoso, B. R., Szymlek-Gay, E. A., & Roberts, B. R. (2018). Selenium status is not associated with cognitive performance: A cross-sectional study in 154 older Australian adults. Nutrients, 10, 1847.Google Scholar
Carlson, E. S., Stead, J. D., Neal, C. R., Petryk, A., & Georgieff, M. K. (2007). Perinatal iron deficiency results in altered developmental expression of genes mediating energy metabolism and neuronal morphogenesis in hippocampus. Hippocampus, 17, 679691.Google Scholar
Carpenter, K. J. (2003). A short history of nutritional science: Part 1 (1795–1885). Journal of Nutrition, 133, 638645.Google Scholar
Carr, K. D. (1996). Feeding, drug abuse, and the sensitization of reward by metabolic need. Neurochemical Research, 21, 14551467.Google Scholar
Carr, K. D., Park, T. H., Zhang, Y., & Stone, E. A. (1998). Neuroanatomical patterns of Fos-like immunoreactivity induced by naltrexone in food-restricted and ad libitum fed rats. Brain Research, 779, 2632.Google Scholar
Carter, A., Hendrikse, J., Lee, N., Yücel, M., Verdejo-Garcia, A., Andrews, Z. B., & Hall, W. (2016). The neurobiology of ‘food addition’ and its implications for obesity treatment and policy. Annual Review of Nutrition, 36, 105128.Google Scholar
Carter, E. C., Kofler, L. M., Forster, D. E., & McCullough, M. E. (2015). A series of meta-analytic tests of the depletion effect: Self-control does not seem to rely on a limited resource. Journal of Experimental Psychology: General, 144, 796815.Google Scholar
Carter, R. C., Jacobson, J. L., Burden, M. J., Armony-Sivan, R., Dodge, N. C., Angelilli, M. L., & Jacobson, S. W. (2010). Iron deficiency anemia and cognitive function in infancy. Pediatrics, 126, e427–434.Google Scholar
Carvalho, K. M. B., Ronca, D. B., Michels, N., Huybrechts, I., Cuenca-Garcia, M., Marcos, A., & Carvalho, L. A. (2018). Does the Mediterranean diet protect against stress-induced inflammatory activation in European adolescents? The HELENA Study. Nutrients, 10, Article 1770.Google Scholar
Casadesus, G., Shukitt-Hale, B., Stellwagen, H. M., Zhu, X. W., Lee, H. G., Smith, M. A., & Joseph, J. A. (2004). Modulation of hippocampal plasticity and cognitive behavior by short-term blueberry supplementation in aged rats. Nutritional Neuroscience, 7, 309316.Google Scholar
Casper, R. C., Voderholzer, U., Naab, S., & Schlegl, S. (2020). Increased urge for movement, physical and mental restlessness, fundamental symptoms of restricting anorexia nervosa. Brain & Behavior, 10, e01556.Google Scholar
Cassin, S. E., Buchman, D. Z., Leung, S. E., Kantarvoich, K., Hawa, A., Carter, A., & Sockalingam, S. (2019). Ethical, stigma, and policy implications of food addiction: A scoping review. Nutrients, 11, 710.Google Scholar
Castoldi, A. F., Johansson, C., & Onishchenko, N. (2008). Human developmental neurotoxicity of methylmercury: Impact of variables and risk modifiers. Regulatory Toxicology & Pharmacology, 51, 201214.Google Scholar
Castro, K., Baronio, D., Perry, I. S., Riesgo, R. D. S., & Gottfried, C. (2017). The effect of ketogenic diet in an animal model of autism induced by prenatal exposure to valproic acid. Nutritional Neuroscience, 20, 343350.Google Scholar
Ceccatelli, S., Bose, R., Edoff, K., Onishchenko, N., & Spulber, S. (2013). Long-lasting neurotoxic effects of exposure to methylmercury during development. Journal of Internal Medicine, 273, 490497.Google Scholar
Cederholm, T., Salem, N., Jr, & Palmblad, J. (2013). ω-3 Fatty acids in the prevention of cognitive decline in humans. Advances in Nutrition, 4, 672676.Google Scholar
Chae, J., Nahas, Z., & Lomarev, M. (2003). A review of functional neuroimaging studies of vagus nerve stimulation (VNS). Journal of Psychiatric Research, 37, 443455.Google Scholar
Challa, S., Sharkey, J. R., Chen, M., & Phillips, C. D. (2007). Association of resident, facility, and geographic characteristics with chronic undernutrition in a nationally represented sample of older residents in U.S. nursing homes. Journal of Nutrition Health and Aging, 11, 179184.Google Scholar
Chamari, K., Briki, W., & Farooq, A. (2016). Impact of Ramadan intermittent fasting on cognitive function in trained cyclists: A pilot study. Biology of Sport, 33, 4956.Google Scholar
Champ, C. E., Palmer, J. D., Volek, J. S., Werner-Wasik, M., Andrews, D. W., Evans, J. J., & Shi, W. (2014). Targeting metabolism with a ketogenic diet during the treatment of glioblastoma multiforme. Journal of Neurooncology, 117, 125131.Google Scholar
Chandrakumar, A., Bhardwaj, A., & Jong, G. W. (2019). Review of thiamine deficiency disorders: Wernicke encephalopathy and Korsakoff psychosis. Journal of Basic and Clinical Physiology and Pharmacology, 30, 153162.Google Scholar
Chang, S., Zeng, L., Brouwer, I. D., Kok, F. J., & Yan, H. (2013). Effect of iron deficiency anemia in pregnancy on child mental development in rural China. Pediatrics, 131, e755–763.Google Scholar
Chaplin, K., & Smith, A. P. (2011). Breakfast and snacks: Associations with cognitive failures, minor injuries, accidents, and stress. Nutrients, 3, 515528.Google Scholar
Chatzi, L., Papadopoulou, E., Koutra, K., Roumeliotaki, T., Georgiou, V., Stratakis, N., & Kogevinas, M. (2012). Effect of high doses of folic acid supplementation in early pregnancy on child neurodevelopment at 18 months of age: The mother-child cohort ‘Rhea’ study in Crete, Greece. Public Health Nutrition, 15, 17281736.Google Scholar
Cheatham, R. A., Roberts, S. B., & Das, S. K.(2009). Long-term effects of provided low and high glycemic load low energy diets on mood and cognition. Physiology & Behavior, 98, 374379.Google Scholar
Chen, G., Li, Y., Li, X., Zhou, D., Wang, Y., Wen, X., Wang, C., Liu, X., Feng, Y., Li, B., & Li, N. (2021). Functional foods and intestinal homeostasis: The perspective of in vivo evidence. Trends in Food Science & Technology, 111, 475482.Google Scholar
Chen, L. -Y., Liu, L. -K., & Hwang, A., -C. (2016). Impact of malnutrition on physical, cognitive function and mortality among older men living in veteran homes by minimum data set: A prospective cohort study in Taiwan. Journal of Nutrition, Health & Aging, 20, 4147.Google Scholar
Chen, X., Liu, Z., Sachdev, P. S., Kochan, N. A., O’Leary, F., & Brodaty, H. (2021). Dietary patterns and cognitive health in older adults: Findings from the Sydney Memory and Ageing Study. Journal of Nutrition Health & Aging, 25, 255262.Google Scholar
Chen, Y., & Xue, F. (2020). The impact of gestational hypothyroxinemia on the cognitive and motor development of offspring. Journal of Maternal-Fetal & Neonatal Medicine, 33, 19401945.Google Scholar
Chen, Y. X, Liu, Z. R., Yu, Y., Yao, E. S., Liu, X. H., & Liu, L. (2017). Effect of recurrent severe hypoglycaemia on cognitive performance in adult patients with diabetes: A meta-analysis. Journal of Huazhong University of Science and Technology, 37, 642648.Google Scholar
Cherian, L., Wang, Y., Holland, T., Agarwal, P., Aggarwal, N., & Morris, M. C. (2020). DASH and Mediterranean-DASH intervention for neurodegenerative delay (MIND) diets are associated with fewer depressive symptoms over time. Journals of Gerontology: Series A, 76, 151156.Google Scholar
Chesler, B. E. (2005). Implications of the Holocaust for eating and weight problems among survivors’ offspring: An exploratory study. European Eating Disorders Review, 13, 3847.Google Scholar
Chiang, M., Natarajan, R., & Fan, X. D. (2016). Vitamin D in schizophrenia: A clinical review. Evidence-Based Mental Health, 19, 69.Google Scholar
Chiovato, L., Magri, F., & Carlé, A. (2019). Hypothyroidism in context: Where we’ve been and where we’re going. Advances in Therapy, 36, S47S58.Google Scholar
Chiu, C., Liu, S., & Willett, W. C. (2011). Informing food choices and health outcomes by use of dietary glycemic index. Nutritional Reviews, 69, 231242.Google Scholar
Choi, I. Y., Piccio, L., Childress, P., Bollman, B., Ghosh, A., Brandhorst, S., & Longo, V. D. (2016). A diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms. Cell Reports, 15, 21362146.Google Scholar
Choudhary, K. M., Mishra, A., Poroikov, V. V., & Goel, R. K. (2013). Ameliorative effect of Curcumin on seizure severity, depression like behavior, learning and memory deficit in post-pentylenetetrazole-kindled mice. European Journal of Pharmacology, 704, 3340.Google Scholar
Chouet, J., Ferland, G., & Féart, C. (2015). Dietary vitamin K intake is associated with cognition and behaviour among geriatric patients: The CLIP study. Nutrients, 7, 67396750.Google Scholar
Chowdhury, R., Warnakula, S., Kenutsor, S., Crows, F., Ward, H. A., Johnson, L., Franco, O. H., Butterworth, A. S., Forouhi, N. G., Thompson, S. G., Khaw, K. -T., Mozaffarian, D., Danesh, J., & Di Angelantonio, E. (2014). Association of dietary, circulating, and supplement fatty acids with coronary risk: A systematic review and meta-analysis. Annals of Internal Medicine, 160, 398406.Google Scholar
Christian, P., Murray-Kolb, L. E., Khatry, S. K., Katz, J., Schaefer, B. A., Cole, P. M., & Tielsch, J. M. (2010). Prenatal micronutrient supplementation and intellectual and motor function in early school-aged children in Nepal. Journal of the American Medical Association, 304, 27162723.Google Scholar
Chugh, G., Asghar, M., Patki, G., Bohat, R., Jafri, F., Allam, F., & Salim, S. (2013). A high-salt diet further impairs age-associated declines in cognitive, behavioral, and cardiovascular functions in male Fischer brown Norway rats. Journal of Nutrition, 143, 14061413.Google Scholar
Clark, I., & Landolt, H. P. (2017). Coffee, caffeine, and sleep: A systematic review of epidemiological studies and randomized controlled trials. Sleep Medicine Reviews, 31, 7078.Google Scholar
Clarkson, T. W., & Magos, L. (2006). The toxicology of mercury and its chemical compounds. Clinical Reviews in Toxicology, 36, 609662.Google Scholar
Cliff, J., Muquingue, H., Nhassico, D., Nzwalo, H., & Bradbury, J. H. (2011). Konzo and continuing cyanide intoxication from cassava in Mozambique. Food and Chemical Toxicology, 631635.Google Scholar
Cliff, J., & Nicala, D. (1997). Long term follow-up on konzo patients. Transaction of the Royal Society of Tropical Medicine & Hygiene, 91, 447449.Google Scholar
Cocco, S., Diaz, G., & Stancampiano, R. (2002). Vitamin A deficiency produces spatial learning and memory impairment in rats. Neuroscience, 115, 475482.Google Scholar
Cogswell, M. E., Loria, C. M., Terry, A. L., Zhao, L., Wang, C. Y., Chen, T. C., & Appel, L. J. (2018). Estimated 24-hour urinary sodium and potassium excretion in US adults. Journal of the American Medical Association, 319, 12091220.Google Scholar
Cohen, J., Gorski, M., Gruber, S., Kurdziel, L., & Rimm, E. (2016). The effect of healthy dietary consumption on executive cognitive functioning in children and adolescents: A systematic review. British Journal of Nutrition, 116, 9891000.Google Scholar
Colen, C. G., & Ramey, D. M. (2014). Is breast truly best? Estimating the effects of breastfeeding on long-term child health and wellbeing in the United States using sibling comparisons. Social Science & Medicine, 109, 5565.Google Scholar
Collee, J. G., & Bradley, R. (1997). BSE: A decade on – Part 2. The Lancet, 349, 715721.Google Scholar
Collie, A., Maruff, P., Darby, D., & McStephen, M. (2003). The effects of practice on the cognitive test performance of neurologically normal individuals assessed at brief test-retest intervals. Journal of the International Neuropsychological Society, 9, 419428.Google Scholar
Collinge, J., Whitfield, J., & McKintosh, E. (2006). Kuru in the twenty-first century – An acquired human prion disease with very long incubation periods. The Lancet, 367, 20682074.Google Scholar
Collins, S. (1995). The limit of human adaptation to starvation. Nature Medicine, 1, 810814.Google Scholar
Collins, S., Dash, S., Allender, S., Jacka, F., & Hoare, E. (2020). Diet and mental health during emerging adulthood: A systematic review. Emerging Adulthood, 10, 645659.Google Scholar
Collins, S., Dent, N., Binns, P., Bahwere, P., Sadler, K., & Hallam, A. (2006). Management of severe acute malnutrition in children. The Lancet, 368, 19922000.Google Scholar
Colman, R. J., Anderson, R. M., & Johnson, S. C. (2009). Caloric restriction delays disease onset and mortality in rhesus monkeys. Science, 325, 201204.Google Scholar
Colombo, J., Carlson, S. E., Cheatham, C. L., Fitzgerald-Gustafson, K. M., Kepler, A., & Doty, T. (2011). Long-chain polyunsaturated fatty acid supplementation in infancy reduces heart rate and positively affects distribution of attention. Pediatric Research, 70, 406410.Google Scholar
Colombo, J., Carlson, S. E., Cheatham, C. L., Shaddy, D. J., Kerling, E. H., Thodosoff, J. M., & Brez, C. (2013). Long-term effects of LCPUFA supplementation on childhood cognitive outcomes. American Journal of Clinical Nutrition, 98, 403412.Google Scholar
Coltheart, M. (2013). How can functional neuroimaging inform cognitive theories? Perspectives on Psychological Science, 8, 98103.Google Scholar
Colzato, L. S., Steenbergen, L., de Kwaadsteniet, E. W., Sellaro, R., Liepelt, R., & Hommel, B. (2013). Tryptophan promotes interpersonal trust. Psychological Science, 24, 25752577.Google Scholar
Colzato, L. S., Steenbergen, L., Sellaro, R., Stock, A., Arning, L., & Beste, C. (2016). Effects of L-tyrosine on working memory and inhibitory control are determined by DRD2 genotypes: A randomized controlled trial. Cortex, 82, 217224.Google Scholar
Combs, C. K. (2009). Inflammation and microglia actions in Alzheimer’s disease. Journal of Neuroimmune Pharmacology, 4, 380388.Google Scholar
Conner, K. R., Pinquart, M., & Gamble, S. A. (2008). Meta-analyses of depression and substance use among individuals with alcohol use disorders. Journal of Substance Abuse Treatment, 37, 127137.Google Scholar
Conner, K.R., Pinquart, M., & Gamble, S. (2009). Meta-analysis of depression and substance use among individuals with alcohol use disorders. Journal of Substance Abuse and Treatment, 37, 127137.Google Scholar
Convit, A. (2005). Links between cognitive impairment in insulin resistance: An explanatory model. Neurobiology of Aging, 26, S31S35.Google Scholar
Cook, C. C., Hallwood, P. H., & Thomson, A. D. (1998). B vitamin deficiency and neuropsychiatric syndromes in alcohol misuse. Alcohol & Alcoholism, 33, 317336.Google Scholar
Cooke, G. E., Mullally, S., Correia, N., O’Mara, S. M., & Gibney, J. (2014). Hippocampal volume is decreased in adults with hypothyroidism. Thyroid, 24, 433440.Google Scholar
Cooper, S. B., Bandelow, S., Nute, M. L., Morris, J. G., & Nevill, M. E. (2015). Breakfast glycaemic index and exercise: Combined effects of adolescents’ cognition. Physiology & Behavior, 139, 104111.Google Scholar
Copeland, J., Stevenson, R. J., Gates, P., & Dillon, P. (2007). Young Australians and alcohol: The acceptability of ready-to-drink (RTD) alcoholic beverages among 12-30-year-olds. Addiction, 102, 17401746.Google Scholar
Copp, R. P., Wisniewski, T., & Hentati, F. (1999). Localisation of alpha-tocopherol transfer protein in the brains of patients with ataxia with vitamin E deficiency and other oxidative stress related neurodegenerative disorders. Brain Research, 822, 8087.Google Scholar
Corbit, L. (2016). Effects of obesogenic diets on learning and habitual responding. Current Opinion in Behavioral Sciences, 9, 8490.Google Scholar
Cordain, L., Eaton, S. B., Sebastian, A., Mann, N., Lindeberg, S., Watkins, B. A., & Brand-Miller, J. (2005). Origins and evolution of the Western diet: Health implications for the twenty-first century. American Journal of Clinical Nutrition, 81, 341354.Google Scholar
Cornu, C., Mercier, C., Ginhoux, T., Masson, S., Mouchet, J., Nony, P., & Revol, O. (2018). A double-blind placebo-controlled randomised trial of omega-3 supplementation in children with moderate ADHD symptoms. European Child & Adolescent Psychiatry, 27, 377384.Google Scholar
Cova, I., Leta, V., Mariani, C., Pantoni, L., & Pomati, S. (2019). Exploring cocoa properties: Is theobromine a cognitive modulator? Psychopharmacology, 236, 561572.Google Scholar
Covaci, A., Voorspoels, S., & Schepens, P. (2008). The Belgian PCB/dioxin crisis–8 years later: An overview. Environmental Toxicology & Pharmacology, 25, 164170.Google Scholar
Cox, P. A., Davis, D. A. Mash, D. C., Metcalf, J. S., & Banack, S. A. (2016). Dietary exposure to an environmental toxin triggers neurofibrillary tangles and amyloid deposits in the brain. Proceedings of the Royal Society B: Biological Sciences, 283, 19.Google Scholar
Craciunescu, C. N., Brown, E. C., Mar, M. H., Albright, C. D., Nadeau, M. R., & Zeisel, S. H. (2004). Folic acid deficiency during late gestation decreases progenitor cell proliferation and increases apoptosis in fetal mouse brain. Journal of Nutrition, 134, 162166.Google Scholar
Craft, S., Murphy, C., & Wemstrom, J. (1994). Glucose effects on complex memory and nonmemory tasks: The influence of age, sex, and glucoregulatory response. Psychobiology, 22, 95105.Google Scholar
Craig, A., Baer, K., & Diekmann, A. (1981). The effects of lunch on sensory-perceptual functioning in man. International Archives of Occupational & Environmental Health, 49, 105114.Google Scholar
Craig, A., & Richardson, E. (1989). Effects of experimental and habitual lunch-size on performance, arousal, hunger, and mood. International Archives of Occupational & Environmental Health, 61, 313319.Google Scholar
Crook, W. G. (1974). Letter: An alternate method of managing the hyperactive child. Pediatrics, 54, 656.Google Scholar
Cryan, J. F., O’Riordan, K. J., Sandhu, K., Peterson, V., & Dinan, T. G. (2020). The gut microbiome in neurological disorders. The Lancet Neurology, 19, 179194.Google Scholar
Cuajungco, M. P., & Lees, G. J. (1997). Zinc metabolism in the brain: Relevance to human neurodegenerative disorders. Neurobiology of Disease, 4, 137169.Google Scholar
Cubo, E., Rivadeneyra, J., Armesto, D., Mariscal, N., Martinez, A., Camara, R. J., & Spanish members of the European Huntington Disease Network. (2015). Relationship between nutritional status and the severity of Huntington’s disease. A Spanish multicenter dietary intake study. Journal of Huntington’s Disease, 4, 7885.Google Scholar
Cucarella, J. O., Tortajada, R. E., & Moreno, L. R. (2012). Neuropsychology and anorexia nervosa: Cognitive and radiological findings. Neurología, 27, 504510.Google Scholar
Cui, X. Y., Gooch, H., & Groves, N. J. (2015). Vitamin D and the brain: Key questions for future research. Journal of Steroid Biochemistry & Molecular Biology, 148, 305309.Google Scholar
Cusick, K. D., & Sayler, G. S. (2013). An overview on the marine neurotoxin, saxitoxin: Genetics, molecular targets, methods of detection, and ecological functions. Marine Drugs, 11, 9911018.Google Scholar
Cutuli, D. (2017). Functional and structural benefits induced by omega-3 polyunsaturated fatty acids during aging. Current Neuropharmacology, 15, 534542.Google Scholar
Czeizel, A. E., & Dudas, I. (1992). Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. New England Journal of Medicine, 327, 18321835.Google Scholar
D’Amour-Horvat, V., & Leyton, M. (2014). Impulsive actions and choices in laboratory animals and humans: Effects of high vs. low dopamine states produced by systemic treatments given to neurologically intact subjects. Frontiers in Behavioral Neuroscience, 8, Article 432.Google Scholar
da Costa, K. -A., Kozyreva, O. G., & Song, J. (2006). Common genetic polymorphisms affect the human requirement for the nutrient choline. FASEB Journal, 20, 13361344.Google Scholar
da Rosa, M. I., Beck, W. O., & Colonetti, T. (2019). Association of vitamin D and vitamin B-12 with cognitive impairment in elderly aged 80 years or older: A cross-sectional study. Journal of Human Nutrition & Dietetics, 32, 518524.Google Scholar
da Silva, T. M., Munhoz, R. P., Alvarez, C., Naliwaiko, K., Kiss, Á., Andreatini, R., & Ferraz, A. C. (2008). Depression in Parkinson’s disease: A double-blind, randomized, placebo-controlled pilot study of omega-3 fatty-acid supplementation. Journal of Affective Disorders, 111, 351359.Google Scholar
Dang, J. (2016). Testing the role of glucose in self-control: A meta-analysis. Appetite, 107, 222230.Google Scholar
Danzer, S. C., Kotloski, R. J., Walter, C., Hughes, M., & McNamara, J. O. (2008). Altered morphology of hippocampal dentate granule cell presynaptic and postsynaptic terminals following conditional deletion of TrkB. Hippocampus, 18, 668678.Google Scholar
Davidson, T. L., Chan, K., Jarrard, L. E., Kanoski, S. E., Clegg, D. J., & Benoit, S. C. (2009). Contributions of the hippocampus and medial prefrontal cortex to energy and body weight regulation. Hippocampus, 19, 235252.Google Scholar
Davidson, T. L., Hargrave, S. L., Swithers, S. E., Sample, C. H., Fu, X., Kinzig, K. P., & Zheng, W. (2013). Inter-relationships among diet, obesity and hippocampal-dependent cognitive function. Neuroscience, 253, 110122.Google Scholar
Davidson, T. L., & Jarrard, L. E. (1993). A role for hippocampus in the utilization of hunger signals. Behavioral & Neural biology, 59, 167171.Google Scholar
Davidson, T. L., Monnot, A., Neal, A. U., Martin, A. A., Horton, J. J., & Zheng, W. (2012). The effects of a high-energy diet on hippocampal-dependent discrimination performance and blood-brain barrier integrity differ for diet-induced obese and diet-resistant rats. Physiology & Behavior, 107, 2633.Google Scholar
Davis, C. (2017). A commentary on the associations among ‘food addiction’, binge eating disorder, and obesity: Overlapping conditions with idiosyncratic clinical features. Appetite, 115, 38.Google Scholar
Davis, C., Patte, J., Levitan, R., Reid, C., Tweed, S., & Curtis, C. (2007). From motivation to behavior: A model of reward sensitivity, overeating, and food preferences in the risk profile for obesity. Appetite, 48, 1219.Google Scholar
Davis, T. Z., Lee, S. T., & Collett, M. G. (2015). Toxicity of white snakeroot (Ageratina altissima) and chemical extracts of white snakeroot in goats. Journal of Agricultural & Food Chemistry, 63, 20922097.Google Scholar
de Benoist, B., Andersson, M., Takkouche, B., & Egli, I. (2003). Prevalence of iodine deficiency worldwide. The Lancet, 362, 18591860.Google Scholar
de Cabo, R., & Mattson, M. P. (2019). Effects of intermittent fasting on health, aging, and disease. New England Journal of Medicine, 381, 25412551.Google Scholar
de Escobar, G. M., Obregon, M. J., & del Rey, F. E. (2004a). Maternal thyroid hormones early in pregnancy and fetal brain development. Best Practice and Research Clinical Endocrinology & Metabolism, 18, 225248.Google Scholar
de Escobar, G. M., Obregon, M. J., & del Rey, F. E. (2004b). Role of thyroid hormone during early brain development. European Journal of Endocrinology, 151, U25U37.Google Scholar
De Filippis, F., Pellegrini, N., Vannini, L., Jeffery, I. B., La Storia, A., Laghi, L., & Lazzi, C. (2016). High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut, 65, 18121821.Google Scholar
de Jager, C. A., Dye, L., de Bruin, E. A., Butler, L., Fletcher, J., Lamport, D. J., Latulippe, M. E., Spencer, P. E., & Wesnes, K. (2014). Criteria for validation and selection of cognitive tests for investigation and the effects of food and nutrients. Nutrition Reviews, 72, 162179.Google Scholar
de la Torre, R., de Sola, S., Hernandez, G., Farre, M., Pujol, J., & Rodriguez, J. (2016). Safety and efficacy of cognitive training plus epigallocatechin-3-gallate in young adults with Down’s syndrome (TESDAD): A double-blind, randomised, placebo-controlled, phase 2 trial. The Lancet Neurology, 15, 801810.Google Scholar
De Lau, L., Bornebroek, M., Witteman, J., Hofman, A., Koudstaal, P., & Breteler, M. (2005). Dietary fatty acids and the risk of Parkinson disease: The Rotterdam study. Neurology, 64, 20402045.Google Scholar
de Oliveira Alves, A., Bortalto, T., & Filho, F. B. (2017). Pellagra. Journal of Emergency Medicine, 54, 238240.Google Scholar
de Paula, J., Farah, A. (2019). Caffeine consumption through coffee: Content in the beverage, metabolism, health benefits and risks. Beverages, 5, 37.Google Scholar
Defeyter, M. A., & Russo, R. (2013). The effect of breakfast cereal consumption on adolescents’ cognitive performance and mood. Frontiers in Human Neuroscience, 7, 789.Google Scholar
Deijen, J. B., van der Beck, E. J., Orlebeke, J. F., & van den Berg, H. (1992). Vitamin B-6 supplementation in elderly men: Effects on mood, memory, performance and mental effort. Psychopharmacology, 109, 489496.Google Scholar
Deitrich, R., Zimatkin, S., & Pronko, S. (2006). Oxidation of ethanol in the brain and its consequences. Alcohol, Research & Health, 29, 266273.Google Scholar
Dekker, L. H., Boer, J. M., Stricker, M. D., Busschers, W. B., Snijder, M. B., Nicolaou, M., & Verschuren, W. M. (2013). Dietary patterns within a population are more reproducible than those of individuals. Journal of Nutrition, 143, 17281735.Google Scholar
Del Parigi, A., Gautier, J. -F., & Chen, K. (2002). Mapping the brain responses to hunger and satiation in humans using positron emission tomography. Annals of the New York Academy of Sciences, 967, 387397.Google Scholar
Delange, F. (1994). The disorders induced by iodine deficiency. Thyroid, 4, 107128.Google Scholar
Delcourt, N., Claudepierre, T., Maignien, T., Arnich, N., & Mattei, C. (2018). Cellular and molecular aspects of the β-N-methylamino-L-alanine (BMAA) mode of action within the neurodegenerative pathway: Facts of controversy. Toxins, 10, 115.Google Scholar
Deng-Bryant, Y., Prins, M. L., Hovda, D. A., & Harris, N. G. (2011). Ketogenic diet prevents alterations in brain metabolism in young but not adult rats after traumatic brain injury. Journal of Neurotrauma, 28, 18131825.Google Scholar
DeNinno, M. P. (1998). Chapter 11: Adenosine. Annual Reports in Medicinal Chemistry, 33, 111120.Google Scholar
Deoni, S. C. L., Dean, D. C., Piryatinsky, I., O’Muircheartaigh, J., Waskiewicz, N., Lehman, K., & Dirks, H. (2013). Breastfeeding and early white matter development: A cross-sectional study. Neuroimage, 82, 7786.Google Scholar
Der, G., Batty, G. D., & Deary, I. J. (2006). Effect of breast feeding on. intelligence in children: Prospective study, sibling pairs analysis, and meta-analysis. British Medical Journal, 333, 945948a.Google Scholar
Derr, R. L., Ye, X., Islas, M. U., Desideri, S., Saudek, C. D., & Grossman, S. A. (2009). Association between hyperglycemia and survival in patients with newly diagnosed glioblastoma. Journal of Clinical Oncology, 27, 10821086.Google Scholar
Desrumaux, C. M., Mansuy, M., & Lemaire, S. (2018). Brain vitamin E deficiency during development is associated with increased glutamate levels and anxiety in adult mice. Frontiers in Behavioral Neuroscience, 12, 310.Google Scholar
Dettling, A., Grass, H., & Schuff, A. (2004). Absinthe: Attention performance and mood under the influence of thujone. Journal of Studies on Alcohol, 65, 573581.Google Scholar
Devathasan, G., & Koh, C. (1982). Wernicke’s encephalopathy in prolonged fasting. The Lancet, 2, 11081109.Google Scholar
Devkota, S., Wang, Y., Musch, M. W., Leone, V., Fehlner-Peach, H., Nadimpalli, A., & Chang, E. B. (2012). Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature, 487, 104108.Google Scholar
Devore, E. E., Kang, J. H., Breteler, M. M. B., & Grodstein, F. (2012). Dietary intakes of berries and flavonoids in relation to cognitive decline. Annals of Neurology, 72, 135143.Google Scholar
Devore, E. E., Stampfer, M. J., Breteler, M. M., Rosner, B., Kang, J. H., Okereke, O., & Grodstein, F. (2009). Dietary fat intake and cognitive decline in women with type 2 diabetes. Diabetes Care, 32, 635640.Google Scholar
Dhir, S., Tarasenko, M., Napoli, E., & Giulivi, C. (2019). Neurological, psychiatric, and biochemical aspects of thiamine deficiency in children and adults. Frontiers in Psychiatry, 10, 207.Google Scholar
Dias, G. P., Cavegn, N., Nix, A., do Nascimento Bevilaqua, M. C., Stangl, D., Zainuddin, M. S., & Thuret, S. (2012). The role of dietary polyphenols on adult hippocampal neurogenesis: Molecular mechanisms and behavioural effects on depression and anxiety. Oxidative Medicine & Cellular Longevity, 2012, 541971.Google Scholar
Dick, D. M., & Beirut, L. J. (2006). The genetics of alcohol dependence. Current Psychiatry Reports, 8, 151157.Google Scholar
Dick, D. M., Smith, G., Olausson, P., Mitchell, S. H., Leeman, R. F., O’Malley, S. S., & Sher, K. (2010). Understanding the construct of impulsivity and its relationship to alcohol use disorders. Addiction Biology, 15, 217226.Google Scholar
Dickey, R. W., & Plakas, S. M. (2010). Ciguatera: A public health perspective. Toxicon, 56, 123136.Google Scholar
Diethelm, K., Remer, T., Jilani, H., Kunz, C., & Buyken, A. E. (2011). Associations between the macronutrient composition of the evening meal and average daily sleep duration in early childhood. Clinical Nutrition, 30, 640646.Google Scholar
Dietler, M. (2006). Alcohol: Anthropological/archaeological perspectives. Annual Review of Anthropology, 35, 229249.Google Scholar
Dinan, T. G., Stanton, C., Long-Smith, C., Kennedy, P., Cryan, J. F., Cowan, C. S., & Sanz, Y. (2019). Feeding melancholic microbes: MyNewGut recommendations on diet and mood. Clinical Nutrition, 38, 19952001.Google Scholar
Dinh, Q. N., Drummond, G. R., Sobey, C. G., & Chrissobolis, S. (2014). Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. Biomedical Research International, Article 406960.Google Scholar
Dixit, S., Bernardo, A., & Walker, J. M. (2015). Vitamin C deficiency in the brain impairs cognition, increases amyloid accumulation and deposition, and oxidative stress in APP/PSEN1 and normally aging mice. ACS Chemical Neuroscience, 6, 570581.Google Scholar
Dobo, M., & Czeizel, A. E. (1998). Long-term somatic and mental development of children after periconceptional multivitamin supplementation. European Journal of Pediatrics, 157, 719723.Google Scholar
Dobrovolny, J., Smrcka, M., & Bienertova-Vasku, J. (2018). Therapeutic potential of vitamin E and its derivatives in traumatic brain injury-associated dementia. Neurological Sciences, 39, 989998.Google Scholar
Dolan, L. C., Matulka, R. A., & Burdock, G. A. (2010). Naturally occurring food toxins. Toxins, 2, 22892332.Google Scholar
Donald, K. A., Eastman, E., Howells, F. M., Adnams, C., Riley, E. P., Woods, R. P., Narr, R. L., & Stein, D. J. (2015). Neuroimaging effects of prenatal alcohol exposure on the developing brain: A magnetic resonance imaging review. Acta Neuropsychiatrica, 27, 251269.Google Scholar
Doniger, G. M., Simon, E. S., & Zivotofsky, A. Z. (2006). Comprehensive computerised assessment of cognitive sequelae of a complete 12–16 hour fast. Behavioral Neuroscience, 120, 804816.Google Scholar
Donoso, F., Egerton, S., Bastiaanssen, T. F., Fitzgerald, P., Gite, S., Fouhy, F., & Cryan, J. F. (2020). Polyphenols selectively reverse early-life stress-induced behavioural, neurochemical and microbiota changes in the rat. Psychoneuroendocrinology, 116, 104673.Google Scholar
Dooling, E. C., Schoene, W. C., & Richardson, E. P. (1974). Hallervorden-Spatz syndrome. Archives of Neurology, 30, 7083.Google Scholar
Doweiko, H. E. (2009). Concepts of Chemical Dependency. Belmont, CA: Brooks/Cole.Google Scholar
Dowjat, W. K., Adayev, T., Kuchna, I., Nowicki, K., Palminiello, S., Hwang, Y. W., & Wegiel, J. (2007). Trisomy-driven overexpression of DYRK1A kinase in the brain of subjects with Down syndrome. Neuroscience Letters, 413, 7781.Google Scholar
Drenick, E. J., Swendseid, M. E., Blahd, W. H., & Tuttle, S. G. (1964). Prolonged starvation as treatment for severe obesity. Journal of the American Medical Association, 187, 100105.Google Scholar
Drewnowski, A., & Rehm, C. D. (2014). Consumption of added sugars among US children and adults by food purchase location and food source. American Journal of Clinical Nutrition, 100, 901907.Google Scholar
Driver, H. S., Shulman, I., Baker, F. C., & Buffenstein, R. (1999). Energy content of the evening meal alters nocturnal body temperature but not sleep. Physiology & Behavior, 68, 1723.Google Scholar
Drover, J. R., Felius, J., Hoffman, D. R., Castaneda, Y. S., Garfield, S., Wheaton, D. H., & Birch, E. E. (2012). A randomized trial of DHA intake during infancy: School readiness and receptive vocabulary at 2–3.5 years of age. Early Human Development, 88, 885891.Google Scholar
Duclos, M., Bouchet, M., Vettier, A., & Richard, D. (2005). Genetic differences in hypothalamic-pituitary-adrenal axis activity and food restriction-induced hyperactivity in three inbred strains of rats. Journal of Neuroendocrinology, 17, 740752.Google Scholar
Duke, A. A., Bégue, L., Bell, R., & Eisenlohr-Moul, T. (2013). Revisiting the serotonin-aggression relation in humans: A meta-analysis. Psychological Bulletin, 139, 11481172.Google Scholar
Dumetz, F., Buré, C., & Alfos, S.(2020). Normalization of hippocampal retinoic acid level corrects age-related memory deficits in rats. Neurobiology of Aging, 85, 110.Google Scholar
Duncan, G. G., Jenson, W. K., Fraser, R. I., & Cristofori, F. C. (1962). Correction and control of intractable obesity. Journal of the American Medical Association, 181, 309312.Google Scholar
Duvanel, C. B., Fawer, C. L., Cotting, J., Hohlfeld, P., & Matthieu, J. M. (1999). Long-term effects of neonatal hypoglycemia on brain growth and psychomotor development in small-for-gestational-age preterm infants. Journal of Pediatrics, 134, 492498.Google Scholar
Dyall, S. C. (2015). Long-chain omega-3 fatty acids and the brain: A review of the independent and shared effects of EPA, DPA, and DHA. Frontiers in Aging Neuroscience, 7, 52.Google Scholar
Dye, L., Boyle, N. B., Champ, C., & Lawton, C. (2017). The relationship between obesity and cognitive health and decline. Proceedings of the Nutrition Society, 76, 443454.Google Scholar
East, P., Delker, E., Lozoff, B., Delva, J., Castillo, M., & Gahagan, S. (2018). Associations among infant iron deficiency, childhood emotion and attention regulation, and adolescent problem behaviors. Child Development, 89, 593608.Google Scholar
East, P., Lozoff, B., Blanco, E., Delker, E., Delva, J., Encina, P., & Gahagan, S. (2017). Infant iron deficiency, child affect, and maternal unresponsiveness: Testing the long-term effects of functional isolation. Developmental Psychology, 53, 22332244.Google Scholar
Eckardt, M. J., File, S. E., Gessa, G. L., Grant, K. A., Guerri, C., Hoffman, P. L., Kalant, H., Koob, G. F., Li, T. -K., & Tabakoff, B. (1998). Effects of moderate alcohol consumption on the central nervous system. Alcoholism: Clinical and Experimental Research, 22, 9981040.Google Scholar
Eckert, E. D., Gottesman, I. J., Swigart, S. E., & Casper, R. C. (2018). A 57-year follow-up investigation and review of the Minnesota study on human starvation and its relevance to eating disorders. Archives of Psychology, 2, 119.Google Scholar
Edefonti, V., Bravi, F., & Ferraroni, M. (2017). Breakfast and behaviour in morning tasks: Facts or fads? Journal of Affective Disorders, 224, 1626.Google Scholar
Edefonti, V., Rosato, V., & Parpinel, M. (2014). The effect of breakfast composition and energy contribution on cognitive and academic performance: A systematic review. American Journal of Clinical Nutrition, 100, 626656.Google Scholar
Edington, J., & Kon, P. (1997). Prevalence of malnutrition in the community. Nutrition, 13, 238240.Google Scholar
Edlow, A. (2017). Maternal obesity and neurodevelopmental and psychiatric disorders in offspring. Prenatal Diagnosis, 37, 95110.Google Scholar
Edwards, L. M., Murray, A. J., Holloway, C. J., Carter, E. E., Kemp, G. J., Codreanu, I., & Clarke, K. (2011). Short-term consumption of a high-fat diet impairs whole-body efficiency and cognitive function in sedentary men. FASEB Journal, 25, 10881096.Google Scholar
Eilander, A., Gera, T., Sacdev, H., Transler, C., van der Knaap, H., Kok, F., & Osendarp, S. (2010). Multiple micronutrient supplementation for improving cognitive performance in children: Systematic review of randomized controlled trials. American Journal of Clinical Nutrition, 91, 115130.Google Scholar
Ekino, S., Susa, M., Ninomiya, T., Imamura, K., & Kitamura, T. (2007). Minamata disease revisited: An update on the acute and chronic manifestations of methyl mercury poisoning. Journal of the Neurological Sciences, 262, 131144.CrossRefGoogle ScholarPubMed
Elgen, I., Sommerfelt, K., & Ellertsen, B. (2003). Cognitive performance in a low birth weight cohort at 5 and 11 years of age. Pediatric Neurology, 29, 111116.Google Scholar
El-Rashidy, O., El-Baz, F., El-Gendy, Y., Khalaf, R., Reda, D., & Saad, K. (2017). Ketogenic diet versus gluten free casein free diet in autistic children: A case-control study. Metabolic Brain Disease, 32, 19351941.Google Scholar
Ely, A. V., Winter, S., & Lowe, M. R. (2013). The generation and inhibition of hedonically-driven food intake: Behavioral and neurophysiological determinants in healthy weight individuals. Physiology & Behavior, 121, 2534. pGoogle Scholar
Erol, A., & Karpyak, V. M. (2015). Sex and gender-related differences in alcohol use and its consequences: Contemporary knowledge and future research considerations. Drug & Alcohol Dependence, 156, 113.Google Scholar
Eschleman, M. M. (1996). Introductory Nutrition and Nutrition Therapy. Philadelphia, PA: Lippincott-Raven Publishers.Google Scholar
Escudero-Lourdes, C. (2016). Toxicity mechanisms of arsenic that are shared with neurodegenerative diseases and cognitive impairment: Role of oxidative stress and inflammatory responses. NeuroToxicology, 53, 223235.Google Scholar
Esgate, A., Groome, D., & Baker, K. (2005). An Introduction to Applied Cognitive Psychology. Madrid, ESP: Psychology Press.Google Scholar
Estruch, R. (2010). Anti-inflammatory effects of the Mediterranean diet: The experience of the PREDIMED study. Proceedings of the Nutrition Society, 69, 333340.Google Scholar
Estruch, R., Ros, E., Salas-Salvado, J., Covas, M. I., Corella, D., & Aros, F.(2018). Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. New England Journal of Medicine, 378, e34.Google Scholar
European Food Safety Authority. (2010). Scientific opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA Journal, 8, 1461.Google Scholar
Evangeliou, A., Vlachonikolis, I., Mihailidou, H., Spilioti, M., Skarpalezou, A., Makaronas, N., & Smeitink, J. (2003). Application of a ketogenic diet in children with autistic behavior: Pilot study. Journal of Child Neurology, 18, 113118.Google Scholar
Eveleigh, E. R., Coneyworth, L. J., Avery, A., & Welham, S. J. M. (2020). Vegans, vegetarian, and omnivores: How does dietary choice influence iodine intake? A systematic review. Nutrients, 12, 1606.Google Scholar
Evenhouse, E., & Reilly, S. (2005). Improved estimates of the benefits of breastfeeding using sibling comparisons to reduce selection bias. Health Services Research, 40, 17811802.Google Scholar
Exley, C. (2017). Aluminum should now be considered a primary etiological factor in Alzheimer’s disease. Journal of Alzheimer’s Disease Reports, 1, 2325.Google Scholar
Exon, J. H. (2006). A review of the toxicology of acrylamide. Journal of Toxicology and Environmental Health, 9, 397412.Google Scholar
Fagerberg, C. R., Taylor, A., & Distelmaier, F. (2020). Choline transporter-like I deficiency causes a new type of childhood-onset neurodegeneration. Brain, 143, 94111.Google Scholar
Fanelli, D. (2018). Is science really facing a reproducibility crisis, and do we need it to? Proceedings of the National Academy of Sciences of the United States of America, 115, 26282631.Google Scholar
Farez, M. F., Fiol, M. P., Gaitán, M. I., Quintana, F. J., & Correale, J. (2015). Sodium intake is associated with increased disease activity in multiple sclerosis. Journal of Neurology, Neurosurgery & Psychiatry, 86, 2631.Google Scholar
Farhat, G., Lees, E., Macdonald-Clarke, C., & Amirabdollahian, F. (2019). Inadequacies of micronutrient intake in normal weight and overweight young adults aged 18-25 years: A cross-sectional study. Public Health, 167, 7077.Google Scholar
Farquharson, J., Cockburn, F., Patrick, W. A., Jamieson, E. C., & Logan, R. W. (1992). Infant cerebral cortex phospholipid fatty-acid composition and diet. The Lancet, 340, 810813.Google Scholar
Fattal, I., Friedmann, N., & Fattal-Valevski, A. (2011). The crucial role of thiamine in the development of syntax and lexical retrieval: A study of infantile thiamine deficiency. Brain, 134, 17201739.Google Scholar
Faulkner, P., & Deakin, J. F. W. (2014). The role of serotonin in reward, punishment, and behavioural inhibition in humans: Insights from studies with acute tryptophan depletion. Neuroscience & Biobehavioral Reviews, 46, 365378.Google Scholar
Favaro, A., Rodella, F. C., & Santonastaso, P. (2000). Binge eating and eating attitudes among Nazi concentration camp survivors. Psychological Medicine, 30, 463466.Google Scholar
Fávaro-Moreira, N. C., Krausch-Hofmann, S., & Matthys, C. (2016). Risk factors for malnutrition in older adults: A systematic review of the literature based on longitudinal data. Advances in Nutrition, 7, 507522.CrossRefGoogle ScholarPubMed
Fejzo, M., Poursharif, B., Korst, L., Munch, S., MacGibbon, K., Romero, R., & Goodwin, T. (2009). Symptoms and pregnancy outcomes associated with extreme weight loss among women with Hyperemesis Gravidarum. Journal of Women’s Health, 18, 19811987.Google Scholar
Feldman, R. S., Meyer, J. S., & Quenzer, L. F. (1997). Principles of Neuropsychopharmacology. Sunderland, MA: Sinauer Associates, Inc., Publishers.Google Scholar
Ferguson, S. A., Berry, K. J., Hansen, D. K., Wall, K. S., White, G., & Antony, A. C. (2005). Behavioral effects of prenatal folate deficiency in mice. Birth Defects Research A: Clinical and Molecular Teratology, 73, 249252.Google Scholar
Ferland, G. (2012). Vitamin K, an emerging nutrient in brain function. BioFactors, 38, 151157.CrossRefGoogle ScholarPubMed
Ferland, G., Feart, C., & Presse, N. (2016). Vitamin K antagonists and cognitive function in older adults: The Three-City Cohort Study. Journals of Gerontology, 71, 13561362.Google Scholar
Fernandez-Aranda, F., Karwautz, A., & Treasure, J. (2018). Food addiction: A transdiagnostic construct of increasing interest. European Eating Disorders Review, 26, 536540.Google Scholar
Fernstrom, J. D. (2013). Large neutral amino acids: Dietary effects on brain neurochemistry and function. Amino Acids, 45, 419430.Google Scholar
Fernstrom, J. D., & Wurtman, R. J. (1971). Brain serotonin content: Increase following ingestion of carbohydrate diet. Science, 174, 10231025.Google Scholar
Ferré, S. (2016). Mechanisms of the psychostimulant effects of caffeine: Implications for substance use disorders. Psychopharmacology, 233 19631979.Google Scholar
Fessler, D. M. T. (2003). The implications of starvation induced psychological changes for the ethical treatment of hunger strikers. Psychiatric Ethics, 29, 243247.Google Scholar
Fichter, M., Pirke, K., & Holsboer, F. (1986). Weight loss causes neuroendocrine disturbances: Experimental study in healthy starving subjects. Psychiatry Research, 17, 6172.Google Scholar
Finkelstein, Y., Markowitz, M. E., & Rosen, J. F. (1998). Low-level lead-induced neurotoxicity in children: An update on central nervous system effects. Brain Research Reviews, 27, 168176.Google Scholar
Fiocco, A. J., Shatenstein, B., Ferland, G., Payette, H., Belleville, S., Kergoat, M. J., & Greenwood, C. E. (2012). Sodium intake and physical activity impact cognitive maintenance in older adults: The NuAge Study. Neurobiology of Aging, 33, e821–828.CrossRefGoogle ScholarPubMed
Fishman, J. B., Rubin, J. B., Handrahan, J. V., Connor, J. R., & Fine, R. E. (1987). Receptor-mediated transcytosis of transferrin across the blood-brain barrier. Journal of Neuroscience Research, 18, 299304.Google Scholar
Fisler, J. S., & Drenick, E. J. (1987). Starvation and semistarvation diets in the management of obesity. Annual Review of Nutrition, 7, 465484.Google Scholar
Fitzgerald, K. C., Tyry, T., Salter, A., Cofield, S. S., Cutter, G., Fox, R., & Marrie, R. A. (2018). Diet quality is associated with disability and symptom severity in multiple sclerosis. Neurology, 90, e1e11.Google Scholar
Flint, R. W., & Turek, C. (2003). Glucose effects on a continuous performance test of attention in adults. Behavioural Brain Research, 142, 217228.Google Scholar
Ford, A. H., & Almeida, O. P. (2019). Effect of vitamin B supplementation on cognitive function in the elderly: A systematic review and meta-analysis. Drugs & Aging, 36, 419434.Google Scholar
Förstera, B., Castro, P. A., Moraga-Cid, G., & Aguayo, L. G. (2016). Potentiation of gamma aminobutyric acid receptors (GABAAR) by ethanol: How are inhibitory receptors affected? Frontiers in Cellular Neuroscience, 10, e00114.Google Scholar
Forzano, L. B., Chelonis, J. J., Casey, C., Forward, M., Stachowiak, J. A., & Wood, J. (2010). Self-control and impulsiveness in nondieting adult human females: Effects of visual food cues and food deprivation. The Psychological Record, 60, 587608.Google Scholar
Foster, G. D., Wadden, T. A., Peterson, F. J., Letizia, K. A., Bartlett, S. J., & Conill, A. M. (1992). A controlled comparison of three very-low-calorie diets: Effects on weight, body composition, and symptoms. The American Journal of Clinical Nutrition, 55, 811817.Google Scholar
Foster, J. K., Lidder, P. G., Sunram, S. I. (1998). Glucose and memory: Fractionation of enhancement effects? Psychopharmacology, 137, 259270.Google Scholar
Franca, T. F., & Monserrat, J. M. (2018). Reproducibility crisis in science or unrealistic expectations? EMBO Reports, 19, e46008.Google Scholar
Francis, H. M., & Stevenson, R. J. (2011). Higher reported saturated fat and refined sugar intake is associated with reduced hippocampal-dependent memory and sensitivity to interoceptive signals. Behavioral Neuroscience, 125, 943955.Google Scholar
Frank, G. K., Bailer, U. F., Henry, S., Wagner, A., & Kaye, W. H. (2004). Neuroimaging studies in eating disorders. CNS Spectrums, 9, 539548.Google Scholar
Frank, S., Veit, R., & Sauer, H. (2016). Dopamine depletion reduces food-related reward activity independent of BMI. Neuropsychopharmacology, 41, 15511559.Google Scholar
Freeland-Graves, J. H., Sachdev, P. K., Binderberger, A. Z., & Sosanya, M. E. (2020). Global diversity of dietary intakes and standards for zinc, iron, and copper. Journal of Trace Elements in Medicine & Biology, 61, 126515.Google Scholar
Fretham, S. J. B., Carlson, E. S., & Georgieff, M. K. (2011). The role of iron in learning and memory. Advances in Nutrition, 2, 112121.Google Scholar
Friedli, N., Stanga, Z., & Sobotka, L. (2017). Revisiting the refeeding syndrome: Results of a systematic review. Nutrition, 35, 151160.Google Scholar
Fries, E., Green, P., & Bowen, D. J. (1995). What did I eat yesterday? Determinants of accuracy in 24-hour food memories. Applied Cognitive Psychology, 9, 143155.Google Scholar
Frisardi, V., Panza, F., Seripa, D., Imbimbo, B. P., Vendemiale, G., Pilotto, A., & Solfrizzi, V. (2010a). Nutraceutical properties of Mediterranean diet and cognitive decline: Possible underlying mechanisms. Journal of Alzheimer’s Disease, 22, 715740.CrossRefGoogle ScholarPubMed
Frisardi, V., Solfrizzi, V., & Capurso, C. (2010b). Aluminum in the diet and Alzheimer’s disease: From current epidemiology to possible disease-modifying treatment. Journal of Alzheimer’s Disease, 20, 1730.CrossRefGoogle ScholarPubMed
Frodl, T., & O’Keane, V. (2013). How does the brain deal with cumulative stress? A review with focus on developmental stress, HPA axis function and hippocampal structure in humans. Neurobiology of Disease, 52, 2437.Google Scholar
Frydman-Marom, A., Levin, A., Farfara, D., Benromano, T., Scherzer-Attali, R., Peled, S., & Ovadia, M. (2011). Orally administrated cinnamon extract reduces beta-amyloid oligomerization and corrects cognitive impairment in Alzheimer’s disease animal models. PLoS One, 6, e16564.Google Scholar
Fuglset, T. S., Endestad, T., Landrø, N. I., & , O. (2015). Brain structure alterations associated with weight changes in young females with anorexia nervosa: A case series. Neurocase, 21, 169177.Google Scholar
Fukui, K., Nakamura, K., & Shirai, M. (2015). Long-term vitamin E-deficient mice exhibit cognitive dysfunction via elevation of brain oxidation. Journal of Nutritional Neuroscience & Vitaminology, 61, 362368.Google Scholar
Fukui, K., Omoi, N.-O., Hayasaka, T., Shinnkai, T., Suzuki, S., Abe, K., & Urano, S. (2002). Cognitive impairment of rats caused by oxidative stress and aging, and its prevention by vitamin E. Annals of the New York Academy of Sciences, 959, 275284.Google Scholar
Fusar-Poli, L., Gabbiadini, A., Ciancio, A., Vozza, L., Signorelli, M. S., & Aguglia, E. (2021). The effect of cocoa-rich products on depression, anxiety, and mood: A systematic review and meta-analysis. Critical Reviews in Food Science & Nutrition, 113.Google Scholar
Gabbai, , Lisbonne, , & Pourquier, . (1951). Ergot poisoning at Pont St. Esprit. British Medical Journal, 2, 650651.Google Scholar
Gailiot, M. T., & Baumeister, R. F. (2007). The physiology of willpower: Linking blood glucose to self-control. Personality & Social Psychology Review, 11, 303327Google Scholar
Gailliot, M. T., Baumeister, R. F., & DeWall, C. N. (2007). Self-control relies on glucose as a limited energy source: Willpower is more than a metaphor. Journal of Personality & Social Psychology, 92, 325336.Google Scholar
Galioto, R., & Spitznagel, M. B. (2016). The effects of breakfast and breakfast composition on cognition in adults. Advances in Nutrition, 7, 567S589S.Google Scholar
Gano, L. B., Patel, M., & Rho, J. M. (2014). Ketogenic diets, mitochondria, and neurological diseases. Journal of Lipid Research, 55, 22112228.Google Scholar
Gao, X., Chen, H., Fung, T. T., Logroscino, G., Schwarzschild, M. A., Hu, F. B., & Ascherio, A. (2007). Prospective study of dietary pattern and risk of Parkinson disease. American Journal of Clinical Nutrition, 86, 14861494.Google Scholar
Gao, Y., Sheng, C., Xie, R. H., Sun, W., Asztalos, E., Moddemann, D., & Wen, S. W. (2016). New perspective on impact of folic acid supplementation during pregnancy on neurodevelopment/autism in the offspring children – A systematic review. PLoS One, 11, e0165626.Google Scholar
Garcia-Aloy, M., Rabassa, M., Casas-Agustench, p., Hidalgo-Liberona, N., Llorach, R., & Andres-Lacueva, C. (2017). Novel strategies for improving dietary exposure assessment: Multiple-data fusion is a more accurate measure than the traditional single-biomarker approach. Trends in Food Science & Technology, 69, 220229.Google Scholar
Gashu, D., Stoecker, B. J., & Bougma, K. (2016). Stunting, selenium deficiency and anemia are associated with poor cognitive performance in preschool children from rural Ethiopia. Nutrition Journal, 15, 38.Google Scholar
Gasior, M., Rogawski, M. A., & Hartman, A. L. (2006). Neuroprotective and disease-modifying effects of the ketogenic diet. Behavioural Pharmacology, 17, 431439.Google Scholar
Gasperi, V., Sibilano, M., Savini, I., & Catani, M. V. (2019). Niacin in the central nervous system: An update of biological aspects and clinical applications. International Journal of Molecular Sciences, 20, 974.Google Scholar
Ge, Q., Wang, Z., Wu, Y., Huo, Q., Qian, Z., Tian, Z., & Han, J. (2017). High salt diet impairs memory-related synaptic plasticity via increased oxidative stress and suppressed synaptic protein expression. Molecular Nutrition & Food Research, 61, Article 1700134.Google Scholar
Gearhardt, A. H., Corbin, W. R., & Brownell, K. D. (2009). Preliminary validation of the Yale Food Addiction Scale. Appetite, 52, 430436.Google Scholar
Gearhardt, A. N., Yokum, S., Orr, P. T., Stice, E., Corbin, W. R., & Bronwell, K. D. (2011). Neural correlates of food addiction. Archives of General Psychiatry, 68, 808816.Google Scholar
Gemming, L., Utter, J., & Mhurchu, C. N. (2015). Image-assisted dietary assessment: A systematic review of the evidence. Journal of the Academy of Nutrition & Dietetics, 115, 6477.Google Scholar
Geng, F. J., Mai, X. Q., Zhan, J. Y., Xu, L., Zhao, Z. Y., Georgieff, M., & Lozoff, B. (2015). Impact of fetal-neonatal iron deficiency on recognition memory at 2 months of age. Journal of Pediatrics, 167, 12261232.Google Scholar
Georgieff, M. K. (2017). Iron assessment to protect the developing brain. American Journal of Clinical Nutrition, 106, 1588s1593s.CrossRefGoogle ScholarPubMed
Georgieff, M. K., Brunette, K. E., & Tran, P. V. (2015). Early life nutrition and neural plasticity. Development & Psychopathology, 27, 411423.Google Scholar
Ghassabian, A., & Trasande, L. (2018). Disruption in thyroid signalling pathway: A mechanism for the effect of endocrine-disrupting chemicals on child neurodevelopment. Frontiers in Endocrinology, 9, 204.Google Scholar
Gibbs, M. E., & Summers, R. J. (2002). Effects of glucose and 2-deoxyglucose on memory formation in the chick: Interaction with beta(3)-adrenoceptor agonists. Neuroscience, 114, 6979.Google Scholar
Gietzen, D. W., & Aja, S. M. (2012). The brain’s response to an essential amino acid-deficient diet and the circuitous route to a better meal. Molecular Neurobiology, 46, 332348.Google Scholar
Gietzen, D. W., Hao, S., & Anthony, T. G. (2007). Mechanisms of food intake repression in indispensable amino acid deficiency. Annual Review of Nutrition, 27, 6378.Google Scholar
Gietzen, D. W., & Rogers, Q. R. (2006). Nutritional homeostasis and indispensable amino acid sensing: A new solution to an old puzzle. Trends in Neurosciences, 29, 9199.Google Scholar
Gilbert, J., & Burger, K. (2016). Neuroadaptive processes associated with palatable food intake: Present data and future directions. Current Opinion in Behavioral Sciences, 9, 9196.Google Scholar
Giles, G. E., Avanzato, B. F., Mora, B., Jurdak, N. A., & Kanarek, R. B. (2018). Sugar intake and expectation effects on cognition and mood. Experimental and Clinical Psychopharmacology, 26, 302309.Google Scholar
Giles, G. E., Mahoney, C. R., & Caruso, C., (2019). Two days of calorie deprivation impairs high level cognitive processes, mood, and self-reported exertion during aerobic exercise: A randomized double-blind, placebo-controlled study. Brain & Cognition, 132, 3340.Google Scholar
Gill, O. N., Spencer, Y., & Richard-Loendt, A., (2013). Prevalent abnormal prion protein in human appendixes after bovine spongiform encephalopathy epizootic: Large scale survey. British Medical Journal, 347, 112.Google Scholar
Giriko, C. A., Andreoli, C. A., Mennitti, L. V., Hosoume, L. F., Souto Tdos, S., Silva, A. V., & Mendes-da-Silva, C. (2013). Delayed physical and neurobehavioral development and increased aggressive and depression-like behaviors in the rat offspring of dams fed a high-fat diet. International Journal of Developmental Neuroscience, 31, 731739.Google Scholar
Global Burden of Disease 2016 Alcohol Collaborators. (2018). Alcohol use and burden for 195 countries and territories, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet, 392, 10151035.Google Scholar
Goedert, M., Clavaguera, F., & Tolnay, M. (2010). The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends in Neurosciences, 33, 317325.Google Scholar
Gold, P. E. (1986). Glucose modulation of memory storage processing. Behavioral & Neural Biology, 45, 342349.Google Scholar
Gold, P. E. (1995). Role of glucose in regulating the brain and cognition. American Journal of Clinical Nutrition, 61, 987S995S.Google Scholar
Gold, P. E. (2014). Regulation of memory – From the adrenal medulla to liver to astrocytes to neurons. Brain Research Bulletin, 105, 2535.Google Scholar
Goldstone, A. P., Prechtl de Hermandez, C. G., & Beaver, J. D. (2009). Fasting biases brain reward systems toward high-calorie foods. European Journal of Neuroscience, 30, 16251635.Google Scholar
Goodlett, C. R., & Horn, K. H. (2001). Mechanisms of alcohol-induced damage to the developing nervous system. Alcohol Research & Health, 25, 175184.Google Scholar
Gordon, E. L., Ariel-Donges, A. H., Bauman, V., & Merlo, L. J. (2018). What is the evidence for ‘food addiction’? A systematic review. Nutrients, 10, 477.Google ScholarPubMed
Gorgolewski, K. J., & Poldrack, R. A. (2016). A practical guide for improving transparency and reproducibility in neuroimaging research. PLoS Biology, 14, e1002506.Google Scholar
Gosselin, R. D. (2020). Statistical analysis must improve to address the reproducibility crisis: The ACcess to transparent statistics (ACTS) call to action. BioEssays, 42, e1900189.Google Scholar
Gould, E., & Tanapat, P. (1999). Stress and hippocampal neurogenesis. Biological Psychiatry, 46, 14721479.Google Scholar
Gowda, U., Mutowo, M. P., Smith, B. J., Wlulka, A., & Renzaho, A. M. N. (2015). Vitamin D supplementation to reduce depression in adults: Meta-analysis of randomized controlled trials. Nutrition, 31, 421429.Google Scholar
Grandjean, P., Weihe, P., & Jørgensen, P. J. (1992). Impact of maternal seafood diet on fetal exposure to mercury, selenium, and lead. Archives of Environmental & Occupational Health, 47, 185195.Google Scholar
Granholm, A. C., Bimonte-Nelson, H. A., Moore, A. B., Nelson, M. E., Freeman, L. R., & Sambamurti, K. (2008). Effects of a saturated fat and high cholesterol diet on memory and hippocampal morphology in the middle-aged rat. Journal of Alzheimer’s Disease, 14, 133145.Google Scholar
Grant, C. L., Dorrian, J., & Coates, A. M.(2017). The impact of meal timing on performance, sleepiness, gastric upset, and hunger during simulated night shift. Industrial Health, 55, 423436.Google Scholar
Grantham-McGregor, S., Cheung, Y., Cueto, S., Glewwe, P., Richter, L., Strupp, B., & the International Child Development Group. (2007). Developmental potential in the first 5 years for children in developing countries. The Lancet, 369, 6070.Google Scholar
Gratwicke, J., Jahanshahi, M., & Foltynie, T. (2015). Parkinson’s disease dementia: A neural networks perspective. Brain, 138, 14541476.Google Scholar
Green, M. W., Elliman, N. A., & Kretsch, M. J. (2005). Weight loss strategies, stress, and cognitive function: Supervised versus unsupervised dieting, Psychoneuroendocrinology, 30, 908918.Google Scholar
Green, M. W., Elliman, N. A., & Rogers, P. J. (1997). Impaired cognitive processing in dieters: Failure of attention focus or resource capacity limitation? British Journal of Health Psychology, 2, 259267.Google Scholar
Green, M. W., & Rogers, P. J. (1995). Impaired cognitive functioning during spontaneous dieting. Psychological Medicine, 25, 10031010.Google Scholar
Green, M. W., & Rogers, P. J. (1998). Impairments in working memory associated with spontaneous dieting behaviour. Psychological Medicine, 28, 10631070.Google Scholar
Green, M. W., Rogers, P. J., & Elliman, N. A. (2000). Dietary restraint and addictive behaviors: The generalizability of Tiffany’s Cue Reactivity Model. International Journal of Eating Disorders, 27, 419427.Google Scholar
Green, M. W., Rogers, P. J., Elliman, N. A., & Gatenby, S. J. (1994). Impairment of cognitive processing associated with dieting and high levels of dietary restraint. Physiology & Behavior, 55, 447452.Google Scholar
Green, M. W., Taylor, M. A., Elliman, N. A., & Rhodes, O. (2001). Placebo expectancy effects in the relationship between glucose and cognition. British Journal of Nutrition, 86, 173179.Google Scholar
Green, R., Allen, L. H., & Bjørke-Monsen, A. -L.(2017). Vitamin B12 deficiency. Nature Reviews Disease Primers, 3, 17040.Google Scholar
Greenwood, C. E., & Winocur, G. (1990). Learning and memory impairment in rats fed a high saturated fat diet. Behavioral & Neural Biology, 53, 7487.Google Scholar
Greenwood, C. E., & Winocur, G. (1996). Cognitive impairment in rats fed high-fat diets: A specific effect of saturated fatty-acid intake. Behavioral Neuroscience, 110, 451459.Google Scholar
Greminger, A. R., Lee, D. L., Shrager, P., & Mayer-Proschel, M. (2014). Gestational iron deficiency differentially alters the structure and function of white and gray matter brain regions of developing rats. Journal of Nutrition, 144, 10581066.Google Scholar
Grimm, P. (2010). Social desirability bias. In Sheth, J. & Malhotra, N. (Eds.) Wiley International Encyclopedia of Marketing. London: Wiley. https://doi.org/10.1002/9781444316568.wiem02057Google Scholar
Grosso, G., Godos, J., Galvano, F., & Giovannucci, E. L. (2017). Coffee, caffeine, and health outcomes: An umbrella review. Annual Review of Nutrition, 37, 131156.Google Scholar
Grosso, G., Pajak, A., Marventano, S., Castellano, S., Galvano, F., Bucolo, C., & Caraci, F. (2014). Role of omega-3 fatty acids in the treatment of depressive disorders: A comprehensive meta-analysis of randomized clinical trials. PLoS One, 9, Article 9605.Google Scholar
Growdon, J. H., Melamed, E., Logue, M., Hefti, F., & Wurtman, R. J. (1982). Effects of oral L-tyrosine administration of CSF tyrosine and homovanillic acid levels in patients with Parkinson’s disease. Life Sciences, 30, 827832.Google Scholar
Gu, Y., Brickman, A. M., Stern, Y., Habeck, C. G., Razlighi, Q. R., Luchsinger, J. A., & Scarmeas, N. (2015). Mediterranean diet and brain structure in a multiethnic elderly cohort. Neurology, 85, 17441751.Google Scholar
Gu, Y., Nieves, J. W., Stern, Y., Luchsinger, J. A., & Scarmeas, N. (2010). Food combination and Alzheimer disease risk: A protective diet. Archives of Neurology, 67, 699706.Google Scholar
Guilarte, T. R. (1993). Vitamin B6 and cognitive development: Recent research findings from human and animal studies. Nutrition Reviews, 51, 193198.Google Scholar
Guisinger, S. (2003). Adapted to flee famine: Adding and evolutionary perspective on anorexia nervosa. Psychological Review, 110, 745761.Google Scholar
Gunduz, A., Turedi, S., Russell, R. M., & Ayaz, F. A. (2008). Clinical review of grayanotoxin/mad honey poisoning past and present. Clinical Toxicology, 46, 437442.Google Scholar
Guo, C. P., Wei, Z., Huang, F., Qin, M., Li, X., Wang, Y. M., & Wang, X. C. (2017). High salt induced hypertension leads to cognitive defect. Oncotarget, 8, 9578095790.Google Scholar
Gupta, A., & Lutsenko, S. (2009). Human copper transporters: Mechanism, role in human disease and therapeutic potential. Future Medicinal Chemistry, 1, 11251142.Google Scholar
Gupta, C. C., Dorrian, J., & Grant, C. L. (2017). It’s not just what you eat but when: The impact of eating a meal during simulated shift work on driving performance. Chronobiology International, 34, 6677.Google Scholar
Gupta, L., Gupta, R. K., & Gupta, P. K. (2016). Assessment of brain cognitive functions in patients with vitamin B12 deficiency using resting state functional MRI: A longitudinal study. Magnetic Resonance Imagery, 34, 191196.Google Scholar
Gutiérrez, A., González-Gross, M., Delgado, M., & Castillo, M. J. (2001). Three days fast in sportsmen decreases physical work capacity but not strength or perception-reaction time. International Journal of Sport Nutrition & Exercise Metabolism, 11, 420429.Google Scholar
Guzmán-Gerónimo, H.-G. A.-M., Meza-Alvarado, E., Vargas-Moreno, I., & Herrera-Meza, S. Effect of blackberry juice (Rubus fruticosus L.) on anxiety-like behaviour in Wistar rats. International Journal of Food Science & Nutrition, 70, 856867.Google Scholar
Hadgkiss, E. J., Jelinek, G. A., Weiland, T. J., Pereira, N. G., Marck, C. H., & van der Meer, D. M. (2015). The association of diet with quality of life, disability, and relapse rate in an international sample of people with multiple sclerosis. Nutritioinal Neuroscience, 18, 125136.Google Scholar
Hafermann, G. (1955). School fatigue and blood sugar change. Öffentlicher Gesundheitsdienst, 17, 1.Google Scholar
Hagger, M. S., Wood, C., Stiff, C., & Chatzisarantis, N. L. D. (2010). Ego depletion and the strength model of self-control: A meta-analysis. Psychological Bulletin, 136, 495525.Google Scholar
Hagmeyer, S., Haderspeck, J. C., & Grabrucker, A. M. (2015). Behavioral impairments in animal models for zinc deficiency. Frontiers in Behavioral Medicine, 8, 443.Google Scholar
Hales, C., & Barker, D. (1992). Type 2 diabetes mellitus: The thrifty phenotype hypothesis. Diabetologia, 35, 595601.Google Scholar
Hall, J. L., Gonder-Federick, L. A., Chewning, W. W., Silveira, J., & Gold, P. E. (1989). Glucose enhancement of performance of memory tests in young and aged humans. Neuropsychologia, 27, 11291138.Google Scholar
Hallberg, L. (2001). Perspectives on nutritional iron deficiency. Annual Review of Nutrition, 21, 121.Google Scholar
Hallström, H., & Thuvander, A. (1997). Toxicological evaluation of myristicin. Natural Toxins, 5, 186192.Google Scholar
Hamer, M., & Steptoe, A. (2012). Cortisol responses to mental stress and incident hypertension in healthy men and women. Journal of Clinical Endocrinology & Metabolism, 97, E29–34.Google Scholar
Hansen, N., Chaieb, L., Derner, M., Hampel, K., Elger, C., Surges, R., Staresina, B., Axmacher, N., & Fell, J. (2018). Memory encoding-related anterior hippocampal potentials are modulated by deep brain stimulation of the entorhinal area. Hippocampus, 28, 1217.Google Scholar
Hansen, S. N., Tveden-Nyborg, P., & Lykkesfeldt, J. (2014). Does vitamin C deficiency affect cognitive development and function? Nutrients, 6, 38183846.Google Scholar
Hantson, P., Duprez, T., & Mahieu, P. (1997). Neurotoxicity to the basal ganglia shown by magnetic resonance imaging (MRI) following poisoning by methanol and other substances. Journal of Toxicology: Clinical Toxicology, 35, 151161.Google Scholar
Hao, S., Avraham, Y. Mechoulam, R., & Berry, E. M. (2000). Low dose anandamide affects food intake, cognitive function, neurotransmitter and corticosterone levels in diet-restricted mice. European Journal of Pharmacology, 392, 147156.Google Scholar
Haque, A. M., Hashimoto, M., Katakura, M., Hara, Y., & Shido, O. (2008). Green tea catechins prevent cognitive deficits caused by A beta(1-40) in rats. Journal of Nutritional Biochemistry, 19, 619626.Google Scholar
Harada, M. (1995). Minamata disease: Methylmercury poisoning in Japan caused by environmental pollution. Critical Reviews in Toxicology, 25, 124.Google Scholar
Hardman, C. A., Rogers, P. J., Dallas, R., Scott, J., Ruddock, H. K., & Robinson, E. (2015). ‘Food addiction is real’. The effects of exposure to this message on self-diagnosed food addiction and eating behaviour. Appetite, 91, 179184.Google Scholar
Hargrave, S. L., Davidson, T. L., Zheng, W., & Kinzig, K. P. (2016). Western diets induce blood-brain barrier leakage and alter spatial strategies in rats. Behavioral Neuroscience, 130, 123135.Google Scholar
Hargrave, S. L., Jones, S., & Davidson, T. L. (2016). The outward spiral: A vicious cycle model of obesity and cognitive dysfunction. Current Opinion in Behavioral Sciences, 9, 4046.Google Scholar
Haring, B., Wu, C., Coker, L. H., Seth, A., Snetselaar, L., Manson, J. E., & Wassertheil-Smoller, S. (2016). Hypertension, dietary sodium, and cognitive decline: Results from the women’s health initiative memory study. American Journal of Hypertension, 29, 202216.CrossRefGoogle ScholarPubMed
Harrison, N. L., Skelly, M. J., Grosserode, E. K., Lowes, D. C., Zeric, T., Phister, S., & Salling, M. C. (2017). Effects of acute alcohol on excitability in the CNS. Neuropharmacology, 122, 3645.Google Scholar
Harvie, M. N., Pegington, M., & Mattson, M. P. (2011). The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: A randomised trial in young overweight women. International Journal of Obesity, 35, 714727.Google Scholar
Harvie, M., Wright, C., & Pegington, M.(2013). The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women. British Journal of Nutrition, 110, 15341547.Google Scholar
Hase, A., Jung, S. E., & aan het Rot, M. (2015). Behavioral and cognitive effects of tyrosine intake in healthy human adults. Pharmacology Biochemistry & Behavior, 113, 16.Google Scholar
Haslam, D. W., & James, W. P. T. (2005). Obesity. The Lancet, 366, 11971209Google Scholar
Hassan, A. M., Mancano, G., Kashofer, K., Frohlich, E. E., Matak, A., Mayerhofer, R., & Holzer, P. (2019). High-fat diet induces depression-like behaviour in mice associated with changes in microbiome, neuropeptide Y, and brain metabolome. Nutritional Neuroscience, 22, 877893.Google Scholar
Hassing, L., Wahlin, A., Winblad, B., & Backman, L. (1999). Further evidence on the effects of vitamin B-12 and folate levels on episodic memory functioning: A population-based study of healthy very old adults. Biological Psychiatry, 45, 14721480.Google Scholar
Hasz, L. A., & Lamport, M. A. (2012). Breakfast and adolescent academic performance: An analytical review of recent research. European Journal of Business & Social Sciences, 1, 6179.Google Scholar
Hauck, C., Cook, B., & Ellrott, T. (2020). Food addiction, eating addiction and eating disorders. Proceedings of the Nutrition Society, 79, 103112.Google Scholar
Hausser, J., Stahlecker, C., Mojzisch, A., Leder, A., Van Lange, P., & Faber, N. (2019). Acute hunger does not always undermine prosociality. Nature Communications, 10, 4733.Google Scholar
Hawkins, R. A., O’Kane, R. L., Simpson, I. A., & Viña, J. R. (2006). Structure of the blood-brain barrier and its role in the transport of amino acids. Journal of Nutrition, 136, 218S226S.Google Scholar
Hawks, S. R., Madanat, H. N., & Christley, H. S. (2008). Behavioral and biological associations of dietary restraint: A review of the literature. Ecology of Food & Nutrition, 47, 415449.Google Scholar
Hay, P. J., & Sachdev, P. (2011). Brain dysfunction in anorexia nervosa: Cause or consequence of under-nutrition? Current Opinion in Psychiatry, 24, 251256.Google Scholar
Hayden, K. E., Sandle, L. N., & Berry, J. L. (2015). Ethnicity and social deprivation contribute to vitamin D deficiency in an urban UK population. Journal of Steroid Biochemistry & Molecular Biology, 148, 253255.Google Scholar
He, Q., Xiao, L., Xue, G., Wong, S., Ames, S. L., Schembre, S. M., & Bechara, A. (2014). Poor ability to resist tempting calorie rich food is linked to altered balance between neural systems involved in urge and self-control. Nutrition Journal, 13, 92.Google Scholar
Health.gov. (2015). Australia’s Youth: Nutrition. www.aihw.gov.au/reports/children-youth/nutritionGoogle Scholar
Healy-Stoffel, M., & Levant, B. (2018). N-3 (Omega-3) fatty acids: Effects on brain dopamine systems and potential role in the etiology and treatment of neuropsychiatric disorders. CNS & Neurological Disorders-Drug Targets, 17, 216232.Google Scholar
Heaney, J. L., Phillips, A. C., & Carroll, D. (2012). Aging, health behaviors, and the diurnal rhythm and awakening response of salivary cortisol. Experimental Aging Research, 38, 295314.Google Scholar
Heath, C. A., Cooper, S. A., & Murray, K. (2010). Validation of diagnostic criteria for variant Creutzfeldt-Jakob disease. Annals of Neurology, 67, 761770.Google Scholar
Hebben, N., Corkin, S., Eichenbaum, H., & Shedlack, K. (1985). Diminished ability to interpret and report internal states after bilateral medial temporal resection: Case H.M. Behavioral Neuroscience, 99, 10311039.Google Scholar
Heeley, N., & Blouet, C. (2016). Central amino acid sensing in the control of feeding behavior. Frontiers in Endocrinology, 7, 148.Google Scholar
Heiderstadt, K. M., McLaughlin, R. M., Wright, D. C., Walker, S. E., & Gomez-Sanchez, C. E. (2000). The effect of chronic food and water restriction on open-field behaviour and serum corticosterone levels in rats. Laboratory Animals, 34, 2028.Google Scholar
Heikkila, K., Sacker, A., Kelly, Y., Renfrew, M. J., & Quigley, M. A. (2011). Breast feeding and child behaviour in the Millennium Cohort Study. Archives of Diseases of Childhood, 96, 635642.Google Scholar
Heinrichs, S. C. (2010). Dietary omega-3 fatty acid supplementation for optimizing neuronal structure and function. Molecular Nutrition & Food Research, 54, 447456.Google Scholar
Heinz, A. J., Beck, A., Meyer-Lindenberg, A., Sterzer, P., & Heinz, A. (2011). Cognitive and neurobiological mechanisms of alcohol-related aggression. Nature Reviews Neuroscience, 12, 400413.Google Scholar
Hellenbrand, W., Seidler, A., Boeing, H., Robra, B. P., Vieregge, P., Nischan, P., & Ulm, G. (1996). Diet and Parkinson’s disease. I: A possible role for the past intake of specific foods and food groups. Results from a self-administered food-frequency questionnaire in a case-control study. Neurology, 47, 636643.Google Scholar
Henderson, S. T., Vogel, J. L., Barr, L. J., Garvin, F., Jones, J. J., & Costantini, L. C. (2009). Study of the ketogenic agent AC-1202 in mild to moderate Alzheimer’s disease: A randomized, double-blind, placebo-controlled, multicenter trial. Nutrition Metabolism, 6, 31.Google Scholar
Heni, M., Kullmann, S., Preissl, H., Fritsche, A., & Häring, H. (2015). Impaired insulin action in the human brain: Causes and metabolic consequences. Nature Reviews Endocrinology, 11, 701711.Google Scholar
Hentze, H., & Ibsen, E. (2019). Abstract 90: The ‘reproducibility crisis’ of animal studies in oncology – How did we get here, and how can we resolve it? Proceedings of the American Association for Cancer Research Annual Meeting 2019, 79.Google Scholar
Herbert, V. (1961). Experimental nutritional folate deficiency in man. Transactions of the Association of American Physicians, 75, 307320.Google Scholar
Herman, J. P., McKlveen, J. M., Ghosal, S., Kopp, B., Wulsin, A., Makinson, R., & Myers, B. (2016). Regulation of the hypothalamic-pituitary-adrenocortical stress response. Comparative Physiology, 6, 603621.Google Scholar
Herman, J. P., Ostrander, M. M., Mueller, N. K., & Figueiredo, H. (2005). Limbic system mechanisms of stress regulation: Hypothalamo-pituitary-adrenocortical axis. Progress in Neuropsychopharmacology & Biological Psychiatry, 29, 12011213.Google Scholar
Herrick, C. (2009). Shifting blame/selling health: Corporate social responsibility in the age of obesity. Sociology of Health & Illness, 31 5165.Google Scholar
Hewlett, P., Smith, A., & Lucas, E. (2009). Grazing, cognitive performance, and mood. Appetite, 52, 245248.Google Scholar
Heymsfield, S., Thomas, D., Nguyen, A., Peng, J., Martin, C., Shen, W., Strauss, B., Bosy-Westphal, A., & Muller, M. (2010). Voluntary weight loss: Systematic review of early phase body composition changes. Obesity Reviews, 12, e348e361.Google Scholar
Heywood, A., Oppenheimer, S., Heywood, P., & Jolley, D. (1989). Behavioral effects of iron supplementation in infants in Madang, Papua New Guinea. American Journal of Clinical Nutrition, 50, 630637.Google Scholar
Hiffler, L., Rakotoambinina, B., Lafferty, N., & Garcia, D. M. (2016). Thiamine deficiency in tropical pediatrics: New insights into a neglected but vital metabolic challenge. Frontiers in Neuroscience, 3, 16.Google Scholar
Higgs, S., & Donohoe, J. E. (2011). Focusing on food during lunch enhances lunch memory and decreases later snack intake. Appetite, 57, 202206.Google Scholar
Higgs, S., Williamson, A. C., & Attwood, A. S. (2008). Recall of recent lunch and its effect on subsequent snack intake. Physiology & Behavior, 94, 454462.Google Scholar
Hildebrandt, M. A., Hoffmann, C., Sherrill-Mix, S. A., Keilbaugh, S. A., Hamady, M., Chen, Y. Y., & Wu, G. D. (2009). High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology, 137, 17161724.Google Scholar
Hill, A. B. (1965). The environment and disease: Association or causation? Proceedings of the Royal Society of Medicine, 58, 295300.Google Scholar
Hill, A. F., Desbruslais, M., & Joiner, S. (1997). The same prion strain causes vCJD and BSE. Nature, 389, 448450.Google Scholar
Hill, A. J., & Heaton-Brown, L. (1994). The experience of food craving: A prospective investigation in healthy women. Journal of Psychosomatic Research, 38, 801814.Google Scholar
Hindmarch, T., Hotopf, M., & Owen, G. (2013). Depression and decision-making capacity for treatment or research: A systematic review. BMC Medical Ethics, 14, 54.Google Scholar
Hinterberger, M., & Fischer, P. (2013). Folate and Alzheimer: When time matters. Journal of Neural Transmission, 120, 211224.Google Scholar
Hipgrave, D. B., Chang, S., Li, X., & Wu, Y. (2016). Salt and sodium intake in China. Journal of the American Medical Association, 315, 703705.Google Scholar
Hipólito-Reis, J., Pereira, P. A., Andrade, J. P., & Cardoso, A. (2013). Prolonged protein deprivation differentially affects calretinin- and parvalbumin-containing interneurons in the hippocampal dentate gyrus of adult rats. Neuroscience Letters, 555, 154158.Google Scholar
Hirohata, M., Hasegawa, K., Tsutsumi-Yasuhara, S., Ohhashi, Y., Ookoshi, T., Ono, K., & Naiki, H. (2007). The anti-amyloidogenic effect is exerted against Alzheimer’s beta-amyloid fibrils in vitro by preferential and reversible binding of flavonoids to the amyloid fibril structure. Biochemistry, 46, 18881899.Google Scholar
Hise, M. A., Sullivan, D. K., Jacobsen, D. J., Johnson, S. L., & Donnelly, J. E. (2002). Validation of energy intake measurements determined from observer-recorded food records and recall methods compared with the doubly labelled water method in overweight and obese individuals. American Journal of Clinical Nutrition, 75, 263267.Google Scholar
Hoddinott, J., Malussio, J., Behrman, J., Flores, R., & Martorell, R. (2008). Effect of a nutrition intervention during early childhood on economic productivity in Guatemalan adults. The Lancet, 371, 411416.Google Scholar
Holloway, C. J., Cochlin, L. E., Emmanuel, Y., Murray, A., Codreanu, I., Edwards, L. M., & Clarke, K. (2011). A high-fat diet impairs cardiac high-energy phosphate metabolism and cognitive function in healthy human subjects. American Journal of Clinical Nutrition, 93, 748755.Google Scholar
Holmes, G. L., Yang, Y., Liu, Z., Cermak, J. M., Sarkisian, M. R., Stafstrom, C. E., & Blusztajn, J. K. (2002). Seizure-induced memory impairment is reduced by choline supplementation before or after status epilepticus. Epilepsy Research, 48, 313.Google Scholar
Holmes, M. C., French, K. L., & Secki, J. R. (1997). Dysregulation of diurnal rhythms of serotonin 5-HT2C and corticosteroid receptor gene expression in the hippocampus with food restriction and glucocorticoids. Journal of Neuroscience, 17, 40564065.Google Scholar
Holmes, P., James, K. A., & Levy, L. S. (2009). Is low-level environmental mercury exposure of concern to human health? Science of the Total Environment, 408, 171182.Google Scholar
Holt, N. R., & Nickson, C. P. (2018). Severe methanol poisoning with neurological sequalae: Implications for diagnosis and management. Internal Medicine Journal, 48, 335339.Google Scholar
Hone-Blanchet, A., & Fecteau, S. (2014). Overlap of food addiction and substance use disorders definitions: Analysis of animal and human studies. Neuropharmacology, 85, 8190.Google Scholar
Hooijmans, C. R., Van der Zee, C. E., Dederen, P. J., Brouwer, K. M., Reijmer, Y. D., van Groen, T., & Kiliaan, A. J. (2009). DHA and cholesterol containing diets influence Alzheimer-like pathology, cognition and cerebral vasculature in APPswe/PS1dE9 mice. Neurobiology of Disease, 33, 482498.Google Scholar
Hopkins, L. C., Sattler, M., Steeves, E. A., Jones-Smith, J. C., & Gittelsohn, J. (2017). Breakfast consumption frequency and its relationship to overall diet quality, using healthy eating index 2010, and body mass index among adolescence in a low-income urban setting. Ecology of Food & Nutrition, 56, 297311.Google Scholar
Hoppe, J. B., Coradini, K., Frozza, R. L., Oliveira, C. M., Meneghetti, A. B., Bernardi, A., & Salbego, C. G. (2013). Free and nanoencapsulated curcumin suppress beta-amyloid-induced cognitive impairments in rats: Involvement of BDNF and Akt/GSK-3 beta signaling pathway. Neurobiology of Learning & Memory, 106, 134144.Google Scholar
Horsager, C., Færk, E., Lauritsen, M. B., & Østergaard, S. D. (2020). Validation of the Yale Food Addiction Scale 2.0 and estimation of the population prevalence of food addiction. Clinical Nutrition, 39, 29172928.Google Scholar
Horvath, A., Lukasik, J., & Szajewska, H. (2017). Omega-3 fatty acid supplementation does not affect autism spectrum disorder in children: A systematic review and meta-analysis. Journal of Nutrition, 147, 367376.Google Scholar
Hosking, D. E., Eramudugolla, R., Cherbuin, N., & Anstey, K. J. (2019). MIND not Mediterranean diet related to 12-year incidence of cognitive impairment in an Australian longitudinal cohort study. Alzheimers Dement, 15, 581589.Google Scholar
Hoyland, A., Dye, L., & Lawton, C. L. (2009). A systematic review of the effect of breakfast on the cognitive performance of children and adolescents. Nutrition Research Reviews, 22, 220243.Google Scholar
Hoyland, A., Lawton, C. L., & Dye, L. (2008). Acute effects of macronutrient manipulations on cognitive test performance in healthy young adults: A systematic research review. Neuroscience & Biobehavioral Reviews, 32, 7285.Google Scholar
Hsu, T., & Kanoski, S. (2014). Blood-brain barrier disruption: Mechanistic links between Western diet consumption and dementia. Frontiers in Aging Neuroscience, 6, 88.Google Scholar
Hu, Z. G., Wang, H. D., Qiao, L., Yan, W., Tan, Q. F., & Yin, H. X. (2009). The protective effect of the ketogenic diet on traumatic brain injury-induced cell death in juvenile rats. Brain Injury, 23, 459465.Google Scholar
Hucke, S., Wiendl, H., & Klotz, L. (2016). Implications of dietary salt intake for multiple sclerosis pathogenesis. Multiple Sclerosis, 22, 133139.Google Scholar
Hughes, C. A., Ward, M., & Tracey, F. (2017). B-vitamin intake and biomarker status in relation to cognitive decline in healthy older adults in a 4-year follow-up study. Nutrients, 9, 53.Google Scholar
Hulsken, S., Märtin, A., Mohajeri, M. H., & Homberg, J. R. (2013). Food-derived serotonergic modulators: Effects on mood and cognition. Nutrition Research Reviews, 26, 223234.Google Scholar
Hunt, C. D., & Id so, J. P. (1995). Moderate copper deprivation during gestation and lactation affects dentate gyrus and hippocampal maturation in immature male rats. Journal of Nutrition, 125, 27002710.Google Scholar
Hurley, S. W., & Johnson, A. K. (2015). The biopsychology of salt hunger and sodium deficiency. Pflügers Archive: European Journal of Physiology, 467, 445456.Google Scholar
Hussin, N. M., Shahar, S., Teng, N. I., Ngah, W. Z., & Das, S. K. (2013). Efficacy of fasting and calorie restriction (FCR) on mood and depression among ageing men. The Journal of Nutrition, Health and Aging, 17, 674680.Google Scholar
Idjradinata, P., & Pollitt, E. (1993). Reversal of developmental delays in iron-deficient anaemic infants treated with iron. The Lancet, 341, 14.Google Scholar
Inan-Eroglu, E., & Ayaz, A. (2018). Is aluminium exposure a risk factor for neurological disorders? Journal of Research in Medical Sciences, 23, 17.Google Scholar
Irwin, C., Khalesi, S., Desbrow, B., & McCartney, D. (2020). Effects of acute caffeine consumption following sleep loss on cognitive, physical, occupational and driving performance: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 108, 877888.Google Scholar
Isaacs, E. B., Fischl, B. R., Quinn, B. T., Chong, W. K., Gadian, D. G., & Lucas, A. (2010). Impact of breast milk on intelligence quotient, brain size, and white matter development. Pediatric Research, 67, 357362.Google Scholar
Islam, M. R., Ali, S., & Karmoker, J. R. (2020). Evaluation of serum amino acids and non-enzymatic antioxidants in drug-naïve first-episode major depressive disorder. BMC Psychiatry, 20, 333.Google Scholar
Ize-Ludlow, D., Ragone, S., Bruck, I. S., Bernstein, J. N., Duchowny, M., & Peńa, B. M. (2004). Neurotoxicities in infants seen with the consumption of star anise tea. Pediatrics, 114, e653e656.Google Scholar
Jack, R., Rabin, P. L., & McKinney, T. D. (1983). Dialysis encephalopathy: A review. The International Journal of Psychiatry in Medicine, 13, 309326.Google Scholar
Jacka, F. N., Cherbuin, N., Anstey, K. J., Sachdev, P., & Butterworth, P. (2015). Western diet is associated with a smaller hippocampus: A longitudinal investigation. BMC Medicine, 13. Article 215.Google Scholar
Jacka, F. N., O’Neil, A., Opie, R., Itsiopoulos, C., Cotton, S., Mohebbi, M., & Berk, M. (2017). A randomised controlled trial of dietary improvement for adults with major depression (the ‘SMILES’ trial). BMC Medicine, 15, 23.Google Scholar
Jacka, F. N., Pasco, J. A., Mykletun, A., Williams, L. J., Hodge, A. M., O’Reilly, S. L., & Berk, M. (2010). Association of Western and traditional diets with depression and anxiety in women. American Journal of Psychiatry, 167, 305311.Google Scholar
Jackson, A. C. (2018). Chronic neurological disease due to methylmercury poisoning. Canadian Journal of Neurological Sciences, 45, 620623.Google Scholar
Jackson, A., Forsyth, C. B., Shaikh, M., Voigt, R. M., Engen, P. A., Ramirez, V., & Keshavarzian, A. (2019). Diet in Parkinson’s disease: Critical role for the microbiome. Frontiers in Neurology, 10, 1245.Google Scholar
Jacobson, K. A., Gao, Z. -G., Matricon, P., Eddy, M. T., & Carlsson, J. (2020). Adenosine A2A receptor antagonists: From caffeine to selective non-xanthines. British Journal of Pharmacology, 14, 34963511.Google Scholar
Jaeger, B., & Bosch, A. M. (2016). Clinical presentation and outcome of riboflavin transporter deficiency: Mini review after five years of experience. Journal of Inherited Metabolic Disease, 39, 559564.Google Scholar
Jahng, J. W., Kim, J. G., & Kim, H. J. (2007). Chronic food restriction in young rats results in depression- and anxiety-like behaviors with decreased expression of serotonin reuptake transporter. Brain Research, 1150, 100107.Google Scholar
Jahng, J. W., Lee, J. Y., & Yoo, S. B. (2005). Refeeding-induced expression of neuronal nitric oxide synthase in the rat paraventricular nucleus. Brain Research, 1048, 185192.Google Scholar
Jahromi, S. R., Toghae, M., Jahromi, M. J., & Aloosh, M. (2012). Dietary pattern and risk of multiple sclerosis. Iranian Journal of Neurology, 11, 4753.Google Scholar
James, J. E. (2014). Caffeine and cognitive performance: Persistent methodological challenges in caffeine research. Pharmacology, Biochemistry and Behavior, 124, 117122.Google Scholar
James, S., Montgomery, P., & Williams, K. (2011). Omega-3 fatty acids supplementation for autism spectrum disorders (ASD). Cochrane Database of Systematic Reviews, 11, CD007992.Google Scholar
Jankowsky, J. L., & Patterson, P. H. (1999). Cytokine and growth factor involvement in long-term potentiation. Molecular & Cellular Neuroscience, 14, 273286.Google Scholar
Janthakhin, Y., Rincel, M., Costa, A. M., Darnaudery, M., & Ferreira, G. (2017). Maternal high-fat diet leads to hippocampal and amygdala dendritic remodeling in adult male offspring. Psychoneuroendocrinology, 83, 4957.Google Scholar
Jaques, J. A., Doleski, P. H., Castilhos, L. G., da Rosa, M. M., Souza Vdo, C., Carvalho, F. B., & Leal, D. B. (2013). Free and nanoencapsulated curcumin prevents cigarette smoke-induced cognitive impairment and redox imbalance. Neurobiology of Learning & Memory, 100, 98107.Google Scholar
Jaques, J. A., Rezer, J. F., Carvalho, F. B., da Rosa, M. M., Gutierres, J. M., Goncalves, J. F., & Leal, D. B. (2012). Curcumin protects against cigarette smoke-induced cognitive impairment and increased acetylcholinesterase activity in rats. Physiology & Behavior, 106, 664669.Google Scholar
Jasani, B., Simmer, K., Patole, S. K., & Rao, S. C. (2017). Long chain polyunsaturated fatty acid supplementation in infants born at term. Cochrane Database Systematic Reviews, 3, CD000376.Google Scholar
Jazayeri, S., Tehrani-Doost, M., Keshavarz, S. A., Hosseini, M., Djazayery, A., Amini, H., & Peet, M. (2008). Comparison of therapeutic effects of omega-3 fatty acid eicosapentaenoic acid and fluoxetine, separately and in combination, in major depressive disorder. Australian & New Zealand Journal of Psychiatry, 42, 192198.Google Scholar
Jenkins, D. J., & Josse, A. R. (2008). Fish oil and omega-3 fatty acids. CMAJ, 178, 150.Google Scholar
Jenkins, T. A., Nguyen, J. C. D., Polglaze, K. E., & Bertrand, P. P. (2016). Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients, 8, Article 56.Google Scholar
Jeong, M. Y., Jang, H. M., & Kim, D. H. (2019). High-fat diet causes psychiatric disorders in mice by increasing Proteobacteria population. Neuroscience Letters, 698, 5157.Google Scholar
Jia, W., Li, Y., Qu, R., Baranowski, T., Burke, L. E., Zhang, H., Bai, Y., Mancino, J. M., Xu, G., Mao, Z. -H., & Sun, M. (2019). Automatic food detection in egocentric images using artificial intelligence technology. Public Health Nutrition, 22, 11681179.Google Scholar
Jia, X., McNeill, G., & Avenell, A. (2008). Does taking vitamin, mineral and fatty acid supplements prevent cognitive decline? A systematic review of randomized controlled trials. Journal of Human Nutrition & Dietetics, 21, 317336.Google Scholar
Jiang, W., Ju, C., Jiang, H., & Zhang, D. (2014). Dairy foods intake and risk of Parkinson’s disease: A dose-response meta-analysis of prospective cohort studies. European Journal of Epidemiology, 29, 613619.Google Scholar
Jiang, Z., Guo, M., Shi, C., Wang, H., Yao, L., Liu, L., & Lin, Z. (2015). Protection against cognitive impairment and modification of epileptogenesis with curcumin in a post-status epilepticus model of temporal lobe epilepsy. Neuroscience, 310, 362371.Google Scholar
Job, V., Walton, G. M., Bernecker, K., & Dweck, C. S. (2013). Beliefs about willpower determine the impact of glucose on self-control. Proceedings of the National Academy of Sciences of the United States of America, 110, 1483714842.Google Scholar
Johnson, C. C., Gorell, J. M., Rybicki, B. A., Sanders, K., & Peterson, E. L. (1999). Adult nutrient intake as a risk factor for Parkinson’s disease. International Journal of Epidemiology, 28, 11021109.Google Scholar
Johnson, C., Praveen, D., Pope, A., Raj, T. S., Pillai, R. N., Land, M. A., & Neal, B. (2017). Mean population salt consumption in India: A systematic review. Journal of Hypertension, 35, 39.Google Scholar
Johnson, J. B., Summer, W., & Cutler, R. G. (2007). Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate stamina. Free Radical Biology & Medicine, 42, 665674.Google Scholar
Johnson, M. A., Kuo, Y. M., & Westaway, S. K. (2004). Mitochondrial localization of human PANK2 and hypotheses of secondary iron accumulation in pantothenate kinase-associated neurodegeneration. Annals of the New York Academy of Sciences, 1012, 282298.Google Scholar
Johnstone, A. M. (2007). Fasting: The ultimate diet? Obesity Reviews, 8, 211222.Google Scholar
Jones, E. K., Sunram-Lea, S. I., & Wesnes, K. A. (2012). Acute ingestion of different macronutrients differentially enhances aspects of memory and attention in healthy young adults. Biological Psychology, 89, 477486.Google Scholar
Jones, N., & Rogers, P. J. (2003). Preoccupation, food, and failure: An investigation of cognitive performance deficits in dieters. International Journal of Eating Disorders, 33, 185192.Google Scholar
Jongkees, B. J., Hommel, B., Kühn, S., & Colzato, L. S. (2015). Effect of tyrosine supplementation on clinical and healthy populations under stress or cognitive demands – A review. Journal of Psychiatric Research, 70, 5057.Google Scholar
Jorgenson, L. A., Sun, M., O’Connor, M., & Georgieff, M. K. (2005). Fetal iron deficiency disrupts the maturation of synaptic function and efficacy in area CA1 of the developing rat hippocampus. Hippocampus, 15, 10941102.Google Scholar
Judelson, D. A., Preston, A. G., Miller, D. L., Muñoz, C. X., Kellogg, M. D., & Lieberman, H. R. (2013). Effects of theobromine and caffeine on mood and vigilance. Journal of Clinical Psychopharmacology, 33, 499506.Google Scholar
Julvez, J., Fortuny, J., Mendez, M., Torrent, M., Ribas-Fito, N., & Sunyer, J. (2009). Maternal use of folic acid supplements during pregnancy and four-year-old neurodevelopment in a population-based birth cohort. Paediatric and Perinatal Epidemiology, 23, 199206.Google Scholar
Julvez, J., Guxens, M., Carsin, A. E., Forns, J., Mendez, M., Turner, M. C., & Sunyer, J. (2014). A cohort study on full breastfeeding and child neuropsychological development: The role of maternal social, psychological, and nutritional factors. Developmental Medicine & Child Neurology, 56, 148156.Google Scholar
Julvez, J., Ribas-Fito, N., Forns, M., Garcia-Esteban, R., Torrent, M., & Sunyer, J. (2007). Attention behaviour and hyperactivity at age 4 and duration of breast-feeding. Acta Paediatrica, 96, 842847.Google Scholar
Jung, H. Y., Kim, D. W., & Nam, S. M.(2017). Pyridoxine improves hippocampal cognitive function via increases of serotonin turnover and tyrosine hydroxylase, and its association with CB1 cannabinoid receptor-interacting protein and the CB1 cannabinoid receptor pathway. BBA General Subjects, 1861, 31423153.Google Scholar
Juul, F., Martinez-Steele, E., Parekh, N., Monteiro, C. A., & Chang, V. W. (2018). Ultra-processed food consumption and excess weight among US adults. British Journal of Nutrition, 120, 90100.Google Scholar
Kadri, N., Tilane, A., & El Batal, M. (2000). Irritability during the month of Ramadan. Psychosomatic Medicine, 62, 280285.Google Scholar
Kafouri, S., Kramer, M., Leonard, G., Perron, M., Pike, B., Richer, L., & Paus, T. (2013). Breastfeeding and brain structure in adolescence. International Journal of Epidemiology, 42, 150159.Google Scholar
Kalk, W. J., Felix, M., Snoey, E. R., & Yeriawa, Y. (1993). Voluntary total fasting in political prisoners: Clinical and biochemical observations. South African Medical Journal, 83, 391394.Google ScholarPubMed
Kalmijn, S., Launer, L. J., Ott, A., Witteman, J. C., Hofman, A., & Breteler, M. M. (1997). Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Annals of Neurology, 42, 776782.Google Scholar
Kalmijn, S., van Boxtel, M. P., Ocke, M., Verschuren, W. M., Kromhout, D., & Launer, L. J. (2004). Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology, 62, 275280.Google Scholar
Kamata, S., Yamamoto, J., & Kamijo, K. (2014). Dietary deprivation of each essential amino acid induces differential systemic adaptive responses in mice. Molecular Nutrition & Food Research, 58, 13091321.Google Scholar
Kanarek, R. B. (1997). Psychological effects of snacks and altered meal frequency. British Journal of Nutrition, 77, S105S120.Google Scholar
Kanarek, R. B., & Swinney, D. (1990). Effects of food snacks on cognitive performance in male college students. Appetite, 14, 1527.Google Scholar
Kandimalla, R., Vallamkondu, J., Corgiat, E. B., & Gill, K. D. (2016). Understanding aspects of aluminium exposure in Alzheimer’s disease development. Brain Pathology, 26, 139154.Google Scholar
Kang, S., Hong, Y., Choi, N., & Lee, K. (2017). The relationship between breastfeeding duration and preschooler problem behavior: The mediating role of cognitive development. Korean Journal of Child Studies, 38, 6377.CrossRefGoogle Scholar
Kanoski, S. E., & Davidson, T. L. (2010). Different patterns of memory impairments accompany short- and longer-term maintenance on a high-energy diet. Journal of Experimental Psychology-Animal Behavioral Processes, 36, 313319.Google Scholar
Kanoski, S. E., Meisel, R. L., Mullins, A. J., & Davidson, T. L. (2007). The effects of energy-rich diets on discrimination reversal learning and on BDNF in the hippocampus and prefrontal cortex of the rat. Behavioral Brain Research, 182, 5766.Google Scholar
Kanoski, S. E., Zhang, Y. S., Zheng, W., & Davidson, T. L. (2010). The effects of a high-energy diet on hippocampal function and blood-brain barrier integrity in the rat. Journal of Alzheimer’s Disease, 21, 207219.Google Scholar
Kant, A. K., (1996). Indexes of overall diet quality: A review. Journal of the American Dietetic Association, 96, 875791.Google Scholar
Kaplan, R. J., & Greenwood, C. E. (1998). Dietary saturated fatty acids and brain function. Neurochemistry Research, 23, 615626.Google Scholar
Kaplan, R. J., Greenwood, C. E., Winocur, G., & Wolever, T. M. S. (2000). Cognitive performance is associated with glucose regulation in healthy elderly persons and can be enhanced with glucose and dietary carbohydrates. American Journal of Clinician Nutrition, 72, 825836.Google Scholar
Kaplan, R. J., Greenwood, C. E., Winocur, G., & Wolever, T. M. S. (2001). Dietary protein, carbohydrate, and fat enhance memory in the healthy elderly. American Journal of Clinical Nutrition, 74, 687693.Google Scholar
Karakonstantis, S., Galani, D., & Korela, D. (2020). Missing the early signs of thiamine deficiency: A case associated with a liquid-only diet. Nutritional Neuroscience, 23, 384386.Google Scholar
Karamyan, V. T., & Speth, R. C. (2008). Animal models of BMAA neurotoxicity: A critical review. Life Sciences, 82, 233246.Google Scholar
Karl, J. P., Thompson, L. A., & Niro, P. J. (2015). Transient decrements in mood during energy deficit are independent of dietary protein-to-carbohydrate ratio. Physiology & Behavior, 139, 524531.CrossRefGoogle ScholarPubMed
Kashala-Abotnes, E., Okitundu, D., & Mumba, D. (2019). Konzo: A distinct neurological disease associated with food (cassava) cyanogenic poisoning. Brain Research Bulletin, 145, 8791.Google Scholar
Kassa, R. M., Kasensa, N. L., & Monterroso, V. H. (2011). On the biomarkers and mechanisms of konzo, a distinct upper motor neuron disease associated with food (cassava) cyanogenic exposure. Food & Chemical Toxicology, 49, 571578.Google Scholar
Kaur, H., Agarwal, S., Agarwal, M., Agarwal, V., & Singh, M. (2020). Therapeutic and preventive role of functional foods in process of neurodegeneration. International Journal of Pharmaceutical Sciences & Research, 11, 28822891.Google Scholar
Kaur, H., Bal, A., & Sandhir, R. (2014). Curcumin supplementation improves mitochondrial and behavioral deficits in experimental model of chronic epilepsy. Pharmacology Biochemistry & Behavior, 125, 5564.Google Scholar
Kaur, H., Patro, I., Tikoo, K., & Sandhir, R. (2015). Curcumin attenuates inflammatory response and cognitive deficits in experimental model of chronic epilepsy. Neurochemistry International, 89, 4050.Google Scholar
Kaye, W. H., Fudge, J. L., & Paulus, M. (2009). New insights into symptoms and neurocircuit function of anorexia nervosa. Nature Reviews Neuroscience, 10, 573584.Google Scholar
Ke, X., Schober, M. E., McKnight, R. A., O’Grady, S., Caprau, D., Yu, X., & Lane, R. H. (2010). Intrauterine growth retardation affects expression and epigenetic characteristics of the rat hippocampal glucocorticoid receptor gene. Physiological Genomics, 42, 177189.Google Scholar
Ke, X., Xing, B., Yu, B., Yu, X., Majnik, A., Cohen, S., & Joss-Moore, L. (2014). IUGR disrupts the PPARgamma-Setd8-H4K20me(1) and Wnt signaling pathways in the juvenile rat hippocampus. International Journal of Developmental Neuroscience, 38, 5967.CrossRefGoogle ScholarPubMed
Kelly, G. S. (2011). Pantothenic acid. Alternative Medicine Review, 16, 263274.Google Scholar
Kemps, E., & Tiggemann, M. (2005). Working memory performance and preoccupying thoughts in female dieters: Evidence for a selective central executive impairment. British Journal of Clinical Psychology, 44, 357366.Google Scholar
Kemps, E., Tiggemann, M., & Marshall, K. (2005). Relationship between dieting to lose weight and the functioning of the central executive. Appetite, 45, 287294.Google Scholar
Kendig, M. D. (2014). Cognitive and behavioural effects of sugar consumption in rodents. A review. Appetite, 80, 4154.Google Scholar
Kendig, M. D., Leigh, S. J., & Morris, M. J. (2021). Unravelling the impacts of western-style diets on brain, gut microbiota and cognition. Neuroscience & Biobehavioral Reviews, 128, 233243.CrossRefGoogle ScholarPubMed
Kendig, M. D., & Morris, M. J. (2019). Reviewing the effects of dietary salt on cognition: Mechanisms and future directions. Asia Pacific Journal of Clinical Nutrition, 28, 614.Google Scholar
Kendig, M. D., Rooney, K. B., Corbit, L. H., & Boakes, R. A. (2014). Persisting adiposity following chronic consumption of 10% sucrose solution: Strain differences and behavioural effects. Physiology & Behavior, 130, 5465.Google Scholar
Kendler, K. S. (1996). Major depression and generalised anxiety disorder. Same genes, (partly)different environments – revisited. British Journal of Psychiatry, S30, 6875.Google Scholar
Kennedy, D. O. (2016). B vitamins and the brain: Mechanisms, dose and efficacy: A review. Nutrients, 8, 68.Google Scholar
Kennedy, D. O., & Scholey, A. B. (2000). Glucose administration, heart rate and cognitive performance: Effects of increasing mental effort. Psychopharmacology, 149, 6371.Google Scholar
Kenny, P. J. (2011). Common cellular and molecular mechanisms in obesity and drug addiction. Nature Reviews Neuroscience, 12, 638651.Google Scholar
Kent, K., Charlton, K., Roodenrys, S., Batterham, M., Potter, J., Traynor, V., & Richards, R. (2017). Consumption of anthocyanin-rich cherry juice for 12 weeks improves memory and cognition in older adults with mild-to-moderate dementia. European Journal of Nutrition, 56, 333341.Google Scholar
Kerndt, P. R., Naughton, J. L., Driscoll, C. E., & Loxterkamp, D. A. (1982). Fasting: The history, pathophysiology and complications. Western Journal of Medicine, 137, 379399.Google Scholar
Kesse-Guyot, E., Fezeu, L., Andreeva, V. A., Touvier, M., Scalbert, A., Hercberg, S., & Galan, P. (2012). Total and specific polyphenol intakes in midlife are associated with cognitive function measured 13 years later. Journal of Nutrition, 142, 7683.Google Scholar
Kessler, R. C., Chiu, W. T., Demler, O., Merikangas, K. R., & Walters, E. E. (2005). Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry, 62, 617627.Google Scholar
Keys, A. (1946). Human starvation and its consequences. Journal of the American Dietetic Association, 22, 582587.Google Scholar
Keys, A., Brožek, J., Henschel, A., Mickelsen, O., & Taylor, H. L. (1950). The Biology of Human Starvation (Vol. 2). Minneapolis, MN: University of Minnesota Press.Google Scholar
Keys, A., Menotti, A., Karvonen, M. J., Aravanis, C., Blackburn, H., & Buzina, R. (1986). The diet and 15-year death rate in the seven countries study. American Journal of Epidemiology, 124, 903915.Google Scholar
Khayyatzadeh, S. S., Mehramiz, M., Mirmousavi, S. J., Mazidi, M., Ziaee, A., Kazemi-Bajestani, S. M. R., & Ghayour-Mobarhan, M. (2018). Adherence to a Dash-style diet in relation to depression and aggression in adolescent girls. Psychiatry Research, 259, 104109.Google Scholar
Khedr, E. H. M., Farghaly, W. M. A., Amry, S. E., & Osman, A. A. A. (2004). Neural maturation of breastfed and formula-fed infants. Acta Paediatrica, 93, 734738.Google Scholar
Khedr, E., Hamed, S. A., & Elbeih, E. (2008). Iron states and cognitive abilities in young adults: Neuropsychological and neurophysiological assessment. European Archives of Psychiatry & Clinical Neuroscience, 258, 489496.Google Scholar
Khurana, S., Venkataraman, K., Hollingsworth, A., Piche, M., & Tai, T. C. (2013). Polyphenols: Benefits to the cardiovascular system in health and in aging. Nutrients, 5, 37793827.Google Scholar
Kiecolt-Glaser, J. K., Belury, M. A., Andridge, R., Malarkey, W. B., & Glaser, R. (2011). Omega-3 supplementation lowers inflammation and anxiety in medical students: A randomized controlled trial. Brain Behavior & Immunity, 25, 17251734.Google Scholar
Kiernan, M. C., Isbister, G. K., Lin, C. S., Burke, D., & Bostock, H. (2005). Acute tetrodotoxin-induced neurotoxicity after ingestion of puffer fish. Annals of Neurology, 57, 339348.Google Scholar
Killin, L. O., Starr, J. M., Shiue, I. J., & Russ, T. C. (2016). Environmental risk factors for dementia: A systematic review. BioMed Central Geriatrics, 16, 128.Google Scholar
Killinger, B. A., & Labrie, V. (2017). Vertebrate food products as a potential source of prion-like α-synuclein. NPJ Parkinson’s Disease, 3, 111.Google Scholar
Kim, J. H., Lee, K. J., & Suzuki, T. (2009). Identification of tetramine, a toxin in whelks, as the cause of a poisoning incident in Korea and the distribution of tetramine in fresh and boiled whelk. Journal of Food Protection, 72, 19351940.Google Scholar
Kim, Y. M., Lee, J. Y., Choi, S. H., Kim, D. G., & Jahng, J. W. (2004). RU486 blocks fasting-induced decrease of neuronal nitric oxide synthase in the rat paraventricular nucleus. Brain Research, 1018, 221226.Google Scholar
Kim, Y. -S., Kwak, S. M., & Myung, S. -K. (2015). Caffeine intake from coffee or tea and cognitive disorders: A meta-analysis of observational studies. Neuroepidemiology, 44, 5163.Google Scholar
Kim do, Y., Hao, J., Liu, R., Turner, G., Shi, F. D., & Rho, J. M. (2012). Inflammation-mediated memory dysfunction and effects of a ketogenic diet in a murine model of multiple sclerosis. PLoS One, 7, e35476.Google Scholar
King, G. A., Polivy, J., & Herman, C. P. (1991). Cognitive aspects of dietary restraint: Effects on person memory. International Journal of Eating Disorders, 10, 313321.Google Scholar
Kirk, J. M., & Logue, A. W. (1997). Effects of deprivation level on humans’ self-control for food reinforces. Appetite, 28, 215226.Google Scholar
Kleinewietfeld, M., Manzel, A., Titze, J., Kvakan, H., Yosef, N., Linker, R. A., & Hafler, D. A. (2013). Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature, 496, 518522.Google Scholar
Klem, M. L., Wing, R. R., McGuire, M. T., Seagle, H. M., & Hill, J. O. (1998). Psychological symptoms in individuals successful at long-term maintenance of weight loss. Health Psychology, 17, 336345.Google Scholar
Klevay, L. M. (2011). Is the Western diet adequate in copper? Journal of Trace Elements in Medicine & Biology, 25, 204212.Google Scholar
Kloss, O., Eskin, M., & Suh, M. (2018). Thiamine deficiency on fetal brain development with and without prenatal alcohol exposure. Biochemistry & Cell Biology, 96, 169177.Google Scholar
Klotz, J. L. (2015). Activities and effects of ergot alkaloids on livestock physiology and production. Toxins, 7, 28012821.Google Scholar
Koh, T. H. H. G., Eyre, J. A., Tarbit, M., & Aynsleygreen, A. (1988). Neurophysiological dysfunction in relation to the concentration of glucose in the blood. Early Human Development, 17, 287287.Google Scholar
Kohlmeier, M., da Costa, K. -M., Fischer, L. M., & Zeisel, S. H. (2005). Genetic variation of folate-mediated one-carbon transfer pathway predicts susceptibility to choline deficiency in humans. Proceedings of the National Academy of Sciences of the United States of America, 102, 1602516030.Google Scholar
Kohnen-Johannsen, K. L., & Kayser, O. (2019). Tropane alkaloids: Chemistry, pharmacology, biosynthesis and production. Molecules, 24, 123.Google Scholar
Kolahdouzan, M., & Hamadeh, M. J. (2017). The neuroprotective effects of caffeine in neurodegenerative diseases. CNS Neuroscience & Therapeutics, 23, 272290.Google Scholar
Koletzko, B., Agostoni, C., Carlson, S. E., Clandinin, T., Hornstra, G., Neuringer, M., & Willatts, P. (2001). Long chain polyunsaturated fatty acids (LC-PUFA) and perinatal development. Acta Paediatrica, 90, 460464.Google Scholar
Koleva, I. I., van Beek, T. A., Soffers, A. E., Dusemund, B., & Rietjens, I. M. (2012). Alkaloids in the humans food chain – Natural occurrence and possible adverse effects. Molecular Nutrition & Food Research, 56, 3052.Google Scholar
Kopf, S. R., Buchholzer, M. L., Hilgert, M., Löffelholz, K., & Klein, J. (2001). Glucose plus choline improve passive avoidance behaviour and increase hippocampal acetylcholine release in mice. Neuroscience, 103, 365371.Google Scholar
Korn, T., Bettelli, E., Oukka, M., & Kuchroo, V. K. (2009). IL-17 and Th17 cells. Annual Review of Immunology, 27, 485517.Google Scholar
Korogi, Y., Takahashi, M., Okajima, T., & Eto, K. (1998). MR findings of Minamata disease – Organic mercury poisoning. Journal of Magnetic Resonance Imaging, 8, 308316.Google Scholar
Korsmo, H. W., Jiang, X., & Caudill, M. A. (2019). Choline: Exploring the growing science on its benefits for moms and babies. Nutrients, 11, 1823.Google Scholar
Koszucka, A., Nowak, A., Nowak, I., & Motyl, I. (2019). Acrylamide in human diet, its metabolism, toxicity, inactivation and the associated European Union legal regulations in food industry. Critical Reviews in Food Science & Nutrition, 60, 16771692.Google Scholar
Kramer, M. S., Aboud, F., Mironova, E., Vanilovich, I., Platt, R. W., Matush, L., & Interventi, P. B. (2008). Breastfeeding and child cognitive development – New evidence from a large randomized trial. Archives of General Psychiatry, 65, 578584.Google Scholar
Krikorian, R., Boespflug, E. L., Fleck, D. E., Stein, A. L., Wightman, J. D., Shidler, M. D., & Sadat-Hossieny, S. (2012). Concord grape juice supplementation and neurocognitive function in human aging. Journal of Agricultural & Food Chemistry, 60, 57365742.Google Scholar
Krikorian, R., Shidler, M. D., Dangelo, K., Couch, S. C., Benoit, S. C., & Clegg, D. J. (2012). Dietary ketosis enhances memory in mild cognitive impairment. Neurobiology of Aging, 33, 425.Google Scholar
Krska, R & Crews, C. (2008). Significance, chemistry and determination of ergot alkaloids: A review. Food Additives & Contaminants: Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment, 25, 722731.Google Scholar
Kruman, I. I., Mouton, P. R., Emokpae, R., Cutler, R. G., & Mattson, M. P. (2005). Folate deficiency inhibits proliferation of adult hippocampal progenitors. Neuroreport, 16, 10551059.Google Scholar
Kuhad, A., & Chopra, K. (2007). Curcumin attenuates diabetic encephalopathy in rats: Behavioral and biochemical evidences. European Journal of Pharmacology, 576, 3442.Google Scholar
Kurihara, K., Homma, T., & Kobayashi, S.(2019). Ascorbic acid insufficiency impairs spatial memory formation in juvenile AKR1A-knockout mice. Journal of Clinical Biochemistry & Nutrition, 65, 209216.Google Scholar
Kurland, L. T. (1988). Amyotrophic lateral sclerosis and Parkinson’s disease complex on Guam linked to an environmental neurotoxin. Trends in Neurosciences, 11, 5154.CrossRefGoogle Scholar
Kussmann, M., Krause, L., & Siffert, W. (2010). Nutrigenomics: Where are we with genetic and epigenetic markers for disposition and susceptibility? Nutrition Reviews, 68, S38S47.Google Scholar
Kuzawa, C. W. (1998). Adipose tissue in human infancy and childhood: An evolutionary perspective. Yearbook of Physical Anthropology, 41, 177209.Google Scholar
LaBar, K. S., & Cabeza, R. (2006). Cognitive neuroscience of emotional memory. Nature Reviews Neuroscience, 7, 5464.Google Scholar
Lachenmeier, D. W., Walch, S. G., Padosch, S. A., & Kröner, L. U. (2006). Absinthe – A review. Critical Reviews in Food Science & Nutrition, 46, 365377.Google Scholar
Lafay, L., Thomas, F., Mennen, L., Charles, M. A., Eschwege, E., Borys, J. M., Basdevant, A., & Fleurbaix Laventie Ville Santé Study Group. (2001). Gender differences in the relation between food cravings and mood in an adult community: Results from the Fleurbaix Laventie Ville Santé study. The International Journal of Eating Disorders, 29, 195204.Google Scholar
Lagercrantz, H. (2016). Origins of the mind and basic contruction of the brain. In Lagercrantz, H. (Ed.), Infant Brain Development (pp. 114). Sweden: Springer.Google Scholar
Lai, J. S., Hiles, S., Bisquera, A., Hure, A. J., McEvoy, M., & Attia, J. (2014). A systematic review and meta-analysis of dietary patterns and depression in community-dwelling adults. American Journal of Clinical Nutrition, 99, 181197.Google Scholar
Laird, D. A., DeLand, D., Drexel, H., & Riemer, K. (1936). A study of a dietary cause and possible elimination of early afternoon sluggishness. Journal of American Dietetic Association, 1, 411421.Google Scholar
Lamanna, J., Sulpizio, S., & Ferro, M. (2019). Behavioral assessment of activity-based-anorexia: How cognition can become the drive wheel. Physiology & Behavior, 202, 17.Google Scholar
Lambrechts, D. A., de Kinderen, R. J., Vles, J. S., de Louw, A. J., Aldenkamp, A. P., & Majoie, H. J. (2016). A randomized controlled trial of the ketogenic diet in refractory childhood epilepsy. Acta Neurologica Scandanivca, 135, 231239.Google Scholar
Lambrechts, D. A., Wielders, L. H., Aldenkamp, A. P., Kessels, F. G., de Kinderen, R. J., & Majoie, M. J. (2012). The ketogenic diet as a treatment option in adults with chronic refractory epilepsy: Efficacy and tolerability in clinical practice. Epilepsy & Behavior, 23, 310314.Google Scholar
Lamport, D. J., Dye, J. D., Wightman, J. D., & Lawton, C. L. (2012). The effects of flavonoid and other polyphenol consumption on cognitive performance: A systematic research review of human experimental and epidemiological studies. Nutrition & Aging, 1, 525.Google Scholar
Lamport, D. J., Lawton, C. L., Mansfield, M. W., & Dye, L. (2009). Impairments in glucose tolerance can have a negative impact on cognitive function: A systematic research review. Neuroscience & Biobehavioral Reviews, 33, 394413.Google Scholar
Lamport, D. J., Lawton, C. L., Merat, N., Jamson, H., Myrissa, K., Hofman, D., & Dye, L. (2016). Concord grape juice, cognitive function, and driving performance: A 12-wk, placebo-controlled, randomized crossover trial in mothers of preteen children. American Journal of Clinical Nutrition, 103, 775783.Google Scholar
Lamport, D. J., Pal, D., Moutsiana, C., Field, D. T., Williams, C. M., Spencer, J. P., & Butler, L. T. (2015). The effect of flavanol-rich cocoa on cerebral perfusion in healthy older adults during conscious resting state: A placebo controlled, crossover, acute trial. Psychopharmacology, 232, 32273234.Google Scholar
Land, M.-A., Neal, B. C., Johnson, C., Nowson, C. A., Margerison, C., & Petersen, K. S. (2018). Salt consumption by Australian adults: A systematic review and meta-analysis. Medical Journal of Australia, 208, 7581.Google Scholar
Lang, K. Roberts, M., & Harrison, A. (2016). Central coherence in eating disorders: A synthesis of studies using the Rey Osterrieth Complex Figure Test. PLoS One, 11, e0165467.Google Scholar
Langohr, H. D., Petruch, F., & Schrom, G. (1981). Vitamin-B2 and vitamin-B6 deficiency in neurological disorders. Journal of Neurology, 225, 95108.Google Scholar
Lapp, J. E. (1981). Effects of glycemic alterations and noun imagery on the learning of paired associates. Journal of Learning Disabilities, 14, 3538.CrossRefGoogle ScholarPubMed
Lardner, A. L. (2014). Neurobiological effects of the green tea constituent theanine and its potential role in the treatment of psychiatric and neurodegenerative disorders. Nutritional Neuroscience, 17, 145155.Google Scholar
Larsen, B., Bourque, J., & Moore, T. M. (2020). Longitudinal development of brain iron is linked to cognition in youth. Journal of Neuroscience, 40, 18101818.Google Scholar
Larson, L., & Yousafzai, A. (2016). A meta-analysis of nutrition interventions on mental development of children under two and low and middle-income countries. Maternal & Child Nutrition, 13, e12229.Google Scholar
Laus, M., Vales, L., Costa, T., & Almeida, S. (2011). Early post-natal protein-calorie malnutrition and cognition: A review of human and animal studies. International Journal of Environmental Research & Public Health, 8, 590612.Google Scholar
Lautrup, S., Sinclair, D. A., Mattson, M. P., & Fang, E. F. (2019). NAD+ in brain aging and neurodegenerative disorders. Cell Metabolism, 30, 630655.CrossRefGoogle ScholarPubMed
Laviano, A., Inui, A., & Marks, D. L. (2008). Neural control of the anorexia-cachexia syndrome. American Journal of Physiology, 295, E1000E1008.Google Scholar
Laviano, A., Meguid, M. M., Inui, A., Muscaritoli, M., & Rossi, F. F. (2005). Therapy insight: Cancer anorexia-cachexia syndrome – When all you can eat is yourself. Nature Clinical Practice Oncology, 2, 158165.Google Scholar
Lavita, S. I., Aro, R., Kiss, B., Manto, M., & Duez, P. (2016). The role of β-carboline alkaloids in the pathogenesis of essential tremor. Cerebellum, 15, 276284.Google Scholar
Lazartigues, A., Thomas, M., & Banas, D. (2013). Accumulation and half-lives of 13 pesticides in muscle tissue of freshwater fishes through food exposure. Chemosphere, 91, 530535.Google Scholar
Lazarus, S. A., Hammerstone, J. F., & Schmitz, H. H. (1999). Chocolate contains additional flavonoids not found in tea. The Lancet, 354, 1825.Google Scholar
Leach, P. T., & Gould, T. J. (2015). Thyroid hormone signalling: Contribution to neural function, cognition, and relationship to nicotine. Neuroscience & Biobehavioral Reviews, 57, 252263.Google Scholar
Lebel, C., Roussotte, F., & Sowell, E. R. (2011). Imaging the impact of prenatal alcohol exposure on the structure of the developing human brain. Neuropsychology Review, 21, 102118.Google Scholar
Leckie, R. L., Lehman, D. E., Gianaros, P. J., Erickson, K. I., Sereika, S. M., Kuan, D. C. H., & Muldoon, M. F. (2020). The effects of omega-3 fatty acids on neuropsychological functioning and brain morphology in mid-life adults: A randomized clinical trial. Psychological Medicine, 50, 24252434.Google Scholar
Leclerc, E., Trevizol, A. P., & Grigolon, R. B. (2020). The effect of caloric restriction on working memory in healthy non-obese adults. CNS Spectrums, 25, 28.Google Scholar
Lee, M. (2012). The use of ketogenic diet in special situations: Expanding use in intractable epilepsy and other neurologic disorders. Korean Journal of Pediatrics, 55, 316321.Google Scholar
Lee, P., & Ulatowski, L. M. (2019). Vitamin E: Mechanisms of transport and regulation in the CNS. IUBMB Life, 71, 424429.Google Scholar
Lee, R. W. Y., Corley, M. J., Pang, A., Arakaki, G., Abbott, L., Nishimoto, M., & Wong, M. (2018). A modified ketogenic gluten-free diet with MCT improves behavior in children with autism spectrum disorder. Physiology & Behavior, 188, 205211.Google Scholar
Lee, W. L., & Klip, A. (2012). Shuttling glucose across brain microvessels, with a little help from GLUT1 and AMP kinase. Focus on “AMP kinase regulation of sugar transport in brain capillary endothelial cells during acute metabolic stress.” American Journal of Physiology, 303, C803C805.Google Scholar
Lehnert, H., Reinstein, D. K., Strowbridge, B. W., & Wurtman, R. J. (1984). Neurochemical and behavioral consequences of acute, uncontrollable stress: Effects of dietary tyrosine. Brain Research, 303, 215223.Google Scholar
Lehrskov, L. L., Dorph, E., & Widmer, A. M. (2018). The role of IL-1 in postprandial fatigue. Molecular Metabolism, 12, 107112.Google Scholar
Leigh, S. J., Kaakoush, N. O., Bertoldo, M. J., Westbrook, R. F., & Morris, M. J. (2020). Intermittent cafeteria diet identifies fecal microbiome changes as a predictor of spatial recognition memory impairment in female rats. Translational Psychiatry, 10, 36.Google Scholar
Leon, G. R., Butcher, J. N., Kleinman, M., Goldberg, A., & Almagor, M. (1981). Survivors of the Holocaust and their children: Current status and adjustment. Journal of Personality & Social Psychology, 41, 503516.Google Scholar
Leon-Del-Rio, A. (2019). Biotin in metabolism, gene expression, and human disease. Journal of Inherited Metabolic Disease, 42, 647654.Google Scholar
Levitsky, D., & Strupp, B. (1995). Malnutrition and the brain: Changing concepts, changing concerns. Journal of Nutrition, 125, 2212S2220S.Google Scholar
Leyton, G. (1946). Effects of slow starvation. The Lancet, 2, 7379.Google Scholar
Lezak, M. D., Howieson, D. B., Bigler, E., D., & Tranel, D. (2012). Neuropsychological Assessment (5th ed). Oxford: Oxford University Press.Google Scholar
Li, B., Lv, J., Wang, W., & Zhang, D. (2017). Dietary magnesium and calcium intake and risk of depression in the general population: A meta-analysis. Australian & New Zealand Journal of Psychiatry, 51, 219229.Google Scholar
Li, C., Zeng, L., Wang, D., Yang, W., Dang, S., Zhou, J., & Yan, H. (2015). Prenatal micronutrient supplementation is not associated with intellectual development of young school-aged children. Journal of Nutrition, 145, 18441849.Google Scholar
Li, Q., Yan, H., Zeng, L., Cheng, Y., Liang, W., Dang, S., & Tsuji, I. (2009). Effects of maternal multimicronutrient supplementation on the mental development of infants in rural western China: Follow-up evaluation of a double-blind, randomized, controlled trial. Pediatrics, 123, e685–692.Google Scholar
Li, Z., Fang, F., Wang, Y. Y., & Wang, L. C. (2016). Resveratrol protects CA1 neurons against focal cerebral ischemic reperfusion-induced damage via the ERK-CREB signaling pathway in rats. Pharmacology Biochemistry & Behavior, 146, 2127.Google Scholar
Lian, Q. W., Nie, Y. S., Zhang, X. Y., Tan, B., Cao, H. Y., Chen, W. L., & Huang, P. (2016). Effects of grape seed proanthocyanidin on Alzheimer’s disease in vitro and in vivo. Experimental & Therapeutic Medicine, 12, 16811692.Google Scholar
Liao, Y., Xie, B., Zhang, H., He, Q., Guo, L., Subramanieapillai, M., & McIntyre, R. S. (2019). Efficacy of omega-3 PUFAs in depression: A meta-analysis. Translational Psychiatry, 9, 190.Google Scholar
Lidsky, T. I., & Schneider, J. S. (2003). Lead neurotoxicity in children: Basic mechanisms and clinical correlates. Brain, 126, 519.Google Scholar
Lieberman, H. R. (2007). Achieving scientific consensus in nutrition and behaviour research. Nutrition Bulletin, 32, 100106.Google Scholar
Lieberman, H. R., Bukhari, A. S., & Caldwell, J. A. (2017). Two days of calorie deprivation induced by underfeeding and aerobic exercise degrades mood and lowers interstitial glucose but does not impair cognitive function in young adults. Journal of Nutrition, 147, 110116.Google Scholar
Lieberman, H. R., Caruso, C. M., & Niro, P. J. (2008). A double-blind, placebo-controlled test of 2 d of calorie deprivation: Effects on cognition, activity, sleep, and interstitial glucose concentrations. American Journal of Clinical Nutrition, 88, 667676.Google Scholar
Lien, E. L., Richard, C., & Hoffman, D. R. (2018). DHA and ARA addition to infant formula: Current status and future research directions. Prostaglandins Leukotrienes & Essential Fatty Acids, 128, 2640.Google Scholar
Lin, M. T., & Beal, M. F. (2006). Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443, 787795.Google Scholar
Lind, J. N., Li, R., Perrine, C. G., & Schieve, L. A. (2014). Breastfeeding and later psychosocial development of children at 6 years of age. Pediatrics, 134, S36S41.Google Scholar
Lioret, S., Betoko, A., Forhan, A., Charles, M. -A., Heude, B., de Lauzon-Guillain, B., and The EDEN Mother-Child Cohort Study Group. (2015). Dietary patterns track from infancy to preschool age: Cross-sectional and longitudinal perspectives. Journal of Nutrition, 145, 775782.Google Scholar
Lipscomb, F. (1945). Medical aspects of Belsen concentration camp. The Lancet, 2, 313315.Google Scholar
Liu, D. X., Ke, Z. J., & Luo, J. (2017). Thiamine deficiency and neurodegeneration: The interplay among oxidative stress, endoplasmic reticulum stress, and autophagy. Molecular Neurobiology, 54, 54405448.Google Scholar
Liu, D., Zhang, Q., Gu, J., Wang, X., Xie, K., Xian, X., & Wang, Z. (2014). Resveratrol prevents impaired cognition induced by chronic unpredictable mild stress in rats. Progress in Neuropsychopharmacology & Biological Psychiatry, 49, 2129.Google Scholar
Liu, H. C., & Jia, Y. (2017). Ergot alkaloids: Synthetic approaches to lysergic acid and clavine alkaloids. Natural Product Reports, 34, 411432.Google Scholar
Liu, J. H., Leung, P., & Yang, A. (2014). Breastfeeding and active bonding protects against children’s internalizing behavior problems. Nutrients, 6, 7689.Google Scholar
Liu, J., Zhao, S., & Reyes, T. (2015). Neurological and epigenetic implications of nutritional deficienies on psychopathology: Conceptualization and review of evidence. International Journal of Molecular Sciences, 16, 1812918148.Google Scholar
Liu, Y. Z., Chen, J. K., Li, Z. P., Zhao, T., Ni, M., Li, D. J., & Shen, F. M. (2014). High-salt diet enhances hippocampal oxidative stress and cognitive impairment in mice. Neurobiology of Learning & Memory, 114, 1015.Google Scholar
Livingstone, M. B. E., & Black, A. E. (2003). Markers of the validity of reported energy intake. Journal of Nutrition, 133, S895S–S920.Google Scholar
Llorach, R., Garcia-Aloy, M., Tulipani, S., Vazquez-Fresno, R., & Andres-Lacueva, C. (2012). Nutrimetabolomic strategies to develop new biomarkers of intake and health effects. Journal of Agricultural & Food Chemistry, 60, 87978808.Google Scholar
Llorens, J., Soler-Martín, C., & Saldaña-Ruíz, S. (2011). A new unifying hypothesis for lathyrism, konzo and tropical ataxic neuropathy: Nitriles are the causative agents. Food & Chemical Toxicology, 49, 563570.Google Scholar
Logroscino, G., Marder, K., Cote, L., Tang, M. X., Shea, S., & Mayeux, R. (1996). Dietary lipids and antioxidants in Parkinson’s disease: A population-based, case-control study. Annals of Neurology, 39, 8994.Google Scholar
Logue, A. W. (2015). The Psychology of Eating and Drinking (4th ed). New York, NY: Routledge.Google Scholar
Long, C. G., Blundell, J. E., & Finlayson, G. (2015). A systematic review of the application and correlates of YFAS-diagnosed ‘food addiction’ in humans: Are eating-related ‘addictions’ a cause for concern or empty concepts? Obesity Facts, 8, 386401.Google Scholar
Longenbaker, S. N. (2017). Mader’s Understanding Human Anatomy & Physiology (9th ed). New York: McGraw-Hill Education.Google Scholar
Lopez-Legarrea, P., Fuller, N. R., Zulet, M. A., Martinez, J. A., & Caterson, I. D. (2014). The influence of Mediterranean, carbohydrate and high protein diets on gut microbiota composition in the treatment of obesity and associated inflammatory state. Asia Pacific Journal of Clinical Nutrition, 23, 360368.Google Scholar
Louis, E. D. (2008). Environmental epidemiology of essential tremor. Neuroepidemiology, 31, 139149.Google Scholar
Louis, E. D., & Zheng, W. (2010). β-carboline alkaloids and essential tremor: Exploring the environmental determinants of one of the most prevalent neurological diseases. The Scientific World Journal, 10, 17831794.Google Scholar
Louis, E. D., Zheng, W., Applegate, L., Shi, L., & Factor-Litvak, P. (2005). Blood harmane concentrations and dietary protein consumption in essential tremor. Neurology, 65, 391396.Google Scholar
Lowden, A., Moreno, C., Holmbäck, U., Lennernäs, M., & Tucker, P. (2010). Eating and shift work – Effects on habits, metabolism, and performance. Scandinavian Journal of Work, Environment & Health, 36, 150162.Google Scholar
Lowell, B. B. (2019). New neuroscience of homeostasis and drives for food, water, and salt. The New English Journal of Medicine, 380, 459471.CrossRefGoogle ScholarPubMed
Lozoff, B. (1989). Nutrition and behavior. American Psychologist 44, 231236.Google Scholar
Lozoff, B. (2007). Iron deficiency and child development. Food & Nutrition Bulletin, 28, S560S571.Google Scholar
Lozoff, B., Brittenham, G. M., Viteri, F. E., Wolf, A. W., & Urrutia, J. J. (1982). The effects of short-term oral iron therapy on developmental deficits in iron-deficient anemic infants. Journal of Pediatrics, 100, 351357.Google Scholar
Lozoff, B., Clark, K. M., Jing, Y., Armony-Sivan, R., Angelilli, M. L., & Jacobson, S. W. (2008). Dose-response relationships between iron deficiency with or without anemia and infant social-emotional behavior. Journal of Pediatrics, 152, 696702.Google Scholar
Lozoff, B., Smith, J. B., Kaciroti, N., Clark, K. M., Guevara, S., & Jimenez, E. (2013). Functional significance of early-life iron deficiency: Outcomes at 25 years. Journal of Pediatrics, 163, 12601266.Google Scholar
Lucas, A., Morley, R., & Cole, T. J. (1988). Adverse neurodevelopmental outcome of moderate neonatal hypoglycemia. British Medical Journal, 297, 13041308.Google Scholar
Ludolph, A. C., Hugon, J., Dwivedi, M. P., Schaumburg, H. H., & Spencer, P. S. (1987). Studies on the aetiology and pathogenesis of motor neuron disease. 1. Lathyrism: Clinical findings in established cases. Brain, 110, 149165.Google Scholar
Lukowski, A. F., Koss, M., Burden, M. J., Jonides, J., Nelson, C. A., Kaciroti, N., & Lozoff, B. (2010). Iron deficiency in infancy and neurocognitive functioning at 19 years: Evidence of long-term deficits in executive function and recognition memory. Nutritional Neuroscience, 13, 5470.Google Scholar
Lukoyanov, N. V., & Andrade, J. P. (2000). Behavioral effects of protein deprivation and rehabilitation in adult rats: Relevance to morphological alterations in the hippocampal formation. Behavioural Brain Research, 112, 8597.Google Scholar
Lundh, A., Lexchin, J., Mintzes, B., Schroll, J. B., & Bero, L. (2018). Industry sponsorship and research outcome: Systematic review with meta-analysis. Intensive Care Medicine, 44, 16031612.Google Scholar
Luppino, F. S., de Wit, L. M., Bouvy, P. F., Stijnen, T., Cuijpers, P., Penninx, B. W., & Zitman, F. G. (2010). Overweight, obesity, and depression: A systematic review and meta-analysis of longitudinal studies. Archives of General Psychiatry, 67, 220229.Google Scholar
Lustig, R. H., Schmidt, L. A., & Brindis, C. D. (2012). Public health: The toxic truth about sugar. Nature, 482, 2729.Google Scholar
Lv, Y. B., Yin, Z. X., Chei, C. L., Brasher, M. S., Zhang, J., Kraus, V. B., & Zeng, Y. (2016). Serum cholesterol levels within the high normal range are associated with better cognitive performance among Chinese elderly. Journal of Nutrition Health & Aging, 20, 280287.Google Scholar
Lyons, P. M., & Truswell, S. A. (1988). Serotonin precursor influenced by type of carbohydrate meal in healthy adults. American Journal of Clinical Nutrition, 47, 433439.Google Scholar
Ma, F., Wu, T., & Zhao, J. (2017). Plasma homocysteine and serum folate and vitamin B-12 levels in mild cognitive impairment and Alzheimer’s disease: A case-control study. Nutrients, 9, 725.Google Scholar
MacCormack, J., & Lindquist, K. (2019). Feeling ‘hangry’: When hunger is conceptualized as emotion. Emotion, 19, 301319.Google Scholar
Macpherson, H., Robertson, B., Sünram-Lea, S., Stough, C., Kennedy, D., & Scholey, A. (2015). Glucose administration and cognitive function: Differential effects of age and effort during a dual task paradigm in younger and older adults. Psychopharmacology, 232, 11351142.Google Scholar
Macready, A. L., Kennedy, O. B., Ellis, J. A., Williams, C. M., Spencer, J. P. E., & Butler, L. T. (2009). Flavonoids and cognitive function: A review of human randomized controlled trial studies and recommendations for future studies. Genes & Nutrition, 4, 227242.Google Scholar
Madhavadas, S., Kapgal, V. K., Kutty, B. M., & Subramanian, S. (2016). The neuroprotective effect of dark chocolate in monosodium glutamate-induced nontransgenic Alzheimer disease model rats: Biochemical, behavioral, and histological studies. Journal of Dietary Supplements, 13, 449460.Google Scholar
Madhusudanan, M., Menon, M. K., Ummer, K., & Radhakrishnanan, K. (2008). Clinical and etiological profile of tropical ataxic neuropathy in Kerala, South India. European Neurology, 60, 2126.Google Scholar
Madsen, E., & Gitlin, J. D. (2007). Copper and iron disorders of the brain. Annual Review of Neuroscience, 30, 317337.CrossRefGoogle ScholarPubMed
Mahoney, C. R., Taylor, H. A., & Kanarek, R. B. (2007). Effect of an afternoon confectionary snack on cognitive processes critical to learning. Physiology & Behavior, 90, 344352.Google Scholar
Maizey, L., & Tzavella, L. (2019). Barriers and solutions for early career researchers in tackling the reproducibility crisis in cognitive neuroscience. Cortex, 113, 357359.Google Scholar
Majumder, S., & Banik, P. (2019). Geographical variation of arsenic distribution in paddy soil, rice, and rice-based products: A meta-analytic approach and implications to human health. Journal of Environmental Management, 233, 184199.Google Scholar
Makimura, H., Mizuno, T. M., & Isoda, F. (2003). Role of glucocorticoids in mediating effects of fasting and diabetes on hypothalamic gene expression. BMC Physiology, 3, 5.Google Scholar
MAL-ED Network. (2018). Early childhood cognitive development is affected by interactions among illness, diet, enteropathogens and the home environment: Findings from the MAL-ED birth cohort study. BMJ Global Health, 3, e000752.Google Scholar
Mallick, R., Basak, S., & Duttaroy, A. K. (2019). Docosahexaenoic acid, 22:6n-3: Its roles in the structure and function of the brain. International Journal of Developmental Neuroscience, 79, 2131.Google Scholar
Manara, R., D’Agata, L., & Rocco, M. C. (2017a). Neuroimaging changes in Menkes disease, Part 1. American Journal of Neuroradiology, 38, 18501857.Google Scholar
Manara, R., Rocco, M. C., & D’Agata, L. (2017b). Neuroimaging changes in Menkes disease, Part 2. American Journal of Neuroradiology, 38, 18581865.Google Scholar
Manderino, L., Carroll, I., Azcarate-Peril, M. A., Rochette, A., Heinberg, L., Peat, C., & Gunstad, J. (2017). Preliminary evidence for an association between the composition of the gut microbiome and cognitive function in neurologically healthy older adults. Journal of the International Neuropsychological Society, 23, 700705.Google Scholar
Manna, P. K., Mohanta, G. P, Valliappan, K., & Manavalan, R. (1999). Lathyrus and lathyrism: A review. International Journal of Food Properties, 2, 197203.Google Scholar
Manning, C. A., Parsons, M. W., Cotter, E. M., & Gold, P. E. (1997). Glucose effects on declarative and nondeclarative memory in healthy elderly and young adults. Psychobiology, 25, 103108.Google Scholar
Manning, C. A., Ragozzino, M. E., & Gold, P. E. (1993). Glucose enhancement of memory in patients with probable senile dementia of Alzheimer’s type. Neurobiology of Aging, 14, 523528.Google Scholar
Manole, A., Jaunmuktane, Z., & Hargreaves, I. (2017). Clinical, pathological and functional characterization of riboflavin-responsive neuropathy. Brain, 140, 28202837.Google Scholar
Manzetti, S., Zhang, J., & van der Spoel, D. (2014). Thiamine function, metabolism, uptake, and transport. Biochemistry, 53, 821835.Google Scholar
Maran, T., Sachse, P., Martini, M., & Furtner, M. (2017). Benefits of a hungry mind: When hungry, exposure to food facilitates proactive interference resolution. Appetite, 108, 343352.Google Scholar
Marashly, E. T., & Bohlega, S. A. (2017). Riboflavin has neuroprotective potential: Focus on Parkinson’s disease and migraine. Frontiers in Neurology, 8, 333.Google Scholar
Marder, K., Gu, Y., Eberly, S., Tanner, C. M., Scarmeas, N., Oakes, D., & The Huntington Study Group. (2013). Relationship of Mediterranean diet and caloric intake to phenoconversion in Huntington disease. JAMA Neurology, 70, 13821388.Google Scholar
Markus, C. R., Rogers, P. J., Brouns, F., & Schepers, R. (2017). Eating dependence and weight gain; no human evidence for a ‘sugar-addition’ model of overweight. Appetite, 114, 6472.Google Scholar
Marlatt, K. L., Redman, L. M., Burton, J. H., Martin, C. K., & Ravussin, E. (2017). Persistence of weight loss and acquired behaviors 2 y after 2-y calorie restriction intervention. American Journal of Clinical Nutrition, 105, 928935.Google Scholar
Martin, A. J., Dhillon, H. M., & Vardy, J. L. (2019). Neurocognitive function and quality of life outcomes in the ONTRAC study for skin cancer chemoprevention by nicotinamide. Geriatrics, 4, 31.Google Scholar
Martin, C. K., Bhapkar, M., & Pittas, A. (2016). Effect of calorie restriction on mood, quality of life, sleep, and sexual function in healthy nonobese adults: The CALERIE 2 randomised clinical trial. JAMA Internal Medicine, 176, 743752.Google Scholar
Martin, C. K., Bhapkar, M., Pittas, A. G., Pieper, C. F., Das, S. K., Williamson, D. A., Scott, T., Redman, L. M., Stein, R., Gilhooly, C. H., Stewart, T., Robinson, L., & Roberts, S. B. (2016). Comprehensive assessment of long-term effects of reducing intake of energy (CALERIE) Phase 2 study group. Effect of calorie restriction on mood, quality of life, sleep, and sexual function in healthy nonobese adults: The CALERIE 2 randomized clinical trial. JAMA Internal Medicine, 176, 743752.Google Scholar
Martin, C. K., McClernon, J., Chellino, A., & Correa, J. B. (2011). Chapter 49. Food cravings: A central construct in food intake behavior, weight loss, and the neurobiology of appetitive behavior. In Preedy, V. R. (Ed.) Handbook of Behavior, Food & Nutrition (pp. 741755). Berlin, DE: Springer.Google Scholar
Martin, P. Y., & Benton, D. (1999). The influence of a glucose drink on a demanding working memory task. Physiology & Behavior, 67, 6974.Google Scholar
Martinez-Lapiscina, E. H., Clavero, P., Toledo, E., Estruch, R., Salas-Salvado, J., San Julian, B., & Martinez-Gonzalez, M. A. (2013). Mediterranean diet improves cognition: The PREDIMED-NAVARRA randomised trial. Journal of Neurology Neurosurgery & Psychiatry, 84, 13181325.Google Scholar
Martinez-Lapiscina, E. H., Galbete, C., Corella, D., Toledo, E., Buil-Cosiales, P., Salas-Salvado, J., & Martinez-Gonzalez, M. A. (2014). Genotype patterns at CLU, CR1, PICALM and APOE, cognition and Mediterranean diet: The PREDIMED-NAVARRA trial. Genes & Nutrition, 9, 393.Google Scholar
Martinowich, K., Manji, H., & Lu, B. (2007). New insights into BDNF function in depression and anxiety. Nature Neuroscience, 10, 10891093.Google Scholar
Martins, D., Mehta, M. A., & Prata, D. (2017). The “highs and lows” of the human brain on dopaminergics: Evidence from neuropharmacology. Neuroscience & Biobehavioral Reviews, 80, 351371.Google Scholar
Marx, W., Lane, M., Hockey, M., Aslam, H., Berk, M., Walder, K., & Jacka, F. N. (2021). Diet and depression: Exploring the biological mechanisms of action. Molecular Psychiatry, 26, 134150.Google Scholar
Marx, W., Moseley, G., Berk, M., & Jacka, F. (2017). Nutritional psychiatry: The present state of the evidence. Proceedings of the Nutrition Society, 76, 427436.Google Scholar
Masana, M. F., Tyrovolas, S., Kolia, N., Chrysohoou, C., Skoumas, J., Haro, J. M., & Panagiotakos, D. B. (2019). Dietary patterns and their association with anxiety symptoms among older adults: The ATTICA study. Nutrients, 11, Article 1250.Google Scholar
Mason, L. H., Harp, J. P., & Han, D. Y. (2014). Pb neurotoxicity: Neuropsychological effects of lead toxicity. BioMed Research International, 2014, 18.Google Scholar
Massey, K. A., Blakeslee, C. H., & Pitkow, H. S. (1998). A review of physiological and metabolic effects of essential amino acids. Amino Acids, 14, 271300.Google Scholar
Matsumoto, K., & Fukuda, H. (1982). Anisatin modulation of GABA- and pentobarbital-induced enhancement of diazepam binding in a rat brain. Neuroscience Letters, 32, 175179.Google Scholar
Matthews, D. C., Davies, M., Murray, J., Williams, S., Tsui, W. H., Li, Y., & Mosconi, L. (2014). Physical activity, Mediterranean diet and biomarkers-assessed risk of Alzheimer’s: A multi-modality brain imaging study. Advances in Molecular Imaging, 4, 4357.Google Scholar
Mattison, J. A., Roth, G. S., & Beasley, T. M. (2012). Impact of caloric restriction on health and survival in rhesus monkeys: The NIA study. Nature, 489, 318321.Google Scholar
Mattson, M. P. (2005). Energy intake, meal frequency, and health: A neurobiological perspective. Annual Review of Nutrition, 25, 237260.Google Scholar
Mattson, M. P., Moehl, K., Ghena, N., Schmaedick, M., & Cheng, A. (2018). Intermittent metabolic switching, neuroplasticity and brain health. Nature Reviews Neuroscience, 19, 8194.Google Scholar
Mattson, S. N., Crocker, N., & Nguyen, T. T. (2011). Fetal alcohol spectrum disorders: Neuropsychology and behavioural features. Neuropsychology Reviews, 21, 81101.Google Scholar
Maylor, E. A., Simpson, E. E. A., & Secker, D. L. (2006). Effects of zinc supplementation on cognitive function in healthy middle-aged and older adults: The ZENITH study. British Journal of Nutrition, 96, 752760.Google Scholar
McCann, J. C., & Ames, B. N. (2008). Is there convincing biological or behavioral evidence linking vitamin D deficiency to brain dysfunction? FASEB Journal, 22, 9821001.Google Scholar
McCann, J. C., Hudes, M., & Ames, B. N. (2006). An overview of evidence for a causal relationship between dietary availability of choline during development and cognitive function in offspring. Neuroscience & Biobehavioral Reviews, 30, 696712.Google Scholar
McCarty, M. F., & Lerner, A. (2012). The second phase of brain trauma can be controlled by nutraceuticals that suppress DAMP-medicated microglial activation. Expert Review of Neurotherapeutics, 21, 559570.Google Scholar
McCurdy, S. A. (1994). Epidemiology of disaster: The Donner Party [1846-1847]. Western Journal of Medicine, 160, 338342.Google Scholar
McDonald, T. J. W., & Cervenka, M. C. (2018). The expanding role of ketogenic diets in adult neurological disorders. Brain Sciences, 8, Article 148.Google Scholar
McEchron, M. D., Alexander, D. N., Gilmartin, M. R., & Paronish, M. D. (2008). Perinatal nutritional iron deficiency impairs hippocampus-dependent trace eyeblink conditioning in rats. Developmental Neuroscience, 30, 243254.Google Scholar
McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiological Reviews, 87, 873904.Google Scholar
McFarlane, O., Kozakiewicz, M., Kedziora-Kornatowska, K., Gebka, D., Szybalska, A., Szwed, M., & Klich-Raczka, A. (2020). Blood lipids and cognitive performance of aging polish adults: A case-control study based on the PolSenior project. Frontiers in Aging Neuroscience, 12, 590546.Google Scholar
McHill, A. W., Melanson, E. L., & Higgins, J. (2014). Impact of circadian misalignment on energy metabolism during simulated nightshift work. Proceedings of the National Academy of Sciences of the United States of America, 111, 1730217307.Google Scholar
McLean, A., Rubinsztein, J. S., Robbins, T. W., & Sahakian, B. J. (2004). The effects of tyrosine depletion in normal healthy volunteers: Implications for unipolar depression. Psychopharmacology, 171, 286297.Google Scholar
McLean, E., Cogswell, M., Egli, I., Woidyla, D., & de Benoist, B. (2009). Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993-2005. Public Health Nutrition, 12, 444454.Google Scholar
McLellan, T. M., Caldwell, J. A., & Lieberman, H. R. (2016). A review of caffeine’s effects on cognitive, physical and occupational performance. Neuroscience & Biobehavioral Reviews, 71, 294312.Google Scholar
McMillan, L., Owen, L., Kras, M., & Scholey, A. (2011). Behavioural effects of a 10-day Mediterranean diet. Results from a pilot study evaluating mood and cognitive performance. Appetite, 56, 143147.Google Scholar
McNamara, A. E., Walon, J., Flynn, A., Nugent, A. P., McNulty, B. A., & Brennan, L. (2021). The potential of multi-biomarker panels in nutrition research: Total fruit intake as an example. Frontiers in Nutrition, 7, e577720.Google Scholar
McNay, E. C., Fries, T. M., & Gold, P. E. (2000). Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task. Proceedings of the National Academy of Sciences of the United States of America, 97, 28812885.Google Scholar
McNay, E. C., & Gold, P. E. (2002). Food for thought: Fluctuations in brain extracellular glucose provide insight into the mechanisms of memory modulation. Behavioral & Cognitive Neuroscience Reviews, 1, 264280.Google Scholar
McNulty, B., Pentieva, K., Marshall, B., Ward, M., Molloy, A. M., Scott, J. M., & McNulty, H. (2011). Women’s compliance with current folic acid recommendations and achievement of optimal vitamin status for preventing neural tube defects. Human Reproduction, 26, 15301536.Google Scholar
McTavish, S. F. B., Mannie, Z. N., Harmer, C. J., & Cowen, P. J. (2005). Lack of effect of tyrosine depletion on mood in recovered depressed women. Neuropsychopharmacology, 30, 786791.Google Scholar
Meadway, C., George, S., & Braithwaite, R. (1998). Opiate concentrations following the ingestion of poppy seed products – Evidence for ‘the poppy seed defence.’ Forensic Science International, 96, 2938.Google Scholar
Mehla, J., Reeta, K. H., Gupta, P., & Gupta, Y. K. (2010). Protective effect of curcumin against seizures and cognitive impairment in a pentylenetetrazole-kindled epileptic rat model. Life Sciences, 87, 596603.Google Scholar
Melo, H. M., Santos, L. E., & Ferreira, S. T. (2019). Diet-derived fatty acids, brain inflammation, and mental health. Frontiers in Neuroscience, 13, 265.Google Scholar
Mendelsohn, D., Riedel, W. J., & Sambeth, A. (2009). Effects of acute tryptophan depletion on memory, attention, and executive functions: A systematic review. Neuroscience & Biobehavioral Reviews, 33, 926952.Google Scholar
Meng, L., Chen, D., Yang, Y., Zheng, Y., & Hui, R. (2012). Depression increases the risk of hypertension incidence: A meta-analysis of prospective cohort studies. Journal of Hypertension, 30, 842851.Google Scholar
Meng, Q., Ying, Z., Noble, E., Zhao, Y., Agrawal, R., Mikhail, A., Zhuang, Y., Tyagi, E., Zhang, Q., Lee, J. -H., Morselli, M., Orozco, L., Guo, W., Kilts, T. M., Zhu, J., Zhang, B., Pellegrini, M., Xiao, X., & Young, M. F. (2016). Systems nutrigenomics reveals brain gene networks linking metabolic and brain disorders. EBioMedicine, 7, 157166.Google Scholar
Mercer, M. E., & Holder, M. D. (1997). Food cravings, endogenous opioid peptides, and food intake: A review. Appetite, 29, 325352.Google Scholar
Meredith, S. E., Juliano, L. M., Hughes, J. R., & Griffiths, R. R. (2013). Caffeine use disorder: A comprehensive review and research agenda. Journal of Caffeine Research, 3, 114130.Google Scholar
Merrill, D. A., Siddarth, P., Raji, C. A., Emerson, N. D., Rueda, F., Ercoli, L. M., & Small, G. W. (2016). Modifiable risk factors and brain positron emission tomography measures of amyloid and tau in nondemented adults with memory complaints. American Journal of Geriatric Psychiatry, 24, 729737.Google Scholar
Messier, C. (2004). Glucose improvement of memory: A review. European Journal of Pharmacology, 490, 3357.Google Scholar
Messier, C., Gagnon, M., & Knott, V. (1997). Effect of glucose and peripheral glucose regulation on memory in the elderly. Neurobiology of Aging, 18, 297304.Google Scholar
Messier, C., Pierre, J., Desrochers, A., & Gravel, M. (1998). Dose-dependent action of glucose on memory processes in women: Effect on serial position and recall priority. Cognitive Brain Research, 7, 221233.Google Scholar
Messier, C., Tsiakas, M., Gagnon, M., Desrochers, A., & Awad, N. (2003). Effect of age and glucoregulation on cognitive performance. Neurobiology of Aging, 24, 9851003.Google Scholar
Messier, C., Whately, K., Liang, J., Du, L., & Puissant, D. (2007). The effects of a high-fat, high-fructose, and combination diet on learning, weight, and glucose regulation in C57BL/6 mice. Behavioral Brain Research, 178, 139145.Google Scholar
Messier, C., & White, N. M. (1984). Contingent and non-contingent actions of sucrose and saccharin reinforcers Effects on taste preference and memory. Physiology & Behavior, 32, 195203.Google Scholar
Metges, C. C., Petzke, K. J., & Young, V. R. (1999). Dietary requirements for indispensable amino acids in adult humans: New concepts, methods of estimation, uncertainties and challenges. Nutrition & Metabolism, 43, 267276.Google Scholar
Metzger, M. M. (2000). Glucose enhancement of a facial recognition task in young adults. Physiology & Behavior, 68, 549553.Google Scholar
Meule, A. (2016). Dieting and food cue-related working memory performance. Frontiers in Psychology, 7, 1944.Google Scholar
Meule, A., Gearhardt, A. N. (2014). Food addiction in the light of DSM-5. Nutrients, 6, 36533671.Google Scholar
Middaugh, L. D., Grover, T. A., Blackwell, L. A., & Zemp, J. W. (1976). Neurochemical and behavioral effects of diet related perinatal folic acid restriction. Pharmacology Biochemistry & Behavior, 5, 129134.Google Scholar
Milder, J. B., Liang, L. P., & Patel, M. (2010). Acute oxidative stress and systemic Nrf2 activation by the ketogenic diet. Neurobiology of Disease, 40, 238244.Google Scholar
Miller, C. (2009). Updates on pediatric feeding and swallowing problems. Current Opinion in Otolaryngology Head & Neck Surgery, 17, 194199.Google Scholar
Miller, H. C., Struyf, D., Baptist, P., Dalile, B., Van Oudenhove, L., & Van Diest, I. (2018). A mind cleared by walnut oil: The effects of polyunsaturated and saturated fat on extinction learning. Appetite, 126, 147155.Google Scholar
Miller, J. W. (2004). Folate, cognition, and depression in the era of folic acid fortification. Journal of Food Science, 69, S61S64.Google Scholar
Miller, R., Benelam, B., Stanner, S. A., & Buttriss, J. L. (2013). Is snacking good or bad for health: An overview. Nutrition Bulletin, 38, 302332.Google Scholar
Millet, Y., Jouglard, J., & Steinmetz, M. D. (1981). Toxicity of some essential plant oils. Clinical and experimental study. Clinical Toxicology, 18, 14851498.Google Scholar
Millour, S., Noël, L., & Kadar, A. (2011). Pb, Hg, Cd, As, Sb, and Al levels in foodstuffs from the 2nd French total diet study. Food Chemistry, 126, 17871799.Google Scholar
Mills, J. D., Bailes, J. E., Sedney, C. L., Hutchins, H., & Sears, B. (2011). Omega-3 fatty acid supplementation and reduction of traumatic axonal injury in a rodent head injury model: Laboratory investigation. Journal of Neurosurgery, 114, 7784.Google Scholar
Mills, J. D., Hadley, K., & Bailes, J. E. (2011). Dietary supplementation with the omega-3 fatty acid docosahexaenoic acid in traumatic brain injury. Neurosurgery, 68, 474481.Google Scholar
Milner, S. E., Brunton, N. P., & Jones, P. W. (2011). Bioactivities of glycoalkaloids and their aglycones from Solanum species. Journal of Agricultural & Food Chemistry, 59, 34543484.Google Scholar
Mischley, L. K., Lau, R. C., & Bennett, R. D. (2017). Role of diet and nutritional supplements in Parkinson’s disease progression. Oxidative Medicine & Cellular Longevity, 6405278.Google Scholar
Misner, D. L., Jacobs, S., & Shimizu, Y. (2001). Vitamin A deprivation results in reversible loss of hippocampal long-term synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 98, 1171411719.Google Scholar
Mizoroki, T., Meshitsuka, S., & Maeda, S. (2007). Aluminium induces tau aggregation in vitro but not in vivo. Journal of Alzheimer’s Disease, 11, 419427.Google Scholar
Mocking, R. J. T., Harmsen, I., Assies, J., Koeter, M. W. J., Ruhe, H. G., & Schene, A. H. (2016). Meta-analysis and meta-regression of omega-3 polyunsaturated fatty acid supplementation for major depressive disorder. Translational Psychiatry, 6, e756.Google Scholar
Modabbernia, A., Velthorst, E., & Reichenberg, A. (2017). Environmental risk factors for autism: An evidence-based review of systematic reviews and meta-analyses. Molecular Autism, 8, 13.Google Scholar
Mogg, K., Bradley, B. P., Hyare, H., & Lee, S. (1998). Selective attention to food-related stimuli in hunger: Are attentional biases specific to emotional and psychopathological states, or are they also found in normal drive states? Behaviour Research & Therapy, 36, 227237.Google Scholar
Mogi, M., Tsukuda, K., Li, J. M., Iwanami, J., Min, L. J., Sakata, A., & Horiuchi, M. (2007). Inhibition of cognitive decline in mice fed a high-salt and cholesterol diet by the angiotensin receptor blocker, Olmesartan. Neuropharmacology, 53, 899905.Google Scholar
Mohan, D., Yap, K. H., Reidpath, D., Soh, Y. C., McGrattan, A., Stephan, B. C. M., & De, P. E. C. t. (2020). Link between dietary sodium intake, cognitive function, and dementia risk in middle-aged and older adults: A systematic review. Journal of Alzheimer’s Disease, 76, 13471373.Google Scholar
Molden, D. C., Hui, C. M., & Scholer, A. A.(2012). Motivational versus metabolic effects of carbohydrates on self-control. Psychological Science, 23, 11371144.Google Scholar
Molendijk, M., Molero, P., Ortuno Sanchez-Pedreno, F., Van der Does, W., & Angel Martinez-Gonzalez, M. (2018). Diet quality and depression risk: A systematic review and dose-response meta-analysis of prospective studies. Journal of Affective Disorders, 226, 346354.Google Scholar
Molfino, A., Iannace, A., & Colaiacomo, M. C. (2017). Cancer anorexia: Hypothalamic activity and its association with inflammation and appetite-regulating peptides in lung cancer. Journal of Cachexia, Sarcopenia & Muscle, 8, 4047.Google Scholar
Mollison, P. L. (1946). Observations on cases of starvation at Belsen. British Medical Journal, 1, 48.Google Scholar
Molteni, R., Barnard, R. J., Ying, Z., Roberts, C. K., & Gomez-Pinilla, F. (2002). A high-fat, refined sugar diet reduces hippocampal brain-derived neurotrophic factor, neuronal plasticity, and learning. Neuroscience, 112, 803814.Google Scholar
Monk, C., Georgieff, M. K., Xu, D., Hao, X., Bansal, R., Gustafsson, H., & Peterson, B. S. (2016). Maternal prenatal iron status and tissue organization in the neonatal brain. Pediatric Research, 79, 482488.Google Scholar
Monteiro, J., Alves, M. G., Oliveira, P. F., & Silva, B. M. (2019). Pharmacological potential of methylxanthines: Retrospective analysis and future expectations. Critical Reviews in Food Science & Nutrition, 59, 25972625.Google Scholar
Montgomery, A. J., McTavish, S. F. B., Cowen, P. J., & Grasby, P. M. (2003). Reductions of brain dopamine concentration with dietary tyrosine plus phenylalanine depletion: An [11C]raclopride PET study. American Journal of Psychiatry, 160, 18871889.Google Scholar
Moodie, R., Stuckler, D., Monteiro, C., Sheron, N., Neal, B., Thamarangsi, T., Lincoln, P., Casswell, S., & Lancet NCD Action Group. (2013). Profits and pandemics: Prevention of harmful effects of tobacco, alcohol, and ultra-processed food and drink industries. The Lancet, 381, 670679.Google Scholar
Moody, L., Chen, H., & Pan, Y. X. (2017). Early-life nutritional programming of cognition-The fundamental role of epigenetic mechanisms in mediating the relation between early-life environment and learning and memory process. Advances in Nutrition, 8, 337350.Google Scholar
Moog, N. K., Entringer, S., & Heim, C. (2017). Influence of maternal thyroid hormones during gestation on fetal brain development. Neuroscience, 342, 68100.Google Scholar
Moore, E. M., Ames, D., & Mander, A. G. (2014). Among vitamin B12 deficient older people, high folate levels are associated with worse cognitive function: Combined data from three cohorts. Journal of Alzheimer’s Disease, 39, 661668.Google Scholar
Moore, S. A., Yoder, E., Murphy, S., Dutton, G. R., & Spector, A. A. (1991). Astrocytes, not neurons, produce docosahexaenoic acid (22:6 omega-3) and arachidonic acid (20:4 omega-6). Journal of Neurochemistry, 56, 518524.Google Scholar
Morell-Hart, S. (2012). Foodways and resilience under apocalyptic conditions. Journal of Culture and Agriculture, 34, 161171.Google Scholar
Moreno, F. A., Parkinson, D., & Palmer, C. (2010). CSF neurochemicals during tryptophan depletion in individuals with remitted depression and healthy controls. European Neueropsychopharmacology, 20, 1824.Google Scholar
Moreton, E., Baron, P., Tiplady, S., McCall, S., Clifford, B., Langley-Evans, S. C., & Voigt, J. P. (2019). Impact of early exposure to a cafeteria diet on prefrontal cortex monoamines and novel object recognition in adolescent rats. Behavioural Brain Research, 363, 191198.Google Scholar
Morgane, P. J., Austin-LaFrance, R. J., & Bronzino, J. D. (1993). Prenatal malnutrition and development of the brain. Neuroscience & Biobehavioral Reviews, 17, 91128.Google Scholar
Morgane, P. J., Miller, M., & Kemper, T. (1978). The effects of protein malnutrition on the developing central nervous system in the rat. Neuroscience & Biobehavioral Reviews, 2, 137230.Google Scholar
Morgane, P., Mokler, D., & Galler, J. (2002). Effects of prenatal protein malnutrition on the hippocampal formation. Neuroscience & Biobehavioral Reviews, 26, 471483.Google Scholar
Morgese, M. G., & Trabace, L. (2016). Maternal malnutrition in the etiopathogenesis of psychiatric diseases: Role of polyunsaturated fatty acids. Brain Sciences, 6, 24.Google Scholar
Morris, G., Puri, B. K., & Frye, R. E. (2017). The putative role of environmental aluminium in the developmental of chronic neuropathology in adults and children. How strong is the evidence and what could be the mechanisms involved? Metabolic Brain Disease, 32, 13351355.Google Scholar
Morris, J. S., & Dolan, R. J. (2001). Involvement of human amygdala and orbitofrontal cortex in hunger-enhanced memory for food stimuli. Journal of Neuroscience, 21, 53045310.Google Scholar
Morris, M. C., Evans, D. A., Bienias, J. L., Tangney, C. C., Bennett, D. A., Aggarwal, N., & Wilson, R. S. (2003). Dietary fats and the risk of incident Alzheimer disease. Archives of Neurology, 60, 194200.Google Scholar
Morris, M. C., Evans, D. A., Bienias, J. L., Tangney, C. C., & Wilson, R. S. (2004). Dietary fat intake and 6-year cognitive change in an older biracial community population. Neurology, 62, 15731579.Google Scholar
Morris, M. C., Tangney, C. C., Wang, Y., Sacks, F. M., Barnes, L. L., Bennett, D. A., & Aggarwal, N. T. (2015). MIND diet slows cognitive decline with aging. Alzheimers Dementia, 11, 10151022.Google Scholar
Morris, M. C., Tangney, C. C., Wang, Y., Sacks, F. M., Bennett, D. A., & Aggarwal, N. T. (2015). MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dementia, 11, 10071014.Google Scholar
Morris, M. S., Selhub, J., & Jacques, P. F. (2012). Vitamin B-12 and folate status in relation to decline in scores on the Mini-Mental State Examination in the Framingham Heart Study. Journal of the American Geriatrics Society, 60, 14571464.Google Scholar
Mosconi, L., Murray, J., Tsui, W. H., Li, Y., Davies, M., Williams, S., & de Leon, M. J. (2014). Mediterranean diet and magnetic resonance imaging-assessed brain atrophy in cognitively normal individuals at risk for Alzheimer’s disease. Journal of Prevention of Alzheimers Disease, 1, 2332.Google Scholar
Mosegaard, S., Dipace, G., & Bross, P. (2020). Riboflavin deficiency: Implications for general human health and inborn errors of metabolism. International Journal of Molecular Sciences, 21, 3847.Google Scholar
Mosek, A., Natour, H., Neufeld, M. Y., Shiff, Y., & Vaisman, N. (2009). Ketogenic diet treatment in adults with refractory epilepsy: A prospective pilot study. Seizure-European Journal of Epilepsy, 18, 3033.Google Scholar
Most, J., Tosti, V., Redman, L. M., & Fontana, L. (2017). Calorie restriction in humans: An update. Ageing Research Reviews, 39, 3645.Google Scholar
Moubarac, J. -C., Parra, D. C., Cannon, G., & Monteiro, C. A. (2014). Food classification systems based on food processing: Significance and implications for policies and actions: A systematic literature review and assessment. Current Obesity Reports, 3, 256272.Google Scholar
Moulton, C. D., Costafreda, S. G., Horton, P., Ismail, K., & Fu, C. H. Y. (2015). Meta-analysis of structural regional cerebral effects in type 1 and type 2 diabetes. Brain Imaging and Behavior, 9, 651662.Google Scholar
MRC Vitamin Study Research Group. (1991). Prevention of neural tube defects: Results of the Medical Research Council Vitamin Study. The Lancet, 338, 131137.Google Scholar
Muller, D. P. R. (2010). Vitamin E and neurological function. Molecular Nutrition & Food Research, 54, 710718.Google Scholar
Müller, K., Libuda, L., Terschlüsen, A. M., & Kersting, M. (2013). A review of the effects of lunch on adults’ short-term cognitive functioning. Canadian Journal of Dietetic Practice & Research, 74, 181188.Google Scholar
Muraven, M., & Baumeister, R. F. (2000). Self-regulation and depletion of limited resources: Does self-control resemble a muscle? Psychological Bulletin, 126, 247259.Google Scholar
Murch, S. J., Cox, P. A., & Banack, S. A. (2004). A mechanism for slow release of biomagnified cyanobacterial neurotoxins and neurodegenerative disease in Guam. Proceedings of the National Academy of Sciences of the United States of America, 101, 1222812231.Google Scholar
Murphy, T., Dias, G. P., & Thuret, S. (2014). Effects of diet on brain plasticity in animal and human studies: Mind the gap. Neural Plasticity, 2014, 132.Google Scholar
Nabb, S., & Benton, D. (2006). The influence on cognition of the interaction between the macro-nutrient content of breakfast and glucose tolerance. Physiology & Behavior, 87, 1623.Google Scholar
Nagano-Saito, A., Cisek, P., & Perna, A. S. (2012). From anticipation to action, the role of dopamine in perceptual decision making: An fMRI-tyrosine depletion study. Journal of Neurophysiology, 108, 501512.Google Scholar
Najafabadi, M. G., Nikoukar, L. R., Memari, A., Ekhtiari, H., & Beygi, S. (2015). Does Ramadan fasting adversely affect cognitive function in young females? Scientifica, 2015, 432428.Google Scholar
Natarajan, C., & Bright, J. J. (2002). Curcumin inhibits experimental allergic encephalomyelitis by blocking IL-12 signaling through Janus kinase-STAT pathway in T lymphocytes. Journal of Immunology, 168, 65066513.Google Scholar
National CJD Research and Surveillance Unit. (2017). 2017 annual report. https://www.cjd.ed.ac.uk/sites/default/files/report26.pdf (last accessed 21 February 2020).Google Scholar
Naughton, M., Dinan, T. G., & Scott, L. V. (2014). Corticotropin-releasing hormone and the hypothalamic–pituitary–adrenal axis in psychiatric disease. Handbook of Clinical Neurology, 124, 6991.Google Scholar
Nazir, M., Lone, R., & Charoo, B. A. (2019). Infantile thiamine deficiency: New insights into an old disease. Indian Pediatrics, 56, 673681.Google Scholar
Neale, C., Camfield, D., Reay, J., Stough, C., & Scholey, A. (2012). Cognitive effects of two nutraceuticals ginseng and bacopa benchmarked against modafinil: A review and comparison of effect sizes. British Journal of Clinical Pharmacology, 75, 728737.Google Scholar
Nehlig, A. (2016). Effects of coffee/caffeine on brain health and disease: What should I tell my patients? Practical Neurology, 16, 8995.Google Scholar
Nelson, K. M., Dahlin, J. L., Bisson, J., Graham, J., Pauli, G. F., & Walters, M. A. (2017). Curcumin may (not) defy science. SCD Medical Chemistry Letters, 8, 467470.Google Scholar
Nemets, B., Stahl, Z., & Belmaker, R. H. (2002). Addition of omega-3 fatty acid to maintenance medication treatment for recurrent unipolar depressive disorder. American Journal of Psychiatry, 159, 477479.Google Scholar
Nettle, D. (2017). Does hunger contribute to socioeconomic gradients in behavior? Frontiers in Psychology, 8, 358.Google Scholar
Netto, A. B., Netto, C. M., Mahadevan, A., Taly, A. B., & Agadi, J. B. (2016). Tropical ataxic neuropathy – A century old enigma. Neurology India, 64, 11511159.Google Scholar
Newby, P. K., & Tucker, K. L. (2004). Empirically derived eating patterns using factor or cluster analysis: A review. Nutrition Reviews, 62, 177203.Google Scholar
Newby, P. K., Weismayer, C., Akesson, A., Tucker, K. L., & Wolk, A. (2006). Long-term stability of food patterns identified by use of factor analysis among Swedish women. Journal of Nutrition, 136, 626633.Google Scholar
Ng, F., Berk, M., Dean, O., & Bush, A. I. (2008). Oxidative stress in psychiatric disorders: Evidence base and therapeutic implications. International Journal of Neuropsychopharmacology, 11, 851876.Google Scholar
Nguyen, P. H., Gonzalez-Casanova, I., Young, M. F., Truong, T. V., Hoang, H., Nguyen, H., & Ramakrishnan, U. (2017). Preconception micronutrient supplementation with iron and folic acid compared with folic acid alone affects linear growth and fine motor development at 2 years of age: A randomized controlled trial in Vietnam. Journal of Nutrition, 147, 15931601.Google Scholar
Nicolas, J., Hendriksen, P. J. M., Gerssen, A., Bovee, T. F., & Rietjens, I. M. (2014). Marine neurotoxins: State of the art, bottlenecks, and perspectives for mode of action based on methods of detection in seafood. Molecular Nutrition & Food Research, 58, 87100.Google Scholar
Niculescu, M. D., Craciunescu, C. N., & Zeisel, S. H. (2006). Dietary choline deficiency alters global and gene-specific DNA methylation in the developing hippocampus of mouse fetal brains. FASEB Journal, 20, 4349.Google Scholar
Niederhofer, R. E. (1985). The milk sickness. Drake on medical interpretation. Journal of the American Medical Association, 254, 21232125.Google Scholar
Nielsen, T., & Powell, R. A. (2015). Dreams of the Rarebit Fiend: Food and diet as instigators of bizarre and disturbing dreams. Frontiers in Psychology, 6, article 47.Google Scholar
Nikanorova, M., Miranda, M. J., Atkins, M., & Sahlholdt, L. (2009). Ketogenic diet in the treatment of refractory continuous spikes and waves during slow sleep. Epilepsia, 50, 11271131.Google Scholar
Nishimune, T., Watanabe, Y., Okazaki, H., & Akai, H. (2000). Thiamine is decomposed due to Anaphe spp. Entomophagy in seasonal ataxia patients in Nigeria. Journal of Nutrition, 130, 16251628.Google Scholar
Nishizawa, S., Benkelfat, C., & Young, S. N. (1997). Differences between males and females in rates of serotonin synthesis in human brain. Proceedings of the National Academy of Sciences of the United States of America, 94, 53085313.Google Scholar
Nowak, K. L., Fried, L., Jovanovich, A., Ix, J., Yaffe, K., You, Z., & Chonchol, M. (2018). Dietary sodium/potassium intake does not affect cognitive function or brain imaging indices. American Journal of Nephrology, 47, 5765.Google Scholar
Nyaradi, A., Li, J., Hickling, S., Foster, J., & Oddy, W. (2013). The role of nutrition in children’s neurocognitive development, from pregnancy through childhood. Frontiers in Human Neuroscience, 7, Article 97.Google Scholar
Nzwalo, H., & Cliff, J. (2011). Konzo: From poverty, cassava, and cyanogen intake to toxico-nutritional neurological disease. PLOS Neglected Tropical Diseases, 5, 18.Google Scholar
O’Brien, P. D., Hinder, L. M., Callaghan, B. C., & Feldman, E. L. (2017). Neurological consequences of obesity. The Lancet Neurology, 16, 465477.Google Scholar
O’Leary, F., Allman-Farinelli, M., & Samman, S. (2012). Vitamin B-12 status, cognitive decline and dementia: A systematic review of prospective cohort studies. British Journal of Nutrition, 108, 19481961.Google Scholar
O’Neil, A., Quirk, S. E., Housden, S., Brennan, S. L., Williams, L. J., Pasco, J. A., & Jacka, F. N. (2014). Relationship between diet and mental health in children and adolescents: A systematic review. American Journal of Public Health, 104, e31e42.Google Scholar
O’Neil, P. M., & Jarrell, M. P. (1992). Psychological aspects of obesity and very-low-calorie diets. American Journal of Clinical Nutrition, 56, S185S189.Google Scholar
Oddy, W. H., Kendall, G. E., Li, J., Jacoby, P., Robinson, M., de Klerk, N. H., & Stanley, F. J. (2010). The long-term effects of breastfeeding on child and adolescent mental health: A pregnancy cohort study followed for 14 years. Journal of Pediatrics, 156, 568574.Google Scholar
Oguri, T., Hattori, M., & Yamawaki, T. (2012). Neurological deficits in a patient with selenium deficiency due to long-term total parenteral nutrition. Journal of Neurology, 259, 17341735.Google Scholar
Okereke, O. I., Reynolds, C. F., & Mischoulon, D. (2020). Effect of long-term vitamin D3 supplementation vs placebo on risk of depression or clinically relevant depressive symptoms and on change in mood scores: A randomized clinical trial. Journal of the American Medical Association, 324, 471480.Google Scholar
Okereke, O. I., Rosner, B. A., Kim, D. H., Kang, J. H., Cook, N. R., Manson, J. E., & Grodstein, F. (2012). Dietary fat types and 4-year cognitive change in community-dwelling older women. Annals of Neurology, 72, 124134.Google Scholar
Okubo, H., Miyake, Y., Sasaki, S., Murakami, K., Tanaka, K., Fukushima, W., & Fukuoka Kinki Parkinson’s Disease Study Group. (2012). Dietary patterns and risk of Parkinson’s disease: A case-control study in Japan. European Journal of Neurology, 19, 681688.Google Scholar
Olanow, C. W., & Brundin, P. (2013). Parkinson’s disease and alpha synuclein: Is Parkinson’s disease a prion-like disorder? Movement Disorders, 28, 3140.Google Scholar
Olivares, M., & Uauy, R. (1996). Copper as an essential nutrient. American Journal of Clinical Nutrition, 63, S791S796.Google Scholar
Olivo, G., Solstrand Dahlberg, L., & Wiemerslage, L. (2017). Atypical anorexia is not related to brain structural changes in newly diagnosed adolescent patients. International Journal of Eating Disorders, 51, 3945.Google Scholar
Olson, C. M., Bove, C. F., & Miller, E. O. (2007). Growing up poor: Long-term implications for eating patterns and body weight. Appetite, 49, 198207.Google Scholar
Olson, C. R., & Mello, C. V. (2010). Significance of vitamin A to brain function, behavior and learning. Molecular Nutrition and Food Research, 54, 489495.Google Scholar
Omran, M. L., & Morley, J. E. (2000). Assessment of protein energy malnutrition in older persons, Part i: History, examination, body composition, and screening tools. Nutrition, 16, 5063.Google Scholar
Ono, K., Condron, M. M., Ho, L., Wang, J., Zhao, W., Pasinetti, G. M., & Teplow, D. B. (2008). Effects of grape seed-derived polyphenols on amyloid beta-protein self-assembly and cytotoxicity. Journal of Biological Chemistry, 283, 3217632187.Google Scholar
Orquin, J. L., & Kurzban, R. (2016). A meta-analysis of blood glucose effects on human decision making. Psychological Bulletin, 142, 546567.Google Scholar
Oscar-Berman, M., & Marinkovic, K. (2007). Alcohol: Effects on neurobehavioral functions and the brain. Neuropsychology Review, 17, 239257.Google Scholar
Overeem, K., Eyles, D. W., McGrath, J. J., & Burne, T. H. J. (2016). The impact of vitamin D deficiency on behaviour and brain function in rodents. Current Opinion in Behavioral Sciences, 7, 4752.Google Scholar
Owens, D. S., & Benton, D. (1994). The impact of raising blood glucose on reaction time. Neuropsychobiology, 30, 106113.Google Scholar
Pachucki, M. A. (2012). Food pattern analysis over time: Unhealthful eating trajectories predict obesity. International Journal of Obesity, 36, 686694.Google Scholar
Paidi, M. D., Schjoldager, J. G., Lykkesfeldt, J., & Tveden-Nyborg, P. (2014). Chronic vitamin C deficiency promotes redox imbalance in the brain but does not alter sodium-dependent vitamin C transporter 2 expression. Nutrients, 6, 18091822.Google Scholar
Pan, W., Chang, Y., & Yeh, W. (2012). Co-occurrence of anemia, marginal vitamin B-6, and folate status and depressive symptoms in older adults. Journal of Geriatric Psychiatry & Neurology, 25, 170178.Google Scholar
Pandit, R., Mercer, J. G., Overduin, J., la Fleur, S. E., & Adan, R. A. (2012). Dietary factors affect food reward and motivation to eat. Obesity Facts, 5, 221242.Google Scholar
Panter, K. E., & James, L. F. (1990). Natural plant toxicants in milk: A review. Journal of Animal Science, 68, 892904.Google Scholar
Pardridge, W. M. (2007). Blood-brain barrier delivery. Drug Discovery Today, 12, 5461.Google Scholar
Parent, M. B., Krebs-Kraft, D. L., Ryan, J. P., Wilson, J. S., Harenski, C., & Hamann, S. (2011). Glucose administration enhances fMRI brain activation and connectivity related to episodic memory encoding for neutral and emotional stimuli. Neuropsychologia, 49, 10521066.Google Scholar
Parent, M. B., Varnhagen, C., & Gold, P. E. (1999). A memory-enhancing emotionally arousing narrative increases blood glucose levels in human subjects. Psychobiology, 27, 386396.Google Scholar
Pariera Dinkins, C. L., & Peterson, R. K. (2008). A human dietary risk assessment associated with glycoalkaloid responses of potato to Colorado potato beetle defoliation. Food & Chemical Toxicology, 46, 28372840.Google Scholar
Parkes, M., & White, K. G. (2000). Glucose attenuation of memory impairments. Behavioral Neuroscience, 114, 307319.Google Scholar
Parletta, N., Zarnowiecki, D., Cho, J., Wilson, A., Bogomolova, S., Villani, A., … O’Dea, K. (2019). A Mediterranean-style dietary intervention supplemented with fish oil improves diet quality and mental health in people with depression: A randomized controlled trial (HELFIMED). Nutritional Neuroscience, 22, 474487.Google Scholar
Parsons, A. G., Zhou, S. J., Spurrier, N. J., & Makrides, M. (2008). Effect of iron supplementation during pregnancy on the behaviour of children at early school age: Long-term follow-up of a randomised controlled trial. British Journal of Nutrition, 99, 11331139.Google Scholar
Parsons, M. W., & Gold, P. E. (1992). Glucose enhancement of memory in elderly humans: An inverted-U dose-response curve. Neurobiology of Aging, 13, 401404.Google Scholar
Pase, M. P., Scholey, A. B., Pipingas, A., Kras, M., Nolidin, K., Gibbs, A., & Stough, C. (2013). Cocoa polyphenols enhance positive mood states but not cognitive performance: A randomized, placebo-controlled trial. Journal of Psychopharmacology, 27, 451458.Google Scholar
Patel, P. S., Sharp, S. J., Jansen, E., Luben, R. N., Khaw, K. -T., Wareham, N. J., & Forouhi, N. G. (2010). Fatty acids measured in plasma and erythrocyte-membrane phospholipids and deprived by food-frequency questionnaire and the risk of new-onset type 2 diabetes: A pilot study in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk cohort. American Journal of Clinical Nutrition, 92, 12141222.Google Scholar
Patočka, J., & Plucar, B. (2003). Pharmacology and toxicology of absinthe. Journal of Applied Biomedicine, 1, 199205.Google Scholar
Patra, J., Bakker, R., Irving, H., Jaddoe, V. W., Malini, S., & Rehm, J. (2011). Dose-response relationship between alcohol consumption before and during pregnancy and the risks of low birthweight, preterm birth and small for gestational age (SGA): A systematic review and meta-analysis. British Journal of Obstetrics & Gynaecology, 118, 14411421.Google Scholar
Paula-Barbosa, M. M., Andrade, J. P., Azevedo, F. P., Madeira, M. D., & Alves, M. C. (1988). Lengthy administration of low-protein diet to adult rats induces cell loss in the hippocampal formation but not in the medial prefrontal cortex. Society for Neuroscience Abstracts, 14, 368.Google Scholar
Paula-Barbosa, M. M., Andrade, J. P., & Castedo, J. L. (1989). Cell loss in the cerebellum and hippocampal formation of adult rats after long-term low-protein diet. Experimental Neurology, 103, 186193.Google Scholar
Peacock, A., Leung, J., Larney, S., College, S., Hickman, M., Rehm, J., Giovino, G. A., West, R., Hall, W., Griffiths, P., Ali, R., Gowing, L., Marsden, J., Ferrari, A. J., Grebely, J., Farrell, M., & Degenhardt, L. (2018). Global statistics on alcohol, tobacco and illicit drug use: 2017 status report. Addiction, 113, 19051926.Google Scholar
Pearson-Leary, J., Jahagirdar, V., Sage, J., & McNay, E. C. (2018). Insulin modulates hippocampally-mediated spatial working memory via glucose transporter-4. Behavioural Brain Research, 338, 3239.Google Scholar
Pedditizi, E., Peters, R., & Beckett, N. (2016). The risk of overweight/obesity in mid-life and late life for the development of dementia: A systematic review and meta-analysis of longitudinal studies. Age & Ageing, 45, 1421.Google Scholar
Peet, M., & Horrobin, D. F. (2002). A dose-ranging study of the, effects of ethyl-eicosapentaenoate in patients with ongoing depression despite apparently adequate treatment with standard drugs. Archives of General Psychiatry, 59, 913919.Google Scholar
Pelchat, M. L., Johnson, A., Chan, R., Valdez, J., & Ragland, J. D. (2004). Images of desire: Food-craving activation during fMRI. NeuroImage, 23, 14861493.Google Scholar
Pelsser, L. M., Frankena, K., Toorman, J., & Rodrigues Pereira, R. (2017). Diet and ADHD, reviewing the evidence: A systematic review of meta-analyses of double-blind placebo-controlled trials evaluating the efficacy of diet interventions on the behavior of children with ADHD. PLoS One, 12, e0169277.Google Scholar
Pender, S., Gilbert, S. J., & Serpell, L. (2014). The neuropsychology of starvation: Set-shifting and central coherence in a fasted nonclinical sample. PLoS One, 9, e110743.Google Scholar
Penland, J. G. (2000). Behavioral data and methodology issues in studies of zinc nutrition in humans. Journal of Nutrition, 130, S361S364.Google Scholar
Pentieva, K., McGarel, C., McNulty, B., Ward, M., Elliott, N., Strain, J. J., & McNulty, H. (2012). Effect of folic acid supplementation during pregnancy on growth and cognitive development of the offspring: A pilot follow-up investigation of children of FASSTT study participants. Proceedings of the Nutrition Society, 71, E139E139.Google Scholar
Perez-Cornago, A., de la Iglesia, R., Lopez-Legarrea, P., Abete, I., Navas-Carretero, S., Lacunza, C. I., & Zulet, M. A. (2014). A decline in inflammation is associated with less depressive symptoms after a dietary intervention in metabolic syndrome patients: A longitudinal study. Nutrition Journal, 13, Article 36.Google Scholar
Perez-Cornago, A., Sanchez-Villegas, A., Bes-Rastrollo, M., Gea, A., Molero, P., Lahortiga-Ramos, F., & Martinez-Gonzalez, M. Á. (2017). Relationship between adherence to dietary approaches to stop hypertension (DASH) diet indices and incidence of depression during up to 8 years of follow-up. Public Health Nutrition, 20, 23832392.Google Scholar
Perkins, A. J., Hendrie, H. C., Callahan, C. M., Gao, S., Unverzagt, F. W., Xu, Y., & Hui, S. L. (1999). Association of antioxidants with memory in a multiethnic elderly sample using the Third National Health and Nutrition Examination Survey. American Journal of Epidemiology, 150, 3744.Google Scholar
Perkins, J., Rockli, K., Krishna, A., McGovern, M., Aguayo, M., & Subramanian, S. (2017). Understanding the association between stunting and child development in low and middle income countries: Next steps for research and intervention. Social Science & Medicine, 193, 101109.Google Scholar
Perlis, R. H., Perlis, C. S., Wu, Y., Hwang, C., Joseph, M., & Nierenberg, A. A. (2005). Industry sponsorship and financial conflict of interest in the reporting of clinical trials in psychiatry. American Journal of Psychiatry, 162, 19571960.Google Scholar
Pervin, M., Hasnat, M. A., Lee, Y. M., Kim, D. H., Jo, J. E., & Lim, B. O. (2014). Antioxidant activity and acetylcholinesterase inhibition of grape skin anthocyanin (GSA). Molecules, 19, 94039418.Google Scholar
Petersen, M., Aaroe, L., Jensen, N., & Curry, O. (2014). Social welfare and the psychology of food sharing: Short-term hunger increases support for social welfare. Political Psychology, 35, 757773.Google Scholar
Petersson, S. D., & Philippou, E. (2016). Mediterranean diet, cognitive function, and dementia: A systematic review of the evidence. Advances in Nutrition, 7, 889904.Google Scholar
Peuhkuri, K., Sihvola, N., & Korpela, R. (2012). Diet promotes sleep duration and quality. Nutrition Research, 32, 309319.Google Scholar
Pfisterer, K. J., Sharrat, M. T., Heckman, G. G., & Keller, H. H. (2016). Vitamin B-12 status in older adults living in Ontario long-term care homes: Prevalence and incidence of deficiency with supplementation as a protective factor. Applied Physiology Nutrition & Metabolism, 41, 219222.Google Scholar
Philippou, E., & Constantinou, M. (2014). The influence of glycemic index on cognitive functioning: A systematic review of the evidence. Advances in Nutrition, 5, 119130.Google Scholar
Phillips, F., Chen, C. N., & Crisp, A. H. (1975). Isocaloric diet changes and electroencephalographic sleep. The Lancet, 2, 723725.Google Scholar
Piech, R. M., Hampshire, A., Owen, A. M., & Parkinson, J. A. (2009). Modulation of cognitive flexibility by hunger and desire. Cognition & Emotion, 23, 528540.Google Scholar
Piech, R. M., Pastorino, M. T., & Zald, D. H. (2010). All I saw was the cake: Hunger effects on attentional capture by visual food cues. Appetite, 54, 579582.Google Scholar
Pifferi, F., & Aujard, F. (2019). Caloric restriction, longevity and aging: Recent contributions from human and non-human primate studies. Progress in Neuropsychopharmacology & Biological Psychiatry, 95, 109702.Google Scholar
Pinelli, J., Saigal, S., & Atkinson, S. A. (2003). Effect of breastmilk consumption on neurodevelopmental outcomes at 6 and 12 months of age in VLBW infants. Advances in Neonatal Care, 3, 7687.Google Scholar
Pino, J. M. V., Nishiduka, E. S., & da Luz, M. H. M. (2020). Iron-deficient diet induces distinct protein profile related to energy metabolism in the striatum and hippocampus of adult rats. Nutritional Neuroscience, 25, 207218.Google Scholar
Pistell, P. J., Morrison, C. D., Gupta, S., Knight, A. G., Keller, J. N., Ingram, D. K., & Bruce-Keller, A. J. (2010). Cognitive impairment following high fat diet consumption is associated with brain inflammation. Journal of Neuroimmunology, 219, 2532.Google Scholar
Pittenger, C., & Duman, R. S. (2008). Stress, depression, and neuroplasticity: A convergence of mechanisms. Neuropsychopharmacology, 33, 88109.Google Scholar
Polivy, J. (1996). Psychological consequences of food restriction. Journal of the American Dietetic Association, 96, 589592.Google Scholar
Polivy, J., Zeitlin, S. B., Herman, C. P., & Beal, A. L. (1994). Food restriction and binge eating: A study of former prisoners of war. Journal of Abnormal Psychology, 103, 409411.Google Scholar
Pomponi, M., Loria, G., Salvati, S., Di Biase, A., Conte, G., Villella, C., La Torre, G. (2014). DHA effects in Parkinson disease depression. Basal Ganglia, 4, 6166.Google Scholar
Pomytkin, I., Costa-Nunes, J. P., & Kasatkin, V. (2018). Insulin receptor in the brain: Mechanisms of activation and the role in the CNS pathology and treatment. CNS Neuroscience & Therapeutics, 24, 763774.Google Scholar
Popova, S., Lange, S., Probst, C., Gmel, G., & Rehn, J. (2017). Estimation of national, regional, and global prevalence of alcohol use during pregnancy and fetal alcohol syndrome: A systematic review and meta-analysis. The Lancet Global Health, 4, e290e299.Google Scholar
Power, A. J., Keegan, B. F., & Nolan, K. (2002). The seasonality and role of neurotoxin tetramine in the salivary glands of the red whelk Neptunea antiqua (L.). Toxicon, 40, 419425.Google Scholar
Power, M. L., & Schulkin, J. (2008). Anticipatory physiological regulation in feeding biology: Cephalic phase responses. Appetite, 50, 194206.Google Scholar
Powers, H. J. (2003). Riboflavin (vitamin B-2) and health. American Journal of Clinical Nutrition, 77, 13521360.Google Scholar
Prado, E., & Dewey, K. (2014). Nutrition and brain development in early life. Nutrition Reviews, 72, 267284.Google Scholar
Prasad, A. N., Levin, S., Rupar, C. A., & Prasad, C. (2011). Menkes disease and infantile epilepsy. Brain & Development, 33, 866876.Google Scholar
Prehn, K., Jumpertz von Schwartzenberg, R. J., & Mai, K. (2017). Caloric restriction in older adults: Differential effects of weight loss and reduced weight on brain structure and function. Cerebral Cortex, 27, 17651778.Google Scholar
Prentice, A. M. (2005). Starvation in humans: Evolutionary background and contemporary implications. Mechanisms of Ageing & Development, 126, 976981.Google Scholar
Prins, M. L., Fujima, L. S., & Hovda, D. A. (2005). Age-dependent reduction of cortical contusion volume by ketones after traumatic brain injury. Journal of Neuroscience Research, 82, 413420.Google Scholar
Prinz, R. J., Roberts, W. A., & Hantman, E. (1980). Dietary correlates of hyperactive behavior in children. Journal of Consulting & Clinical Psychology, 48, 760769.Google Scholar
Prusiner, S. B. (1997). Prion diseases and the BSE crisis. Science, 278, 245251.Google Scholar
Prust, M., Meijer, J., & Westerink, R. (2020). The plastic brain: Neurotoxicity of micro- and nanoplastics. Particle & Fibre Toxicology, 17, Article 24.Google Scholar
Pu, H., Guo, Y., Zhang, W., Huang, L., Wang, G., Liou, A. K., & Wang, Y. (2013). Omega-3 polyunsaturated fatty acid supplementation improves neurologic recovery and attenuates white matter injury after experimental traumatic brain injury. Journal of Cerebral Blood Flow & Metabolism, 33, 14741484.Google Scholar
Pursey, K. M., Stanwell, P., Gearhardt, A. N., Collins, C. E., & Burrows, T. L. (2014). The prevalence of food addiction as assessed by the Yale Food Addiction Scale: A systematic review. Nutrients, 6, 45524590.Google Scholar
Qin, B., Xun, P., & Jacobs, D. R. (2017). Intake of niacin, folate, vitamin B-6, and vitamin B-12 through young adulthood and cognitive function in midlife: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. American Journal of Clinical Nutrition, 106, 10321040.Google Scholar
Qiu, G., Liu, S., & So, K. -F. (2010). Dietary restriction and brain health. Neuroscience Bulletin, 26, 5565.Google Scholar
Quigley, M., Embleton, N. D., & McGuire, W. (2018). Formula versus donor breast milk for feeding preterm or low birth weight infants. Cochrane Database of Systematic Reviews(6). doi: 10.1002/14651858.CD002971.pub3Google Scholar
Raab, K., Kirsch, P., & Mier, D. (2016). Understanding the impact of 5-HTTLPR, antidepressants, and acute tryptophan depletion on brain activation during facial emotion processing: A review of the imaging literature. Neuroscience & Biobehavioral Reviews, 71, 176197.Google Scholar
Rabassa, M., Cherubini, A., Zamora-Ros, R., Urpi-Sarda, M., Bandinelli, S., Ferrucci, L., & Andres-Lacueva, C. (2015). Low levels of a urinary biomarker of dietary polyphenol are associated with substantial cognitive decline over a 3-year period in older adults: The Invecchiare in Chianti Study. Journal of the American Geriatric Society, 63, 938946.Google Scholar
Ragozzino, M. E., Unick, K. E., & Gold, P. E. (1996). Hippocampal acetylcholine release during memory testing in rats: Augmentation by glucose. Proceedings of the National Academy of Sciences of the United States of America, 93, 46934698.Google Scholar
Rainey-Smith, S. R., Brown, B. M., Sohrabi, H. R., Shah, T., Goozee, K. G., Gupta, V. B., & Martins, R. N. (2016). Curcumin and cognition: A randomised, placebo-controlled, double-blind study of community-dwelling older adults. British Journal of Nutrition, 115, 21062113.Google Scholar
Rajakumar, K. (2000). Pellagra in the United States: A historical perspective. Southern Medical Journal, 93, 272277.Google Scholar
Ralph-Nearman, C., Achee, M., Lapidus, R., Stewart, J. L., & Filik, R. (2019). A systematic and methodological review of attentional biases in eating disorders: Food, body, and perfectionism. Brain & Behavior, 9, e01458.Google Scholar
Ramirez, M. R., Izquierdo, I., Raseira, M. D. B., Zuanazzi, J. A., Barros, D., & Henriques, A. T. (2005). Effect of lyophilised Vaccinium berries on memory, anxiety and locomotion in adult rats. Pharmacological Research, 52, 457462.Google Scholar
Ramm-Pettersen, A., Stabell, K. E., Nakken, K. O., & Selmer, K. K. (2014). Does ketogenic diet improve cognitive function in patients with GLUT1-DS? A 6- to 17-month follow-up study. Epilepsy & Behavior, 39, 111115.Google Scholar
Ramos, M. I., Allen, L. H., & Mungas, D. M. (2005). Low folate status is associated with impaired cognitive function and dementia in the Sacramento Area Latino Study on Aging. American Journal of Clinical Nutrition, 82, 13461352.Google Scholar
Rana, S., Kumar, S., Rathore, N., Padwad, Y., & Bhushan, S. (2016). Nutrigenomics and its impact on life-style associated metabolic diseases. Current Genomics, 17, 261278.Google Scholar
Randolph, T. G. (1956). The descriptive features of food addiction. Addictive Eating & Drinking, 17, 198224.Google Scholar
Rawat, K., Singh, N., Kumari, P., & Saha, L. (2021). A review on preventive role of ketogenic diet (KD) in CNS disorders from the gut microbiota perspective. Reviews in the Neurosciences, 32, 143157.Google Scholar
Raynor, H. A., & Epstein, L. H. (2003). The relative-reinforcing value of food under differing levels of food deprivation and restriction. Appetite, 40, 1524.Google Scholar
Reboul, E. (2018). Vitamin E intestinal absorption: Regulation of membrane transport across the enterocyte. IUBMB Life, 71, 416423.Google Scholar
Reeds, P. J. (2000). Dispensable and indispensable amino acids for humans. Journal of Nutrition, 130, S1835S1840.Google Scholar
Reedy, J., & Krebs-Smith, S. M. (2010). Dietary sources of energy, solid fats, and added sugars among children and adolescents in the United States. Journal of the American Dietetic Association, 110, 14771484.Google Scholar
Reeta, K. H., Mehla, J., Pahuja, M., & Gupta, Y. K. (2011). Pharmacokinetic and pharmacodynamic interactions of valproate, phenytoin, phenobarbitone and carbamazepine with curcumin in experimental models of epilepsy in rats. Pharmacology Biochemestry & Behavior, 99, 399407.Google Scholar
Reger, M. A., Henderson, S. T., Hale, C., Cholerton, B., Baker, L. D., Watson, G. S., & Craft, S. (2004). Effects of beta-hydroxybutyrate on cognition in memory-impaired adults. Neurobiology of Aging, 25, 311314.Google Scholar
Rehm, J., Hasan, O. S., Black, S. R., Shield, K. D., & Schwarzinger, M. (2019). Alcohol use and dementia: A systematic scoping review. Alzheimer’s Research & Therapy, 11, Article 1.Google Scholar
Reichelt, A. C., Killcross, S., Hambly, L. D., Morris, M. J., & Westbrook, R. F. (2015). Impact of adolescent sucrose access on cognitive control, recognition memory, and parvalbumin immunoreactivity. Learning & Memory, 22, 215224.Google Scholar
Reichelt, A. C., Loughman, A., Bernard, A., Raipuria, M., Abbott, K. N., Dachtler, J., & Moore, R. J. (2020). An intermittent hypercaloric diet alters gut microbiota, prefrontal cortical gene expression and social behaviours in rats. Nutritional Neuroscience, 23, 613627.Google Scholar
Reijmer, Y. D., van den Berg, E., Ruis, C., Kappelle, L. J., & Biessels, G. J. (2010). Cognitive dysfunction in patients with type 2 diabetes. Diabetes Metabolism Research & Reviews, 26, 507519.Google Scholar
Reitz, C., & Mayeux, R. (2014). Alzheimer disease: Epidemiology, diagnostic criteria, risk factors and biomarkers. Biochemical Pharmacology, 88, 640651.Google Scholar
Rennie, G., Chen, A. C., Dhillon, H., Vardy, J., & Damian, D. L. (2015). Nicotinamide and neurocognitive function. Nutritional Neuroscience, 18, 193200.Google Scholar
Ribeiro, J. A., & Sebastião, A. M. (2010). Caffeine and adenosine. Journal of Alzheimer’s Disease, 20, S3S15.Google Scholar
Riby, L. M. (2004). The impact of age and task domain on cognitive performance: A meta-analytic review of the glucose facilitation effect. Brain Impairment, 5, 145165.Google Scholar
Ricciarelli, R., Argellati, F., Pronzato, M. A., & Domenicotti, C. (2007). Vitamin E and neurodegenerative diseases. Molecular Aspects of Medicine, 28, 591606.Google Scholar
Rice, D., & Barone, S. (2000). Critical periods of vulnerability for the developing nervous system: Evidence from humans and animal models. Environmental Health Perspectives, 108, 511533.Google Scholar
Rieger, J., Bähr, O., Maurer, G. D., Hattingen, E., Franz, K., Brucker, D., & Steinbach, J. P. (2014). ERGO: A pilot study of ketogenic diet in recurrent glioblastoma Erratum in /ijo/45/6/2605. International Journal of Oncology, 44, 18431852.Google Scholar
Rijnsburger, M., Unmehopa, U., Eggels, L., Serlie, M., & La Fleur, S. (2019). One-week exposure to a free choice high-fat high-sugar diet does not disrupt blood-brain barrier permeability in fed or overnight fasted rats. Nutritional Neuroscience, 22, 541550.Google Scholar
Rincel, M., Lepinay, A. L., Janthakhin, Y., Soudain, G., Yvon, S., Da Silva, S., & Darnaudery, M. (2018). Maternal high-fat diet and early life stress differentially modulate spine density and dendritic morphology in the medial prefrontal cortex of juvenile and adult rats. Brain Structure & Function, 223, 883895.Google Scholar
Rivadeneyra, J., Cubo, E., Gil, C., Calvo, S., Mariscal, N., & Martinez, A. (2016). Factors associated with Mediterranean diet adherence in Huntington’s disease. Clinical Nutrition ESPEN, 12, e7e13.Google Scholar
Rizza, R., Haymond, M., Cryer, P., & Gerich, J. (1979). Differential effects of epinephrine on glucose production and disposal in man. American Journal of Physiology, 237, E356E362.Google Scholar
Rizzo, T., Metzger, B., Dooley, S., & Cho, N. (1997). Early malnutrition and child neurobehavioral development: Insights from the study of children of diabetic mothers. Child Development, 68, 2638.Google Scholar
Robinson, E., Aveyard, P., Daley, A., Jolly, K., Lewis, A., Lycett, D., & Higgs, S. (2013). Eating attentively: A systematic review and meta-analysis of the effect of food intake memory and awareness on eating. American Journal of Clinical Nutrition, 97, 728742.Google Scholar
Rogers, P. J. (2017). Food and drug addictions: Similarities and differences. Pharmacology, Biochemistry & Behavior, 153, 182190.Google Scholar
Rogers, P. J., Ferriday, D., Jebb, S. A., & Brunstrom, J. M. (2016). Connecting biology with psychology to make sense of appetite control. Nutrition Bulletin, 41, 344352.Google Scholar
Ropacki, S. A., Patel, S. M., & Hartman, R. E. (2013). Pomegranate supplementation protects against memory dysfunction after heart surgery: A pilot study. Evidence Based Complementary & Alternative Medicine, 2013, Article 932401.Google Scholar
Rosas, L. G., & Eskenazi, B. (2008). Pesticides and child neurodevelopment. Current Opinion in Pediatrics, 20, 191197.Google Scholar
Rose, W. C. (1968). The sequence of events leading to the establishment of the amino acid needs of man. American Journal of Public Health, 58, 20202027.Google Scholar
Rose, W. C., Haines, W. J., & Warner, D. T. (1954). The amino acid requirements of man: The role of lysine, arginine and tryptophan. Journal of Biological Chemistry, 206, 421430.Google Scholar
Rosko, L., Smith, V. N., Yamazaki, R., & Huang, J. K. (2019). Oligodendrocyte bioenergetics in health and disease. The Neuroscientist, 25, 334343.Google Scholar
Roth, C., Magnus, P., Schjolberg, S., Stoltenberg, C., Suren, P., McKeague, I. W., & Susser, E. (2011). Folic acid supplements in pregnancy and severe language delay in children. Journal of the American Medical Association, 306, 15661573.Google Scholar
Rothstein, D. S. (2013). Breastfeeding and children’s early cognitive outcomes. Review of Economics and Statistics, 95, 919931.Google Scholar
Rotstein, D. L., Cortese, M., Fung, T. T., Chitnis, T., Ascherio, A., & Munger, K. L. (2019). Diet quality and risk of multiple sclerosis in two cohorts of US women. Multiple Sclerosis, 25, 17731780.Google Scholar
Roytio, H., Mokkala, K., Vahlberg, T., & Laitinen, K. (2017). Dietary intake of fat and fibre according to reference values relates to higher gut microbiota richness in overweight pregnant women. British Journal of Nutrition, 118, 343352.Google Scholar
Roza, S. J., van Batenburg-Eddes, T., Steegers, E. A., Jaddoe, V. W., Mackenbach, J. P., Hofman, A., & Tiemeier, H. (2010). Maternal folic acid supplement use in early pregnancy and child behavioural problems: The Generation R Study. British Journal of Nutrition, 103, 445452.Google Scholar
Rozin, P., Dow, S., Moscovitch, M., & Rajaram, S. (1998). What causes humans to begin and end a meal? A role for memory for what has been eaten, as evidenced by a study of multiple meal eating in amnesic patients. Psychological Science, 9, 392396.Google Scholar
Ruddock, H. K., Christiansen, P., Halford, J., & Hardman, C. A. (2017). The development and validation of the Addiction-like Eating Behaviour Scale. International Journal of Obesity, 41, 17101717.Google Scholar
Rude, R. K. (1998). Magnesium deficiency: A cause of heterogenous disease in humans. Journal of Bone & Mineral Research, 13, 749758.Google Scholar
Rudell, J. B., Rechs, A. J., & Kelman, T. J. (2011). The anterior piriform cortex is sufficient for detecting depletion of an indispensable amino acid, showing independent cortical sensory function. Journal of Neuroscience, 31, 15831590.Google Scholar
Ruhé, H. G., Mason, N. S., & Schene, A. H. (2007). Mood is indirectly related to serotonin, norepinephrine, and dopamine levels in humans: A meta-analysis of monoamine depletion studies. Molecular Psychiatry, 12, 331359.Google Scholar
Rutkowsky, J. M., Lee, L. L., Puchowicz, M., Golub, M. S., Befroy, D. E., & Wilson, D. W. (2018). Reduced cognitive function, increased blood-brain-barrier transport and inflammatory responses, and altered brain metabolites in LDLr -/-and C57BL/6 mice fed a western diet. PLoS One, 13, e0191909.Google Scholar
Sadeghi, O., Keshteli, A. H., Afshar, H., Esmaillzadeh, A., & Adibi, P. (2021). Adherence to Mediterranean dietary pattern is inversely associated with depression, anxiety and psychological distress. Nutritional Neuroscience, 24, 248259.Google Scholar
Saito, Y. (2020). Selenoprotein P as an in vivo redox regulator: Disorders related to its deficiency and excess. Journal of Clinical Biochemistry & Nutrition, 66, 17.Google Scholar
Sakurai, T., Kitadate, K., Nishioka, H., Fujii, H., Ogasawara, J., Kizaki, T., & Ohno, H. (2013). Oligomerised lychee fruit-derived polyphenol attenuates cognitive impairment in senescence-accelerated mice and endoplasmic reticulum stress in neuronal cells. British Journal of Nutrition, 110, 15491558.Google Scholar
Salzman, M. (2006). Methanol neurotoxicity. Clinical Toxciology, 44, 8990.Google Scholar
Sample, C. H., Jones, S., Hargrave, S. L., Jarrard, L. E., & Davidson, T. L. (2016). Western diet and the weakening of the interoceptive stimulus control of appetitive behavior. Behavioral Brain Research, 312, 219230.Google Scholar
Sánchez-Lara, K., Arrieta, O., & Pasaye, E. (2013). Brain activity correlated with food preferences: A functional study comparing advanced non-small cell lung cancer patients with and without anorexia. Nutrition, 29, 10131019.Google Scholar
Sánchez-Lozada, L. G., Le, M.. Segal, M., & Johnson, R. J. (2008). How safe is fructose for persons with or without diabetes? American Journal of Clinical Nutrition, 88, 11891890.Google Scholar
Sanchez-Villegas, A., Delgado-Rodriguez, M., Alonso, A., Schlatter, J., Lahortiga, F., Serra Majem, L., & Martinez-Gonzalez, M. A. (2009). Association of the Mediterranean dietary pattern with the incidence of depression: The Seguimiento Universidad de Navarra/University of Navarra follow-up (SUN) cohort. Archives of General Psychiatry, 66, 10901098.Google Scholar
Sánchez-Villegas, A., Galbete, C., Martinez-González, M. Á., Martinez, J. A., Razquin, C., Salas-Salvadó, J., & Martí, A. (2011). The effect of the Mediterranean diet on plasma brain-derived neurotrophic factor (BDNF) levels: The PREDIMED-NAVARRA randomized trial. Nutritional Neuroscience, 14, 195201.Google Scholar
Sandhu, K. V., Sherwin, E., Schellekens, H., Stanton, C., Dinan, T. G., & Cryan, J. F. (2017). Feeding the microbiota-gut-brain axis: Diet, microbiome, and neuropsychiatry. Translational Research, 179, 223244.Google Scholar
Sandstead, H. H. (2000). Causes of iron and zinc deficiencies and their effects on brain. Journal of Nutrition, 130, S347S349.Google Scholar
Sandstead, H. H. (2003). Zinc is essential for brain development and function. Journal of Trace Elements in Experimental Medicine, 16, 165173.Google Scholar
Sanfeliu, C., Sebastià, J., Cristòfol, R., & Rodrìguez-Farrê, E. (2003). Neurotoxicity of organomercurial compounds. Neurotoxicity Research, 5, 283306.Google Scholar
Sarkar, T., Patro, N., & Patro, I. (2019). Cumulative multiple early life hits – A potent threat leading to neurological disorders. Brain Research Bulletin, 147, 5868.Google Scholar
Sato, K. (2018). Why is vitamin B6 effective in alleviating the symptoms of autism? Medical Hypotheses, 115, 103106.Google Scholar
Sato, S., Nakagawasai, O., & Tan-No, K. (2011). Executive function of postweaning protein malnutrition in mice. Biological & Pharmaceutical Bulletin, 34, 14131417.Google Scholar
Saunders, J., Degenhardt, L., Reed, G., & Poznyak, V. (2019). Alcohol use disorders in ICD-11: Past, present and future. Alcohol: Clinical and Experimental Research, 43, 16171631.Google Scholar
Sayette, M. A. (2016). The role of craving in substance use disorders: Theoretical and methodological issues. Annual Review of Clinical Psychology, 12, 407433.Google Scholar
Scally, M. C., Ulus, I., & Wurtman, R. J. (1977). Brain tyrosine level controls striatal dopamine synthesis in haloperidol-treated rats. Journal of Neural Transmission, 41, 16.Google Scholar
Scalzo, S. J., Bowden, S. C., Ambrose, M. L., Whelan, G., & Cook, M. J. (2015). Wernicke-Korsakoff syndrome not related to alcohol use: A systematic review. Journal of Neurology, Neurosurgery and Psychiatry, 86, 13621368.Google Scholar
Scarmeas, N., Luchsinger, J. A., Stern, Y., Gu, Y., He, J., DeCarli, C., & Brickman, A. M. (2011). Mediterranean diet and magnetic resonance imaging-assessed cerebrovascular disease. Annals of Neurology, 69, 257268.Google Scholar
Schacht, J. P., Anton, R. F., & Myrick, H. (2012). Functional neuroimaging studies of alcohol cue reactivity: A quantitative meta-analysis and systematic review. Addiction Biology, 18, 121133.Google Scholar
Scheiber, I. F., Mercer, J. F. B., & Dringen, R. (2014). Metabolism and functions of copper in brain. Progress in Neurobiology, 116, 3357.Google Scholar
Schmatz, R., Mazzanti, C. M., Spanevello, R., Stefanello, N., Gutierres, J., Correa, M., .& Morsch, V. M. (2009). Resveratrol prevents memory deficits and the increase in acetylcholinesterase activity in streptozotocin-induced diabetic rats. European Journal of Pharmacology, 610, 4248.Google Scholar
Schmidt, R. J., Hansen, R. L., Hartiala, J., Allayee, H., Schmidt, L. C., Tancredi, D. J., & Hertz-Picciotto, I. (2011). Prenatal vitamins, one-carbon metabolism gene variants, and risk for autism. Epidemiology, 22, 476485.Google Scholar
Schmidt, R. J., Tancredi, D. J., Ozonoff, S., Hansen, R. L., Hartiala, J., Allayee, H., & Hertz-Picciotto, I. (2012). Maternal periconceptional folic acid intake and risk of autism spectrum disorders and developmental delay in the CHARGE (CHildhood Autism Risks from Genetics and Environment) case-control study. American Journal of Clinical Nutrition, 96, 8089.Google Scholar
Schneider, M. L., Moore, C. F., & Adkins, M. M. (2011). The effects of prenatal alcohol exposure on behavior: Rodent and primate studies. Neuropsychology Review, 21, 186203.Google Scholar
Schoeller, D. A. (1995). Limitations in the assessment of dietary energy intake by self-report. Metabolism, 44, 1822.Google Scholar
Scholey, A. B., Macpherson, H., Sünram-Lea, S., Elliott, J., Stough, C., & Kennedy, D. (2013). Glucose enhancement of recognition memory: Differential effects on effortful processing but not aspects of ‘remember-know’ responses. Neuropharmacology, 64, 544549.Google Scholar
Scholey, A. B., Sünram-Lea, S. I., Greer, J., Elliott, J., & Kennedy, D. O. (2009). Glucose administration prior to a divided attention task improves tracking performance but not word recognition: Evidence against differential memory enhancement? Psychopharmacology, 202, 549558.Google Scholar
Schroder, M., Muller, K., Falkenstein, M., Stehl, P., Kersting, M., & Libuda, L. (2015). Short-term effects of lunch on children’s executive cognitive functioning: The randomised crossover Cognition Intervention Study Dortmund PLUS (CogniDo PLUS). Physiology & Behavior, 152, 307314.Google Scholar
Schroder, M., Muller, K., Falkenstein, M., Stehl, P., Kersting, M., & Libuda, L. (2016). Lunch at school and children’s cognitive functioning in the early afternoon: Results from the Cognition Intervention Study Dortmund Continued (CoCo). British Journal of Nutrition, 116, 12981305.Google Scholar
Schroeder, J. P., & Packard, M. G. (2003). Systemic or intra-amygdala injections of glucose facilitate memory consolidation for extinction of drug-induced conditioned reward. European Journal of Neuroscience, 17, 14821488.Google Scholar
Schuckit, M. A. (2009). Alcohol-use disorders. The Lancet, 373, 492501.Google Scholar
Schuler, R., Seebeck, N., Osterhoff, M. A., Witte, V., Floel, A., Busjahn, A., & Pfeiffer, A. F. H. (2018). VEGF and GLUT1 are highly heritable, inversely correlated and affected by dietary fat intake: Consequences for cognitive function in humans. Molecular Metabolism, 11, 129136.Google Scholar
Schulte, E. M., Avena, N. M., & Gearhardt, A. N. (2015). Which foods may be addictive? The roles of processing, fat content, and glycemic load. PLoS One, 10, e0117959.Google Scholar
Schulte, E. M., & Gearhardt, A. N. (2017). Development of the Modified Yale Food Addiction Scale Version 2.0. European Eating Disorders Review, 25, 302308.Google Scholar
Schulz, J. B., Cookson, M. R., & Hausmann, L. (2016). The impact of fraudulent and irresponsible data to the translational research crisis – Solutions and implementation. Journal of Neurochemistry, 139, 253270.Google Scholar
Schuster, J., & Mitchell, E. S. (2019). More than just caffeine: Psychopharmacology of methylxanthine interactions with plant-derived phytochemicals. Progress in Neuropsychopharmacology & Biological Psychiatry, 89, 263274.Google Scholar
Schwartz, K., Chang, H. T., Nikolai, M., Pernicone, J., Rhee, S., Olson, K., & Noel, M. (2015). Treatment of glioma patients with ketogenic diets: Report of two cases treated with an IRB-approved energy-restricted ketogenic diet protocol and review of the literature. Cancer & Metabolism, 3, 3.Google Scholar
Scott, S. P., & Murray-Kolb, L. E. (2016). Iron status is associated with performance on executive functioning. Journal of Nutrition, 146, 3037.Google Scholar
Scrimshaw, N. S. (1987). The phenomenon of famine. Annual Review of Nutrition, 7, 121.Google Scholar
Sedaghat, F., Jessri, M., Behrooz, M., Mirghotbi, M., & Rashidkhani, B. (2016). Mediterranean diet adherence and risk of multiple sclerosis: A case-control study. Asia Pacific Journal of Clinical Nutrition, 25, 377384.Google Scholar
Sedighiyan, M., Djafarian, K., Dabiri, S., Abdolahi, M., & Shab-Bidar, S. (2019). The Effects of omega-3 supplementation on the expanded disability status scale and inflammatory cytokines in multiple sclerosis patients: A systematic review and meta-analysis. CNS & Neurological Disorders – Drug Targets, 18, 523529.Google Scholar
Sembulingam, K., & Sembulingam, P. (2016). Essentials of Medical Physiology (7th ed). New Delhi, India: Jaypee Brothers.Google Scholar
Serdaru, M., Hausser-Hauw, C., & LaPlane, D. (1998). The clinical spectrum of alcoholic pellagra encephalopathy. Brain, 111, 829842.Google Scholar
Serra-Majem, L., Roman, B., & Estruch, R. (2006). Scientific evidence of interventions using the Mediterranean diet: A systematic review. Nutrition Reviews, 64, S27S47.Google Scholar
Sevy, S., Hassoun, Y., & Bechara, A. (2006). Emotion-based decision-making in healthy subjects: Short-term effects of reducing dopamine levels. Psychopharmacology, 188, 228235.Google Scholar
Shafiei, F., Salari-Moghaddam, A., Larijani, B., & Esmaillzadeh, A. (2019). Adherence to the Mediterranean diet and risk of depression: A systematic review and updated meta-analysis of observational studies. Nutrition Reviews, 77, 230239.Google Scholar
Shakersain, B., Santoni, G., Larsson, S. C., Faxen-Irving, G., Fastbom, J., Fratiglioni, L., & Xu, W. (2016). Prudent diet may attenuate the adverse effects of Western diet on cognitive decline. Alzheimers Dementia, 12, 100109.Google Scholar
Shanley, D. P., & Kirkwood, T. B. L. (2006). Calorie restriction does not enhance longevity in all species and is unlikely to do so in humans. Biogerontology, 7, 165168.Google Scholar
Sharma, S., Ying, Z., & Gomez-Pinilla, F. (2010). A pyrazole curcumin derivative restores membrane homeostasis disrupted after brain trauma. Experimental Neurology, 226, 191199.Google Scholar
Sharma, S., Zhuang, Y., Ying, Z., Wu, A., & Gomez-Pinilla, F. (2009). Dietary curcumin supplementation counteracts reduction in levels of molecules involved in energy homeostasis after brain trauma. Neuroscience, 161, 10371044.Google Scholar
Sharp, T., Bramwell, S. R., & Grahame-Smith, D. G. (1992). Effect of acute administration of L-tryptophan on the release of 5-HT in rat hippocampus in relation to serotoninergic neuronal activity: an in vivo microdialysis study. Life Sciences, 50, 12151223.Google Scholar
Sharrief, A. Z., Raffel, J., & Zee, D. S. (2012). Vitamin B-12 deficiency with bilateral globus pallidus abnormalities. Archives of Neurology, 69, 769772.Google Scholar
Shearer, K. D., Stoney, P. N., Morgan, P. J., & McCaffery, P. J. (2012). A vitamin for the brain. Trends in Neuroscience, 35, 733741.Google Scholar
Shen, Q., Li, Z. Q., Sun, Y., Wang, T., Wan, C. L., Li, X. W., & Yu, L. (2008). The role of pro-inflammatory factors in mediating the effects on the fetus of prenatal undernutrition: Implications for schizophrenia. Schizophrenia Research, 99, 4855.Google Scholar
Sher, K. J., Grekin, E. R., & Williams, N. A. (2005). The development of alcohol use disorders. Annual Review of Clinical Psychology, 1, 493523.Google Scholar
Sherbaf, F. G., Aarabi, M. H., Yazdi, M. H., & Haghshomar, M. (2019). White matter microstructure in fetal alcohol spectrum disorders: A systematic review of diffusion tensor imaging studies. Human Brain Mapping, 40, 10171036.Google Scholar
Shi, H., Yu, Y., Lin, D., Zheng, P., Zhang, P., Hu, M., & Huang, X. F. (2020). Beta-glucan attenuates cognitive impairment via the gut-brain axis in diet-induced obese mice. Microbiome, 8, 143.Google Scholar
Shie, F. S., Jin, L. W., Cook, D. G., Leverenz, J. B., & LeBoeuf, R. C. (2002). Diet-induced hypercholesterolemia enhances brain A beta accumulation in transgenic mice. Neuroreport, 13, 455459.Google Scholar
Shrivastava, A., Kumar, A., & Thomas, J. D. (2017). Association of acute toxic encephalopathy with litchi consumption in an outbreak in Muzaffarpur, India, 2014: A case-control study. The Lancet Global Health, 5, e458e466.Google Scholar
Shukitt-Hale, B., Askew, E. W., & Lieberman, H. R. (1997). Effects of 30 days of undernutrition on reaction time, moods, and symptoms. Physiology & Behavior, 62, 783789.Google Scholar
Shulkin, M., Pimpin, L., Bellinger, D., Kranz, S., Fawzi, W., Duggan, C., & Mozaffarian, D. (2018). n-3 fatty acid supplementation in mothers, preterm infants, and term infants and childhood psychomotor and visual development: A systematic review and meta-analysis. Journal of Nutrition, 148, 409418.Google Scholar
Siddappa, A. M., Georgieff, M. K., Wewerka, S., Worwa, C., Nelson, C. A., & Deregnier, R. A. (2004). Iron deficiency alters auditory recognition memory in newborn infants of diabetic mothers. Pediatric Research, 55, 10341041.Google Scholar
Siddappa, A. M., Rao, R., Long, J. D., Widness, J. A., & Georgieff, M. K. (2007). The assessment of newborn iron stores at birth: A review of the literature and standards for ferritin concentrations. Neonatology, 92, 7382.Google Scholar
Sidhu, G. K., Singh, S., & Kumar, V. (2019). Toxicity, monitoring and biodegradation of organophosphate pesticides: A review. Critical Reviews in Environmental Science & Technology, 49, 11351187.Google Scholar
Sidorova, Y. S., Petrov, N. A., Shipelin, V. A., Zorin, S. N., Kochetkova, A. A., & Mazo, V. K. (2019). The impact of bilberry leaves’ polyphenols on the anxiety level, spatial learning and memory of db/db mice. Voprosy Pitaniia, 88, 5362.Google Scholar
Siega-Riz, A. M., Popkin, B. M., & Carson, T. (1998). Trends in breakfast consumption for children in the United States from 1965-1991. American Journal of Clinical Nutrition, 67, 748S756S.Google Scholar
Siervo, M., Arnold, R., & Wells, J. C. K. (2011). Intentional weight loss in overweight and obese individuals and cognitive function: A systematic review and meta-analysis. Obesity Reviews, 12, 968983.Google Scholar
Siesjo, B. K. (1978). Brain Energy Metabolism, New York: Wiley & Sons.Google Scholar
Sigurdson, C. J., Bartz, J. C., & Glatzel, M. (2019). Cellular and molecular mechanisms of prion disease. Annual Reviews of Pathology: Mechanisms of Disease, 14. 497516.Google Scholar
Sikalidis, A. K. (2019). From food for survival to food for personalised optimal health: A historical perspective of how food and nutrition gave rise to nutrigenomics. Journal of the American College of Nutrition, 38, 8495.Google Scholar
Silber, B. Y., & Schmitt, J. A. J. (2010). Effects of tryptophan loading on human cognition, mood, and sleep. Neuroscience & Biobehavioral Reviews, 34, 387407.Google Scholar
Silverstone, J. T., Stark, J. E., & Buckle, R. M. (1966). Hunger during total starvation. The Lancet, 7451, 13431344.Google Scholar
Simopoulos, A. P. (1991). Omega-3-fatty-acids in health and disease and in growth and development. American Journal of Clinical Nutrition, 54, 438463.Google Scholar
Simopoulos, A. P. (1999). Essential fatty acids in health and chronic disease. American Journal of Clinical Nutrition, 70, 560s569s.Google Scholar
Sindler, A. J., Wellman, N. S., & Stier, O. B. (2004). Holocaust survivors report long-term effects on attitudes toward food. Journal of Nutrition Education & Behavior, 36, 189196.Google Scholar
Singh, B., Parsaik, A. K., Mielke, M. M., Erwin, P. J., Knopman, D. S., Petersen, R. C., & Roberts, R. O. (2014). Association of Mediterranean diet with mild cognitive impairment and Alzheimer’s disease: A systematic review and meta-analysis. Journal of Alzheimer’s Disease, 39, 271282.Google Scholar
Singh, G. K., Kogan, M. D., & Dee, D. L. (2007). Nativity/immigrant status, race/ethnicity, and socioeconomic determinants of breastfeeding initiation and duration in the United States, 2003. Pediatrics, 119, S38S46.Google Scholar
Sirven, J., Whedon, B., Caplan, D., Liporace, J., Glosser, D., O’Dwyer, J., & Sperling, M. R. (1999). The ketogenic diet for intractable epilepsy in adults: Preliminary results. Epilepsia, 40, 17211726.Google Scholar
Small, D. M., & DiFeliceantonio, A. G. (2019). Processed foods and food reward. Science, 363, 346347.Google Scholar
Small, D. M., Jones-Gotman, M., & Dagher, A. (2003). Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. NeuroImage, 19, 17091715.Google Scholar
Smeets, P. A. M., Erkner, A., & de Graaf, C. (2010). Cephalic phase responses and appetite. Nutrition Reviews, 68, 643655.Google Scholar
Smith, A., Kendrick, A., Maben, A., & Salmon, J. (1994). Effects of breakfast and caffeine on cognitive performance, mood, and cardiovascular functioning. Appetite, 22, 3955.Google Scholar
Smith, A., Leekam, S., Ralph, A., & McNeill, G. (1988). The influence of meal composition on post-lunch changes in performance efficiency and mood. Appetite, 10, 195203.Google Scholar
Smith, A., Maben, A., & Brockman, P. (1994). Effects of evening meals and caffeine on cognitive performance, mood, and cardiovascular functioning. Appetite, 22, 5765.Google Scholar
Smith, A., & Miles, C. (1986). The effects of lunch on cognitive vigilance tasks. Ergonomics, 29, 12511261.Google Scholar
Smith, A., Ralph, A., & McNeill, G. (1991). Influences of meal size on post-lunch changes in performance efficiency, mood, and cardiovascular function. Appetite, 16, 8591.Google Scholar
Smith, A. D., Smith, S. M., & de Jager, C. A. (2010). Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: A randomized controlled trial. PLoS One, 5, e12244.Google Scholar
Smith, A. F. (1993). Cognitive psychological issues of relevance to the validity of dietary reports. European Journal of Clinical Nutrition, 47, S6S18.Google Scholar
Smith, B., & Reyes, T. (2017). Offspring neuroimmune consequences of maternal malnutrition: Potential mechanism for behavioral impairments that underlie metabolic and neurodevelopmental disorders. Frontiers in Neuroendocrinology, 47, 109122.Google Scholar
Smith, C., & Richards, R. (2008). Dietary intake, overweight status, and perceptions of food insecurity among homeless Minnesotan youth. American Journal of Human Biology, 20, 550563.Google Scholar
Smith, K. E., Mason, T. B., Johnson, J. S., Lavender, J. M., & Wonderlich, S. A. (2018). A systematic review of reviews of neurocognitive functioning in eating disorders: The state-of-the-literature and future directions. International Journal of Eating Disorders, 51, 798821.Google Scholar
Smith, M. A., Riby, L. M., van Eekelen, J. A. M., & Foster, J. K. (2011). Glucose enhancement of human memory: A comprehensive research review of the glucose memory facilitation effect. Neuroscience & Biobehavioral Reviews, 35, 770783.Google Scholar
Smith, P. J., Blumenthal, J. A., Babyak, M. A., Craighead, L., Welsh-Bohmer, K. A., Browndyke, J. N., & Sherwood, A. (2010). Effects of the dietary approaches to stop hypertension diet, exercise, and caloric restriction on neurocognition in overweight adults with high blood pressure. Hypertension, 55, 13311338.Google Scholar
Soares, E., Prediger, R. D., Nunes, S., Castro, A. A., Viana, S. D., Lemos, C., & Pereira, F. C. (2013). Spatial memory impairments in a prediabetic rat model. Neuroscience, 250, 565577.Google Scholar
Sofi, F., Macchi, C., & Casini, A. (2013). Mediterranean diet and minimizing neurodegeneration. Current Nutrition Reports, 2, 7580.Google Scholar
Soh, N. L., & Walter, G. (2011). Tryptophan and depression: Can diet alone be the answer? Acta Neuropsychiatrica, 23, 311.Google Scholar
Soldevila-Domenech, N., Boronat, A., Langohr, K., & de la Torre, R. (2019). N-of-1 clinical trials in nutritional interventions directed at improving cognitive functions. Frontiers in Nutrition, 6, e00110.Google Scholar
Solfrizzi, V., Agosti, P., & Lozupone, M. (2018). Nutritional intervention as a preventative approach for cognitive-related outcomes in cognitively healthy older adults: A systematic review. Journal of Alzheimer’s Disease, 64, S229S254.Google Scholar
Solianik, R., & Sujeta, A. (2018). Two-day fasting evokes stress, but does not affect mood, brain activity, and cognitive, psychomotor, and motor performance in overweight women. Behavioural Brain Research, 338, 166172.Google Scholar
Solianik, R., Sujeta, A., & Čekanauskaite, A. (2018). Effects of 2-day calorie restriction on cardiovascular autonomic response, mood, and cognitive and motor functions in obese young adult women. Experimental Brain Research, 236, 22992308.Google Scholar
Solianik, R., Sujeta, A., Terentjevienė, A., & Skurvydas, A. (2016). Effect of 48 h fasting on autonomic function, brain activity, cognition, and mood in amateur weight-lifters. BioMed Research International, 2016, 1503956.Google Scholar
Song, S. B., Park, J. S., Chung, G. J., Lee, I. H., & Hwang, E. S. (2019). Diverse therapeutic efficacies and more diverse mechanisms of nicotinamide. Metabolomics, 15, 137.Google Scholar
Sonmez, U., Sonmez, A., Erbil, G., Tekmen, I., & Baykara, B. (2007). Neuroprotective effects of resveratrol against traumatic brain injury in immature rats. Neuroscience Letters, 420, 133137.Google Scholar
Sonnenburg, E. D., Smits, S. A., Tikhonov, M., Higginbottom, S. K., Wingreen, N. S., & Sonnenburg, J. L. (2016). Diet-induced extinctions in the gut microbiota compound over generations. Nature, 529, 212215.Google Scholar
Souchet, B., Duchon, A., Gu, Y., Dairou, J., Chevalier, C., Daubigney, F., & Delabar, J. M. (2019). Prenatal treatment with EGCG enriched green tea extract rescues GAD67 related developmental and cognitive defects in Down syndrome mouse models. Science Reports, 9, 3914.Google Scholar
Soutif-Veillon, A., Ferland, G., & Rolland, Y. (2016). Increased dietary vitamin K intake is associated with less severe subjective memory complaint among older adults. Maturitas, 93, 131136.Google Scholar
Souza, C. G., Moreira, J. D., Siqueira, I. R., Pereira, A. G., Rieger, D. K., Souza, D. O., & Perry, M. L. (2007). Highly palatable diet consumption increases protein oxidation in rat frontal cortex and anxiety-like behavior. Life Sciences, 81, 198203.Google Scholar
Spear, L. P. (2018). Effects of adolescent alcohol consumption on the brain and behaviour. Nature Reviews Neuroscience, 19, 197214.Google Scholar
Speed, N., Engdahl, B., Schwartz, J., & Eberly, R. (1989). Posttraumatic stress disorder as a consequence of the POW experience. Journal of Nervous & Mental Disease, 177, 147153.Google Scholar
Spence, C. (2017). Breakfast: The most important meal of the day? International Journal of Gastronomy & Food Science, 8, 16.Google Scholar
Spencer, P. S., Ludolph, A. C., & Kisby, G. E. (1993). Neurologic diseases associated with use of plant components with toxic potential. Environmental Research, 62, 106113.Google Scholar
Spencer, P. S., & Palmer, V. S. (2012). Interrelationships of undernutrition and neurotoxicity: Food for thought and research attention. NeuroToxicology, 33, 605616.Google Scholar
Spencer, P. S., & Palmer, V. S. (2017). The enigma of litchi toxicity: An emerging health concern in southern Asia. The Lancet Global Health, 5, e383e384.Google Scholar
Spencer, P. S., Roy, D. N., & Ludolph, A. (1986). Lathyrism: Evidence for role of the neuroexcitatory amino acid BOAA. The Lancet, 8515, 10661067.Google Scholar
Sperling, R., Chua, E., Cocchiarella, A., Rand-Giovannetti, E., Poldrack, R., Schacter, D. L., & Albert, M. (2003). Putting names to faces: Successful encoding of associative memories activates the anterior hippocampal formation. Neuroimage, 20, 14001410.Google Scholar
Spinneker, A., Sola, R., & Lemmen, V.(2007). Vitamin B6 status, deficiency and its consequences: An overview. Nutrición Hospitalaria, 22, 724.Google Scholar
St Clair, D., Xu, M., Wang, P., Yu, Y., Fang, Y., Zhang, F., & He, L. (2005). Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959-1961. Journal of the American Medical Association, 294, 557562.Google Scholar
Stabler, S. P. (2013). Vitamin B12 deficiency. New England Journal of Medicine, 368, 149160.Google Scholar
Stahl, T., Falk, S., Taschan, H., Boschek, B., & Brunn, H. (2018). Evaluation of human exposure to aluminium from food and food contact materials. European Food Research & Technology, 244, 20772084.Google Scholar
Ståhle, L., Ståhle, E. L., & Granström, E. (2011). Effects of sleep or food deprivation during civilian survival training on cognition, blood glucose and 3-OH-butyrate. Wilderness & Environmental Medicine, 22, 202210.Google Scholar
Stalmach, A., Edwards, C. A., Wightman, J. D., & Crozier, A. (2011). Identification of (poly)phenolic compounds in concord grape juice and their metabolites in human plasma and urine after juice consumption. Journal of Agricultural & Food Chemistry, 59, 95129522.Google Scholar
Staubo, S. C., Aakre, J. A., Vemuri, P., Syrjanen, J. A., Mielke, M. M., Geda, Y. E., & Roberts, R. O. (2017). Mediterranean diet, micronutrients and macronutrients, and MRI measures of cortical thickness. Alzheimers Dementia, 13, 168177.Google Scholar
Stavric, B. (1988). Methylxanthines: Toxicity to humans. 3. Theobromine, paraxanthine and the combined effects of methylxanthines. Food & Chemical Toxicology, 26, 725733.Google Scholar
Steenbergen, L., Jongkees, B. J., Sellaro, R., & Colzato, L. S. (2016). Tryptophan supplementation modulates social behaviour: A review. Neuroscience & Biobehavioral Reviews, 64, 346358.Google Scholar
Steenbergen, L., Sellaro, R., & Colzato, L. S. (2014). Tryptophan promotes charitable donating. Frontiers in Psychology, 5, article 1451.Google Scholar
Steenweg-de Graaff, J., Roza, S. J., Steegers, E. A., Hofman, A., Verhulst, F. C., Jaddoe, V. W., & Tiemeier, H. (2012). Maternal folate status in early pregnancy and child emotional and behavioral problems: The Generation R Study. American Journal of Clinical Nutrition, 95, 14131421.Google Scholar
Stefani, M. R., Nicholson, G. M., & Gold, P. E. (1999). ATP-sensitive potassium channel blockade enhances spontaneous alternation performance in the rat: A potential mechanism for glucose-mediated memory enhancement. Neuroscience, 93, 557563.Google Scholar
Stefurak, T. L., & van der Kooy, D. (1992). Saccharin’s rewarding, conditioned reinforcing, and memory-improving properties: Mediation by isomorphic or independent processes? Behavioral Neuroscience, 106, 125139.Google Scholar
Stein, U., Greyer, H., & Hentschel, H. (2001). Nutmeg (myristicin) poisoning – Report on a fatal case and a series of cases recorded by a poison information centre. Forensic Science International, 118, 8790.Google Scholar
Stein, Z., & Susser, M. (1975). The Dutch famine, 1944–1945, and the reproductive process. I. Effects on six indices at birth. Pediatric Research, 9, 7076.Google Scholar
Stevenson, R. J., & Francis, H. M. (2017). The hippocampus and the regulation of human food intake. Psychological Bulletin, 143, 10111032.Google Scholar
Stevenson, R. J., Francis, H. M., Attuquayefio, T., Gupta, D., Yeomans, M. R., Oaten, M. J., & Davidson, T. (2020). Hippocampal-dependent appetitive control is impaired by experimental exposure to a Western-style diet. Royal Society Open Science, 7, 191338.Google Scholar
Stevenson, R. J., Mahmut, M., & Rooney, K. (2015). Individual differences in the interoceptive states of hunger, fullness and thirst. Appetite, 95, 4457.Google Scholar
Stewart, G. R, Zorumski, C. F., Price, M. T., & Olney, J. W. (1990). Domoic acid: A dementia-inducing excitotoxic food poison with kainic acid receptor specificity. Experimental Neurology, 110, 127138.Google Scholar
Stice, E., Yokum, S., Burger, K. S., Epstein, L. H., & Small, D. M. (2011). Youth at risk for obesity show greater activation of striatal and somatosensory regions to food. Journal of Neuroscience, 31, 43604366.Google Scholar
Stockburger, J., Schmälzle, R., Flaisch, T., Bublatzky, F., & Schupp, H. T. (2009). The impact of hunger on food cue processing: An event-related brain potential study. NeuroImage, 47, 18191829.Google Scholar
Stockwell, T., Zhao, J., Panwar, S., Roemer, A., Naimi, T., & Chikritzhs, T. (2016). Do “moderate” drinkers have reduced mortality risk? A systematic review and meta-analysis of alcohol consumption and all-cause mortality. Journal of Studies on Alcohol & Drugs, 77, 185198.Google Scholar
Stollery, B., & Christian, L. (2013). Glucose and memory: The influence of drink, expectancy, and beliefs. Psychopharmacology, 228, 685697.Google Scholar
Stollery, B., & Christian, L. (2015). Glucose, relational memory, and the hippocampus. Psychopharmacology, 232, 21132125.Google Scholar
Stone, S. W., Thermenos, H. W., Tarbox, S. I., Poldrack, R. A., & Seidman, L. J. (2005). Medial temporal and prefrontal lobe activation during verbal encoding following glucose ingestion in schizophrenia: A pilot fMRI study. Neurobiology of Learning & Memory, 83, 5464.Google Scholar
Stough, C., Pipingas, A., Camfield, D., Nolidin, K., Savage, K., Deleuil, S., & Scholey, A. (2019). Increases in total cholesterol and low density lipoprotein associated with decreased cognitive performance in healthy elderly adults. Metabolic Brain Disease, 34, 477484.Google Scholar
Strahler, J., & Nater, U. M. (2018). Differential effects of eating and drinking on wellbeing-an ecological ambulatory assessment study. Biological Psychology, 131, 7288.Google Scholar
Stranahan, A. M., Norman, E. D., Lee, K., Cutler, R. G., Telljohann, R. S., Egan, J. M., & Mattson, M. P. (2008). Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus, 18, 10851088.Google Scholar
Strazzullo, P., D’Elia, L., Kandala, N. B., & Cappuccio, F. P. (2009). Salt intake, stroke, and cardiovascular disease: Meta-analysis of prospective studies. British Medical Journal, 339, 4567.Google Scholar
Stubbs, R., & Turicchi, J. (2020). From famine to therapeutic weight loss: Hunger, psychological responses, and energy balance-related behaviors. Obesity Reviews, 22, e13191.Google Scholar
Stumbo, P. J. (2013). New technology in dietary assessment: A review of digital methods in improving food record accuracy. Proceedings of the Nutrition Society, 72, 7076.Google Scholar
Stunkard, A. J., & Messick, S. (1985). The three-factor eating questionnaire to measure dietary restraint, disinhibition, and hunger. Journal of Psychosomatic Research, 29, 7183.Google Scholar
Su, K.-P., Tseng, P.-T., Lin, P.-Y., Okubo, R., Chen, T.-Y., Chen, Y.-W., & Matsuoka, Y. J. (2018). Association of use of omega-3 polyunsaturated fatty acids with changes in severity of anxiety symptoms: A systematic review and meta-analysis. JAMA Network Open, 1, e182327e182327.Google Scholar
Suh, S. W., Kim, H. S., & Han, J. H. (2020). Efficacy of vitamins on cognitive function of non-demented people: A systematic review and meta-analysis. Nutrients, 12, 1168.Google Scholar
Sullivan, P. G., Rippy, N. A., Dorenbos, K., Concepcion, R. C., Agarwal, A. K., & Rho, J. M. (2004). The ketogenic diet increases mitochondrial uncoupling protein levels and activity. Annals of Neurology, 55, 576580.Google Scholar
Sultan, A., Yang, K. S., & Isaev, D. (2017). Thujone inhibits the function of α7-nicotinic acetylcholine receptors and impairs nicotine-induced memory enhancement in one-trial passive avoidance paradigm. Toxicology, 384, 2332.Google Scholar
Sünram-Lea, S. I., Foster, J. K., Durlach, P., & Perez, C. (2001). Glucose facilitation of cognitive performance in healthy young adults: Examination of the influence of fast-duration, time of day and pre-consumption plasma glucose levels. Psychopharmacology, 157, 4654.Google Scholar
Sünram-Lea, S. I., & Owen, L. (2017). The impact of diet-based glycaemic response and glucose regulation on cognition: Evidence across the lifespan. Proceedings of the Nutrition Society, 76, 466477.Google Scholar
Sünram-Lea, S. I., Owen, L., Finnegan, Y., & Hu, H. (2011). Dose-response investigation into glucose facilitation of memory performance and mood in healthy young adults. Journal of Psychopharmacology, 25, 10761087.Google Scholar
Suren, P., Roth, C., Bresnahan, M., Haugen, M., Hornig, M., Hirtz, D., & Stoltenberg, C. (2013). Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. Journal of the American Medical Association, 309, 570577.Google Scholar
Susser, E., Neugebauer, R., Hoek, H. W., Brown, A. S., Lin, S., Labovitz, D., & Gorman, J. M. (1996). Schizophrenia after prenatal famine. Further evidence. Archives of General Psychiatry, 53, 2531.Google Scholar
Swank, R. L., Lerstad, O., Strøm, A., & Backer, J. (1952). Multiple sclerosis in rural Norway: Its geographic and occupational incidence in relation to nutrition. New England Journal of Medicine, 246, 721728.Google Scholar
Szenczi-Cseh, J., & Ambrus, Á. (2017). Uncertainty of exposure assessment of consumer to pesticide residues derived from food consumed. Journal of Environmental Science & Health, 52, 658670.Google Scholar
Szewczyk, B., Kubera, M., & Kowak, G. (2011). The role of zinc in neurodegenerative inflammatory pathways in depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 35, 693701.Google Scholar
Szucs, D., & Ioannidis, J. P. (2017). Empirical assessment of published effect sizes and power in the recent cognitive neuroscience and psychology literature. PLoS Biology, 15, e3001151.Google Scholar
Tabarki, B., Al-Shafi, S., & Al-Shahwan, S. (2013). Biotin-responsive basal ganglia disease revisited. Neurology, 80, 261267.Google Scholar
Taghizadeh, M., Tamtaji, O. R., Dadgostar, E., Kakhaki, R. D., Bahmani, F., Abolhassani, J., & Asemi, Z. (2017). The effects of omega-3 fatty acids and vitamin E co-supplementation on clinical and metabolic status in patients with Parkinson’s disease: A randomized, double-blind, placebo-controlled trial. Neurochemistry International, 108, 183189.Google Scholar
Tahvonen, R. (1996). Contents of lead and cadmium in foods and diets. Food Reviews International, 12, 170.Google Scholar
Takase, K., Tsuneoka, Y., Oda, S., Kuroda, M., & Funato, H. (2016). High-fat diet feeding alters olfactory-, social-, and reward-related behaviors of mice independent of obesity. Obesity (Silver Spring), 24, 886894.Google Scholar
Takeda, A. (2001). Zinc homeostasis and functions of zinc in the brain. Biometals, 14, 343351.Google Scholar
Takeda, A., & Tamano, H. (2009). Insight into zinc signalling from dietary zinc deficiency. Brain Research Reviews, 62, 3344.Google Scholar
Takeuchi, H., Taki, Y., & Nouchi, R.(2019). Association of copper levels in the hair with gray matter volume, mean diffusivity, and cognitive functions. Brain Structure & Function, 224, 12031217.Google Scholar
Talebi, M., Kakouri, E., Talebi, M., Tarantilis, P. A., Farkhondeh, T., İlgün, S., Pourbagher-Shahri, A. M., & Samarghandian, S. (2021). Nutraceuticals-based therapeutic approach: Recent advances to combat pathogenesis of Alzheimer’s disease. Expert Review of Neurotherapeutics, 21, 625642.Google Scholar
Tamadon-Nejad, S., Ouliass, B., Rochford, J., & Ferland, G. (2018). Vitamin K deficiency induced by Warfarin is associated with cognitive and behavioral perturbations, and alterations in brain sphingolipids in rats. Frontiers in Aging Neuroscience, 10, 213.Google Scholar
Tamgüney, G., & Korczyn, A. D. (2018). A critical review of the prion hypothesis of human synucleinopathies. Cell & Tissue Research, 373, 213220.Google Scholar
Tamura, B., Bell, C., Masaki, K., & Amella, E. (2013). Factors associated with weight loss, low BMI, and malnutrition among nursing home patients: A systematic review of the literature. Journal of the American Medical Directors Association, 14, 649655.Google Scholar
Tan, K. W., Graf, B. A., Mitra, S. R., & Stephen, I. A. (2015). Daily consumption of a fruit and vegetable smoothie alters facial skin color. PLoS One, 10, e0133445.Google Scholar
Tang, H., Lu, D., Pan, R., Qin, X., Xiong, H., & Dong, J. (2009). Curcumin improves spatial memory impairment induced by human immunodeficiency virus type 1 glycoprotein 120 V3 loop peptide in rats. Life Sciences, 85, 110.Google Scholar
Tangney, C. C., Aggarwal, N. T., & Li, H. (2011). Vitamin B12, cognition, and brain MRI measures: A cross-sectional examination. Neurology, 77, 12761282.Google Scholar
Tangney, C. C., Li, H., Wang, Y. M., Barnes, L., Schneider, J. A., Bennett, D. A., & Morris, M. C. (2014). Relation of DASH- and Mediterranean-like dietary patterns to cognitive decline in older persons. Neurology, 83, 14101416.Google Scholar
Tao, L., Liu, K., & Chen, S. (2019). Dietary intake of riboflavin and unsaturated fatty acid can improve the multi-domain cognitive function in middle-aged and elderly populations: A 2-year prospective cohort study. Frontiers in Aging Neuroscience, 11, 226.Google Scholar
Tappy, L. (2012). ‘Toxic’ effects of sugar: Should we be afraid of fructose? BMC Biology, 10, 42.Google Scholar
Tasevska, N., Runswick, S. A., McTaggart, A., & Bingham, S. A. (2005). Urinary sucrose and fructose as biomarkers for sugar consumption. Cancer Epidemiology, Biomarkers & Prevention, 5, 12871294.Google Scholar
Tassebehji, N. M., Corniola, R. S., Alshingiti, A., & Levenson, C. W. (2008). Zinc deficiency induces depression-like symptoms in adult rats. Physiology & Behavior, 95, 365369.Google Scholar
Tayebati, S. K., & Amenta, F. (2013). Choline-containing phospholipids: Relevance to brain functional pathways. Clinical Chemistry & Laboratory Medicine, 51, 513521.Google Scholar
Taylor, R., Fealy, S., Bisquera, A., Smith, R., Collins, C., Evans, T., & Hure, A. (2017). Effects of nutritional interventions during pregnancy on infant and child cognitive outcomes: A systematic review and meta-analysis. Nutrients, 9, Article 1265.Google Scholar
Telle-Hansen, V. H., Holven, K. B., & Ulven, S. M. (2018). Impact of a healthy dietary pattern on gut microbiota and systemic inflammation in humans. Nutrients, 10, 1783.Google Scholar
Tellez, L. A., Medina, S., Han, W., Ferreira, J. G., Licona-Limòn, P., Ren, X., Lam, T., Schwartz, T., G. J., & de Araujo, I. E. (2013). A gut lipid messenger links excess dietary fat to dopamine deficiency. Science, 341, 800802.Google Scholar
Temple, J. L., Bernard, C., Lipshultz, S. E., Czachor, J. D., Westphal, J. A., & Mestre, M. A. (2017). The safety of ingested caffeine: A comprehensive review. Frontiers in Psychiatry, 8, 80.Google Scholar
Tey, S. L., Brown, R. C., Gray, A. R., Chisholm, A. W., & Delahunty, C. M. (2012). Long-term consumption of high energy-dense snack foods on sensory-specific satiety and intake. American Journal of Clinical Neuropsychology, 95, 10381047.Google Scholar
Thompson, F. E., & Byers, T. (1994). Dietary assessment resource manual. Journal of Nutrition, 124, S2245S2317.Google Scholar
Thomson, T. J., Runcie, J., & Miller, V. (1966). Treatment of obesity by total fasting for up to 249 days. The Lancet, 7471, 992996.Google Scholar
Tian, H. -H., Aziz, A. -R., & Png, W. (2011). Effects of fasting during Ramadan month on cognitive function in Muslim athletes. Asian Journal of Sports Medicine, 2, 145153.Google Scholar
Tiani, K., Stover, P., & Field, M. (2019). The role of brain barriers in maintaining brain vitamin levels. Annual Review of Nutrition, 39, 147173.Google Scholar
Timmermans, S., Bogie, J. F., Vanmierlo, T., Lütjohann, D., Stinissen, P., Hellings, N., & Hendriks, J. J. (2014). High fat diet exacerbates neuroinflammation in an animal model of multiple sclerosis by activation of the Renin Angiotensin system. Journal of Neuroimmune Pharmacology, 9, 209217.Google Scholar
Tojo, R., Suarez, A., Clemente, M. G., de los Reyes-Gavilan, C. G., Margolles, A., Gueimonde, M., & Ruas-Madiedo, P. (2014). Intestinal microbiota in health and disease: Role of bifidobacteria in gut homeostasis. World Journal of Gastroenterology, 20, 1516315176.Google Scholar
Tom, G., & Rucker, M. (1975). Fat, full, and happy: Effects of food deprivation, external cues, and obesity on preference ratings, consumption, and buying intentions. Journal of Personality & Social Psychology, 32, 761766.Google Scholar
Tong, J., Satyanarayanana, S. K., & Su, H. (2020). Nutraceuticals and probiotics in the management of psychiatric and neurological disorders: A focus on microbiota-gut-brain-immune axis. Brain, Behavior & Immunity, 80, 403419.Google Scholar
Tooze, J. A., Subar, A. F., Thompson, F. E., Troiano, R, Schatzkin, A., & Kipnis, V. (2004). Psychosocial predictors of energy underreporting in a large doubly labelled water study. American Journal of Clinical Nutrition, 79, 795804.Google Scholar
Tou, J. C., Jaczynski, J., & Chen, Y. C. (2007). Krill for human consumption: Nutritional value and potential health benefits. Nutrition Reviews, 65, 6377.Google Scholar
Traber, M. G. (2014). Vitamin E inadequacy in humans: Causes and consequences. Advances in Nutrition, 5, 503514.Google Scholar
Tran, D. M. D., & Westbrook, R. F. (2017). A high-fat high-sugar diet-induced impairment in place-recognition memory is reversible and training-dependent. Appetite, 110, 6171.Google Scholar
Traversy, G., & Chaput, J. (2015). Alcohol consumption and obesity: An update. Current Obesity Reports, 4, 122130.Google Scholar
Travica, N., Ried, K., & Sali, A. (2017). Vitamin C status and cognitive function: A systematic review. Nutrients, 9, 960.Google Scholar
Travica, N., Ried, K., & Sali, A. (2019). Plasma vitamin C concentrations and cognitive function: A cross-sectional study. Frontiers in Aging Neuroscience, 11, 72.Google Scholar
Trevizol, A. P., Brietzke, E., & Grigolon, R. B. (2019). Peripheral interleukin-6 levels and working memory in non-obese adults: A post-hoc analysis from the CALERIE study. Nutrition, 58, 1822.Google Scholar
Truitt, E. B., Callaway, E., Braude, M. C., & Krtantz, J. C. (1961). The pharmacology of myristicin. A contribution to the psychopharmacology of nutmeg. Journal of Neuropsychiatry, 2, 205210.Google Scholar
Tsilioni, I., Taliou, A., Francis, K., & Theoharides, T. C. (2015). Children with autism spectrum disorders, who improved with a luteolin-containing dietary formulation, show reduced serum levels of TNF and IL-6. Translational Psychiatry, 5, e647.Google Scholar
Turnbaugh, P. J., Ridaura, V. K., Faith, J. J., Rey, F. E., Knight, R., & Gordon, J. I. (2009). The effect of diet on the human gut microbiome: A metagenomic analysis in humanized gnotobiotic mice. Science Translational Medicine, 1, 14.Google Scholar
Tveden-Nyborg, P., Johansen, L. K., & Raida, Z. (2009). Vitamin C deficiency in early postnatal life impairs spatial memory and reduces the number of hippocampal neurons in guinea pigs. American Journal of Clinical Nutrition, 90, 540546.Google Scholar
Tyler, C. R., & Allan, A. M. (2014). The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: A review. Current Environmental Health Reports, 1, 132147.Google Scholar
U.S. Food & Drug Administration. Center for Food Safety & Applied Nutrition. (2012). Bad Bug Book – Tetrodotoxin. www.fda.gov/files/food/published/Bad-Bug-Book-2nd-Edition-%28PDF%29.pdfGoogle Scholar
Uher, R., Treasure, J., Heining, M., Brammer, M. J., & Campbell, L. C. (2006). Cerebral processing of food-related stimuli: Effects of fasting and gender. Behavioural Brain Research, 169, 111119.Google Scholar
Ulatowski, L. M., & Manor, D. (2015). Vitamin E and neurodegeneration. Neurobiology of Disease, 84, 7883.Google Scholar
Vahidnia, A., van der Voet, G. B., & de Wolff, F. A. (2007). Arsenic neurotoxicity – A review. Human & Experimental Toxicology, 26, 823832.Google Scholar
Vairo, F. P., Chwal, B. C., & Perini, S. (2019). A systematic review and evidence-based guideline for diagnosis and treatment of Menkes disease. Molecular Genetics & Metabolism, 126, 613.Google Scholar
Valdes, A. M., Walter, J., Segal, E., & Spector, T. D. (2018). Role of the gut microbiota in nutrition and health. British Medical Journal, 361, 2179.Google Scholar
Valipour, G., Esmaillzadeh, A., Azadbakht, L., Afshar, H., Hassanzadeh, A., & Adibi, P. (2017). Adherence to the DASH diet in relation to psychological profile of Iranian adults. European Journal of Nutrition, 56, 309320.Google Scholar
Valls-Pedret, C., Lamuela-Raventos, R. M., Medina-Remon, A., Quintana, M., Corella, D., Pinto, X., & Ros, E. (2012). Polyphenol-rich foods in the Mediterranean diet are associated with better cognitive function in elderly subjects at high cardiovascular risk. Journal of Alzheimer’s Disease, 29, 773782.Google Scholar
Valls-Pedret, C., Sala-Vila, A., Serra-Mir, M., Corella, D., de la Torre, R., Martinez-Gonzalez, M. A., & Ros, E. (2015). Mediterranean diet and age-related cognitive decline: A randomized clinical trial. JAMA Internal Medicine, 175, 10941103.Google Scholar
van de Rest, O., Bloemendaal, M., de Heus, R., & Aarts, E. (2017). Dose-dependent effects of oral tyrosine administration on plasma tyrosine levels and cognition in aging. Nutrients, 9, 1279.Google Scholar
van de Rest, O., Van Hooijdonk, L., & Doets, E. (2012). B vitamins and n-3 fatty acids for brain development and function: Review of human studies. Annals of Nutrition & Metabolism, 60, 272292.Google Scholar
van den Kommer, T. N., Dik, M. G., Comijs, H. C., Fassbender, K., Lutjohann, D., & Jonker, C. (2009). Total cholesterol and oxysterols: Early markers for cognitive decline in elderly? Neurobiology of Aging, 30, 534545.Google Scholar
van der Laan, L. N., de Ridder, D. T. D., Viergever, M. A., & Smeets, P. A. M. (2011). The first taste is always with the eyes: A meta-analysis on the neural correlates of processing visual food cues. NeuroImage, 55, 296303.Google Scholar
van der Zwaluw, N. L., Brouwer-Brolsma, E. M., & van de Rest, O. (2017). Folate and vitamin B12-related biomarkers in relation to brain volumes. Nutrients, 9, 8.Google Scholar
van der Zwaluw, N. L., van de Rest, O., Kessels, R. P. C., & de Groot, L. C. P. G. M. (2015). Effects of glucose load on cognitive functions in elderly people. Nutrition Reviews, 73, 92105.Google Scholar
Van Dolah, F. M. (2000). Marine algal toxins: Origins, health effects, and their increased occurrence. Environmental Health Perspectives, 108, 133141.Google Scholar
van Donkelaar, E. L., Blokland, A., Ferrington, L., Kelly, P. A. T., Steinbusch, H. W. M., & Prickaerts, J. (2011). Mechanism of acute tryptophan depletion: Is it only serotonin? Molecular Psychiatry, 16, 695713.Google Scholar
Van Moorhem, M., Lambein, F., & Leybaert, L. (2011). Unraveling the mechanism of β-N-oxalyl-a, β-diaminopropionic acid (β-ODAP) induced excitotoxicity and oxidative stress, relevance for neurolathyrism prevention. Food & Chemical Toxicology, 49, 550555.Google Scholar
van Onselen, R., & Downing, T. G. (2018). BMAA-protein interactions: A possible new mechanism of toxicity. Toxicon, 143, 7480.Google Scholar
van Rossem, L., Oenema, A., Steegers, E. A. P., Moll, H. A., Jaddoe, V. W. V., Hofman, A., & Raat, H. (2009). Are starting and continuing breastfeeding related to educational background? The Generation R Study. Pediatrics, 123, E1017E1027.Google Scholar
van Ruitenbeek, P., Sambeth, A., Vermeeren, A., Young, S. N., & Riedel, W. J. (2009). Effects of L-histidine depletion and L-tyrosine/L-phenylalanine depletion on sensory and motor process in healthy volunteers. British Journal of Pharmacology, 157, 92103.Google Scholar
van Ruitenbeek, P., Vermeeren, A., & Riedel, W. J. (2010). Cognitive domains affected by histamine H1-antagonism in humans: A literature review. Brain Research Reviews, 64, 263282.Google Scholar
Vandereycken, W., & van Deth, R. (1994). From Fasting Saints to Anorexic Girls. London: The Athlone Press.Google Scholar
Vauzour, D. (2017). Polyphenols and brain health. OCL, 24, A202.Google Scholar
Veena, S., Gale, C., Krishnaveni, G., Kehoe, S., Srinivasan, K., & Fall, C. (2016). Association between maternal nutritional status in pregnancy and offspring cognitive function during childhood and adolescence: A systematic review. BMC Pregnancy & Childbirth, 16, Article 220.Google Scholar
Veena, S. R., Krishnaveni, G. V., Srinivasan, K., Wills, A. K., Muthayya, S., Kurpad, A. V., & Fall, C. H. (2010). Higher maternal plasma folate but not vitamin B-12 concentrations during pregnancy are associated with better cognitive function scores in 9- to 10- year-old children in South India. Journal of Nutrition, 140, 10141022.Google Scholar
Veggiotti, P., Teutonico, F., Alfei, E., Nardocci, N., Zorzi, G., Tagliabue, A., & Balottin, U. (2010). Glucose transporter type 1 deficiency: Ketogenic diet in three patients with atypical phenotype. Brain Development, 32, 404408.Google Scholar
Vengeliene, V., Bilbao, A., Molander, A., & Spanagel, R. (2008). Neuropharmacology of alcohol addiction. British Journal of Pharmacology, 154, 299315.Google Scholar
Veniaminova, E., Cespuglio, R., Cheung, C. W., Umriukhin, A., Markova, N., Shevtsova, E., & Strekalova, T. (2017). Autism-like behaviours and memory deficits result from a Western diet in mice. Neural Plasticity, 2017, 9498247.Google Scholar
Veniaminova, E., Cespuglio, R., Markova, N., Mortimer, N., Cheung, C. W., Steinbusch, H. W., & Strekalova, T. (2016). Behavioral features of mice fed with a cholesterol-enriched diet: Deficient novelty exploration and unaltered aggressive behavior. Translational Neuroscience & Clinics, 2, 8795.Google Scholar
Veniaminova, E., Oplatchikova, M., Bettendorff, L., Kotenkova, E., Lysko, A., Vasilevskaya, E., & Strekalova, T. (2020). Prefrontal cortex inflammation and liver pathologies accompany cognitive and motor deficits following Western diet consumption in non-obese female mice. Life Sciences, 241, 117163.Google Scholar
Vergeres, G. (2013). Nutrigenomics – Linking food to human metabolism. Trends in Food Science & Technology, 31, 612.Google Scholar
Veronese, N., Facchini, S., & Stubbs, B. (2017). Weight loss is associated with improvements in cognitive function among overweight and obese people: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews, 72, 8794.Google Scholar
Vetrani, C., Costabile, G., Di Marino, L., & Rivellese, A. A. (2013). Nutrition and oxidative stress: A systematic review of human studies. International Journey of Food Science & Nutrition, 64, 312326.Google Scholar
Vignes, M., Maurice, T., Lanté, F., Nedjar, M., Thethi, K., Guiramand, J., & Récasens, M. (2006). Anxiolytic properties of green tea polyphenol (-)-epigallocatechin gallate (EGCG). Brain Research, 1110, 102115.Google Scholar
Villain, N., Picq, J. -L. Aujard, F., & Pifferi, F. (2016). Body mass loss correlates with cognitive performance in primates under acute caloric restriction conditions. Behavioural Brain Research, 305, 157163.Google Scholar
Villamor, E., Rifas-Shiman, S. L., Gillman, M. W., & Oken, E. (2012). Maternal intake of methyl-donor nutrients and child cognition at 3 years of age. Paediatrics & Perinatal Epidemiology, 26, 328335.Google Scholar
Virmani, A., Pinto, L., Binienda, Z., & Ali, S. (2013). Food, nutrigenomics, and neurodegeneration – Neuroprotection by what you eat! Molecular Biology, 48, 353362.Google Scholar
Visek, W. J. (1984). An update of concepts of essential amino acids. Annual Review of Nutrition, 4, 137155.Google Scholar
Vitousek, K. M., Manke, F. P., Gray, J. A., & Vitousek, M. N. (2004). Caloric restriction for longevity: II – The systematic neglect of behavioural and psychological outcomes in animal research. European Eating Disorders Review, 12, 338360.Google Scholar
Vogel, T., Dali-Youcef, N., Kaltenbach, G., & Andres, E. (2009). Homocysteine, vitamin B-12, folate and cognitive functions: A systematic and critical review of the literature. International Journal of Clinical Practice, 63, 10611067.Google Scholar
von Deneen, K. M., Gold, M. S., & Liu, Y. (2009). Food addiction and cues in Prader-Willi syndrome. Journal of Addiction Medicine, 3, 1925Google Scholar
Vu, T., Lin, F., Alshurafa, N., & Xu, W. (2017). Wearable food intake monitoring technologies: A comprehensive review. Computers, 6, e6010004.Google Scholar
Vyas, A., Mitra, R., Rao, B., & Chattarji, S. (2002). Chronic stress induces contrasting patterns of dendritic remodelling in hippocampal and amygdaloid neurons. Journal of Neuroscience, 22, 68106818.Google Scholar
Walford, R. L., Mock, D., MacCallum, T., & Laseter, J. L. (1999). Physiologic changes in humans subjected to severe, selective calorie restriction for two years in Biosphere 2: Health, aging, and toxicological perspectives. Toxicological Sciences, 52, 6165.Google Scholar
Walter, T., Kovalskys, J., & Stekel, A. (1983). Effect of mild iron deficiency on infant mental development scores. Journal of Pediatrics, 102, 519522.Google Scholar
Wang, B. Z., Zailan, F. Z., Wong, B. Y. X., Ng, K. P., & Kandiah, N. (2020). Identification of novel candidate autoantibodies in Alzheimer’s disease. European Journal of Neurology, 27, 22922296.Google Scholar
Wang, D. (2008). Neurotoxins from marine dingoflagellates: A brief review. Marine Drugs, 6, 349371.Google Scholar
Wang, J., Ho, L., Zhao, Z., Seror, I., Humala, N., Dickstein, D. L., & Pasinetti, G. M. (2006). Moderate consumption of Cabernet Sauvignon attenuates A beta neuropathology in a mouse model of Alzheimer’s disease. Faseb Journal, 20, 23132320.Google Scholar
Warburg, O., Wind, F., & Negelein, E. (1927). The metabolism of tumors in the body. Journal of General Physiology, 8, 519.Google Scholar
Wardle, J., Rogers, P., Judd, P., Taylor, M. A., Rapoport, L., Green, M., & Nicholson Perry, K. (2000). Randomized trial of the effects of cholesterol-lowering dietary treatment on psychological function. American Journal of Medicine, 108, 547553.Google Scholar
Warren, M. A., Freestone, T., & Thomas, A. J. (1989). Undernutrition during early adult life significantly affects neuronal connectivity in rat visual cortex. Experimental Neurology, 103, 290292.Google Scholar
Warthon-Medina, M., Moran, V. H., & Stammers, A.-L. (2015). Zinc intake, status and indices of cognitive function in adults and children: A systematic review and meta-analysis. European Journal of Clinical Nutrition, 69, 649661.Google Scholar
Wasim, M., Awan, F. R., & Khan, H. N. (2018). Aminoacidopathies: Prevalence, etiology, screening, and treatment options. Biochemical Genetics, 56, 721.Google Scholar
Waylen, A., Ford, T., Goodman, R., Samara, M., & Wolke, D. (2009). Can early intake of dietary omega-3 predict childhood externalizing behaviour? Acta Paediatrica, 98, 18051808.Google Scholar
Weed, J. L., Lane, M. A., Roth, G. S., Speer, D. L., & Ingram, D. K. (1997). Activity measures in rhesus monkeys on long-term calorie restriction. Physiology & Behavior, 62, 97103.Google Scholar
Wengreen, H., Munger, R. G., Cutler, A., Quach, A., Bowles, A., Corcoran, C., & Welsh-Bohmer, K. A. (2013). Prospective study of dietary approaches to stop hypertension- and Mediterranean-style dietary patterns and age-related cognitive change: The Cache County Study on Memory, Health and Aging. American Journal of Clinical Nutrition, 98, 12631271.Google Scholar
Wesensten, N. J. (2014). Legitimacy of concerns about caffeine and energy drink consumption. Nutrition Reviews, 72, 7886.Google Scholar
Westwater, M. K., Fletcher, P. C., & Ziauddeen, H. (2016). Sugar addiction: The state of the science. European Journal of Nutrition, 55, S55S69.Google Scholar
Weyer, C., Walford, R. L., & Harper, I. T. (2000). Energy metabolism after 2 years of energy restriction: The Biosphere 2 experiment. American Journal of Clinical Nutrition, 72, 946953.Google Scholar
Whang, R., Hampton, E. M., & Whang, D. D. (1994). Magnesium homeostasis and clinical disorders of magnesium deficiency. Annals of Pharmacotherapy, 28, 220226.Google Scholar
Whanger, P. D. (2001). Selenium and the brain: A review. Nutritional Neuroscience, 4, 8197.Google Scholar
White, C. L., Pistell, P. J., Purpera, M. N., Gupta, S., Fernandez-Kim, S. O., Hise, T. L., & Bruce-Keller, A. J. (2009). Effects of high fat diet on Morris maze performance, oxidative stress, and inflammation in rats: Contributions of maternal diet. Neurobiology of Disease, 35, 313.Google Scholar
White, N. (1989). Reward or reinforcement: What’s the difference? Neuroscience & Biobehavioral Reviews, 13, 181186.Google Scholar
White, N. M. (1991). Peripheral and central memory-enhancing actions of glucose. In Frederickson, R. C. A., McGaugh, J. L., & Felten, D. L. (Eds.), Neuronal Control of Bodily Function: Basic and Clinical aspects, Vol. 6. Peripheral Signalling of the Brain: Role in Neural-Immune Interactions and Learning and Memory (pp. 421441). Ashland, OH: Hogrefe & Huber Publishers.Google Scholar
Whitfield, J. T., Pako, W. H., Collinge, J., & Alpers, M. P. (2017). Cultural factors that affected the spatial and temporal epidemiology of kuru. Royal Society Open Science, 4, 113.Google Scholar
Whitfield, K. C., Bourassa, M. W., & Adamolekun, B. (2018). Thiamine deficiency disorders: Diagnosis, prevalence, and a roadmap for global control programs. Annals of the New York Academy of Sciences, 1430, 343.Google Scholar
Wieckowska-Gacek, A., Mietelska-Porowska, A., Wydrych, M., & Wojda, U. (2021). Western diet as a trigger of Alzheimer’s disease: From metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Research Review, 70, 101397.Google Scholar
Wiehl, D., & Reed, R. (1960). Development of new or improved dietary methods for epidemiological investigations. American Journal of Public Health, 50, 824828.Google Scholar
Wight, N., Marinelli, K. A., & Med, A. B. (2014). ABM clinical protocol #1: Guidelines for blood glucose monitoring and treatment of hypoglycemia in term and late-preterm neonates, revised 2014. Breastfeeding Medicine, 9, 173179.Google Scholar
Wilder, R. M. (1921). The effects of ketonemia on the course of epilepsy. Mayo Clinical Proceedings, 2, 307308.Google Scholar
Wilken, M., Bartmann, P., Dovey, T., & Bagci, S. (2018). Characteristics of feeding tube dependency with respect to food aversive behaviour and growth. Appetite, 123, 16.Google Scholar
Willett, W. C. (1994). Diet and health: What should we eat? Science, 264, 532537.Google Scholar
Willett, W. C., Sampson, L., Stampfer, M. J., Rosner, B., Bain, C., Witschi, J., Hennekens, C. H., & Speizer, F. E. (1985). Reproducibility and validity of a semiquantitative food frequency questionnaire. American Journal of Epidemiology, 122, 5165.Google Scholar
Williams, P. G. (2014). The benefits of breakfast cereal consumption: A systematic review of the evidence base. Advances in Nutrition, 5, 636S673S.Google Scholar
Williams, R. J., Mohanakumar, K. P., & Beart, P. M. (2015). Neuro-nutraceuticals: The path to brain health via nourishment is not so distant. Neurochemistry International, 89, 16.Google Scholar
Williams, R. J., Mohanakumar, K. P., & Beart, P. M. (2016). Neuroscience-nutraceuticals: Further insights into their promise for brain health. Neurochemistry International, 95, 13.Google Scholar
Williamson, D. A., Martin, C. K., & Anton, S. D. (2008). Is caloric restriction associated with development of eating-disorder symptoms? Results from the CALERIE Trial. Health Psychology, 27, S32S42.Google Scholar
Willis, N. D., Lloyd, A. J., Xie, L., Stiegler, M., Tailliart, K., Garcia-Perez, I., Chambers, E. S., Beckmann, M., Draper, J., & Mathers, J. C. (2020). Design and characterisation of a randomized food intervention that mimics exposure to a typical UK diet to provide urine samples for identification and validation of metabolite biomarkers of food intake. Frontiers in Nutrition, 7, e561010.Google Scholar
Wing, R. R., Epstein, L. H., Marcus, M. D., & Kupfer, D. J. (1984). Mood changes in behavioral weight loss programs. Journal of Psychosomatic Research, 28, 189196.Google Scholar
Wirdefeldt, K., Adami, H. O., Cole, P., Trichopoulos, D., & Mandel, J. (2011). Epidemiology and etiology of Parkinson’s disease: A review of the evidence. European Journal of Epidemiology, 26, S1S58.Google Scholar
Wiss, D. A., Avena, N., & Rada, P. (2018). Sugar addiction: From evolution to revolution. Frontiers in Psychiatry, 9, 545.Google Scholar
Witte, A. V., Fobker, M., Gellner, R., Knecht, S., & Flöel, A. (2009). Caloric restriction improves memory in elderly humans. Proceedings of the National Academy of Sciences of the United States of America, 106, 12551260.Google Scholar
Witte, A. V., Kerti, L., Margulies, D. S., & Floel, A. (2014). Effects of resveratrol on memory performance, hippocampal functional connectivity, and glucose metabolism in healthy older adults. Journal of Neuroscience, 34, 78627870.Google Scholar
Wolf, B. (2011). The neurology of biotinidase deficiency. Molecular Genetics & Metabolism, 104, 2734.Google Scholar
Wolraich, M. L., Wilson, D. B., & White, J. W. (1995). The effect of sugar on behavior or cognition in children. A meta-analysis. Journal of the American Medical Association, 274, 16171621.Google Scholar
Woods, S. E., & Seeley, R. J. (2000). Adiposity signals and the control of energy homeostasis. Nutrition, 16, 894902.Google Scholar
Woolf, E. C., & Scheck, A. C. (2015). The ketogenic diet for the treatment of malignant glioma. Journal of Lipid Research, 56, 510.Google Scholar
World Health Organization. (2021). Malnutrition. https://who.int/news-room/fact-sheets/detail/malnutrition (last accessed 18 June 2021).Google Scholar
Wu, A., Ying, Z., & Gomez-Pinilla, F. (2004a). Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. Journal of Neurotrauma, 21, 14571467.Google Scholar
Wu, A., Ying, Z., & Gomez-Pinilla, F. (2004b). The interplay between oxidative stress and brain-derived neurotrophic factor modulates the outcome of a saturated fat diet on synaptic plasticity and cognition. European Journal of Neuroscience, 19, 16991707.Google Scholar
Wu, A., Ying, Z., & Gomez-Pinilla, F. (2006). Dietary curcumin counteracts the outcome of traumatic brain injury on oxidative stress, synaptic plasticity, and cognition. Experimental Neurology, 197, 309317.Google Scholar
Wu, A., Ying, Z., & Gomez-Pinilla, F. (2007). Omega-3 fatty acids supplementation restores mechanisms that maintain brain homeostasis in traumatic brain injury. Journal of Neurotrauma, 24, 15871595.Google Scholar
Wu, L., & Sun, D. (2017). Adherence to Mediterranean diet and risk of developing cognitive disorders: An updated systematic review and meta-analysis of prospective cohort studies. Scientific Reports, 7, 41317.Google Scholar
Wurtman, R. J., Hefti, F., & Melamed, E. (1980). Precursor control of neurotransmitter synthesis. Pharmacological Reviews, 32, 315335.Google Scholar
Wurtman, R. J., Wurtman, J. J., Regan, M. M., McDermott, J. M., Tsay, R. H., & Breu, J. J. (2003). Effects of normal meals rich in carbohydrates or proteins on plasma tryptophan and tyrosine ratios. American Journal of Clinical Nutrition, 77, 128132.Google Scholar
Xiao, S., Hansen, D. K., Horsley, E. T., Tang, Y. S., Khan, R. A., Stabler, S. P., & Antony, A. C. (2005). Maternal folate deficiency results in selective upregulation of folate receptors and heterogeneous nuclear ribonucleoprotein-E1 associated with multiple subtle aberrations in fetal tissues. Birth Defects Research A: Clinical and Molecular Teratology, 73, 628.Google Scholar
Xie, L., Li, X. K., Funeshima-Fuji, N., Kimura, H., Matsumoto, Y., Isaka, Y., & Takahara, S. (2009). Amelioration of experimental autoimmune encephalomyelitis by curcumin treatment through inhibition of IL-17 production. International Immunopharmacology, 9, 575581.Google Scholar
Xu, K., Sun, X. Y., Eroku, B. O., Tsipis, C. P., Puchowicz, M. A., & La Manna, J. C. (2010). Diet-induced ketosis improves cognitive performance in aged rats. Oxygen Transport to Tissue, 662, 7175.Google Scholar
Xu, M. Q., Sun, W. S., Liu, B. X., Feng, G. Y., Yu, L., Yang, L., & He, L. (2009). Prenatal malnutrition and adult schizophrenia: Further evidence from the 1959–1961 Chinese famine. Schizophrenia Bulletin, 35, 568576.Google Scholar
Xu, Q., Liu, F., Chen, P., Jez, J. M., & Krishnan, H. B. (2017). β-N-Oxalyl-L-α, β-diaminopropionic acid (β-ODAP) content in lathyrus sativus: The integration of nitrogen and sulfur metabolism through β-cyanoalanine synthase. International Journal of Molecular Sciences, 18, 526.Google Scholar
Xu, Y., Lin, D., Li, S., Li, G., Shyamala, S. G., Barish, P. A., & Ogle, W. O. (2009). Curcumin reverses impaired cognition and neuronal plasticity induced by chronic stress. Neuropharmacology, 57, 463471.Google Scholar
Yanai, S., Okaichi, H., & Sugioka, K. (2008). Dietary restriction inhibits spatial learning ability and hippocampal cell proliferation in rats. Japanese Psychological Research, 50, 3648.Google Scholar
Yasin, W. M., Khattak, M. M. A. K., Mamat, N. M., & Bakar, W. A. M. A. (2013). Does religious fasting affect cognitive performance? Nutrition & Food Science, 43, 483489.Google Scholar
Ye, F., Li, X.-J., Jiang, W.-L., Sun, H.-B., & Liu, J. (2015). Efficacy of and patient compliance with a ketogenic diet in adults with intractable epilepsy: A meta-analysis. Journal of Clinical Neurology, 11, 2631.Google Scholar
Yehuda, S., Rabinovitz, S., & Mostofsky, D. I. (2005). Mixture of essential fatty acids lowers test anxiety. Nutritional Neuroscience, 8, 265267.Google Scholar
Yip, R. (2002). Prevention and control of iron deficiency: Policy and strategy issues. Journal of Nutrition, 132, 802s805s.Google Scholar
Yokel, R. A., Hicks, C. L., & Florence, R. L. (2008). Aluminum bioavailability from basic sodium aluminum phosphate, an approved food additive emulsifying agent, incorporated in cheese. Food & Chemical Toxicology, 46, 22612266.Google Scholar
Yoon, J.-H., & Baek, S. J. (2005). Molecular targets of dietary polyphenols with anti-inflammatory properties. Yonsei Medical Journal, 46, 585596.Google Scholar
Young, S. N. (1996). Behavioral effects of dietary neurotransmitter precursors: Basic and clinical aspects. Neuroscience & Biobehavioral Reviews, 20, 313323.Google Scholar
Young, S. N. (2013). Acute tryptophan depletion in humans: A review of theoretical, practical and ethical aspects. Journal of Psychiatry & Neuroscience, 38, 294305.Google Scholar
Ysart, G., Miller, P., & Croasdale, M., (2000). 1997 UK total diet study – Dietary exposures to aluminium, arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, tin and zinc. Food Additives & Contaminants, 17, 775786.Google Scholar
Yu, Y., Wang, Q., & Huang, X. F. (2009). Energy-restricted pair-feeding normalizes low levels of brain-derived neurotrophic factor/tyrosine kinase B mRNA expression in the hippocampus, but not ventromedial hypothalamic nucleus, in diet-induced obese mice. Neuroscience, 160, 295306.Google Scholar
Yucel, F., Warren, M. A., & Gumusburun, E. (1994). The effects of undernutrition on connectivity in the cerebellar cortex of adult rats. Journal of Anatomy, 184, 5964.Google Scholar
Zafra, M. A., Molina, F., & Puerto, A. (2006). The neural/cephalic phase reflexes in the physiology of nutrition. Neuroscience & Biobehavioural Reviews, 30, 10321044.Google Scholar
Zahr, N. M., Kaufman, K. L., & Harer, C. G. (2011). Clinical and pathological features of alcohol-related brain damage. Nature Reviews Neurology, 7, 284294.Google Scholar
Zahr, N. M., & Pfefferbaum, A. (2017). Alcohol’s effects on the brain: Neuroimaging results in humans and animal models. Alcohol Research, 38, 183206.Google Scholar
Zakhari, S. (2006). Overview: How is alcohol metabolized by the body? Alcohol Research and Health, 29, 245254.Google Scholar
Żarnowska, I., Chrapko, B., Gwizda, G., Nocuń, A., Mitosek-Szewczyk, K., & Gasior, M. (2018). Therapeutic use of carbohydrate-restricted diets in an autistic child; a case report of clinical and 18FDG PET findings. Metabolic Brain Disorders, 33, 11871192.Google Scholar
Zatta, P., & Frank, A. (2007). Copper deficiency and neurological disorders in man and animals. Brain Research Reviews, 54, 1933.Google Scholar
Zeisel, S. H. (2006). Choline: Critical role during fetal development and dietary requirements in adults. Annual Review of Nutrition, 26, 229250.Google Scholar
Zempleni, J., Wijeratne, S. S. K., & Hassan, Y. I. (2009). Biotin. Biofactors, 35, 3646.Google Scholar
Zhang, L., Zhu, J. -H., Zhang, X., & Cheng, W. -H. (2019). The thioredoxin-like family of selenoproteins: Implications in aging and age-related degeneration. Biological Trace Element Research, 188, 189195.Google Scholar
Zhang, X., Dong, F., Ren, J., Driscoll, M. J., & Culver, B. (2005). High dietary fat induces NADPH oxidase-associated oxidative stress and inflammation in rat cerebral cortex. Experimental Neurology, 191, 318325.Google Scholar
Zhang, Y.-P., Miao, R., Li, Q., Wu, T., & Ma, F. (2017). Effects of DHA supplementation on hippocampal volume and cognitive function in older adults with mild cognitive impairment: A 12-month randomized, double-blind, placebo-controlled trial. Journal of Alzheimer’s Disease, 55, 497507.Google Scholar
Zhao, X., Xu, X., Li, X., Yang, Y., & Zhu, S. (2021). Emerging trends of technology-based dietary assessment: A perspective study. European Journal of Clinical Nutrition, 75, 582587.Google Scholar
Zhou, S. J., Gibson, R. A., Crowther, C. A., Baghurst, P., & Makrides, M. (2006). Effect of iron supplementation during pregnancy on the intelligence quotient and behavior of children at 4 years of age: Long-term follow-up of a randomized controlled trial. American Journal of Clinical Nutrition, 83, 11121117.Google Scholar
Zhu, C., Sawrey-Kubicek, L., Beals, E., Rhodes, C. H., Houts, H. E., Sacchi, R., & Zivkovic, A. M. (2020). Human gut microbiome composition and tryptophan metabolites were changed differently by fast food and Mediterranean diet in 4 days: A pilot study. Nutrition Research, 77, 6272.Google Scholar
Zhu, X., Krasnow, S. M., & Roth-Carter, Q. R. (2012). Hypothalamic signalling in anorexia induced by indispensable amino acid deficiency. American Journal of Physiology -Endocrinology and Metabolism, 303, E1446E1458.Google Scholar
Ziauddeen, H., Farooqi, I. S., & Fletcher, P. C. (2012). Obesity and the brain: How convincing is the addiction model? Nature Reviews Neuroscience, 13, 279286.Google Scholar
Zilberter, T., & Zilberter, E. Y. (2013). Breakfast and cognition: Sixteen effects in nine populations, no single recipe. Frontiers in Human Neuroscience, 7, article 631.Google Scholar
Zimmerman, M. B. (2009). Iodine deficiency. Endocrine Reviews, 30, 376408.Google Scholar
Zimmerman, M. B., & Boelaert, K. (2015). Iodine deficiency and thyroid disorders. The Lancet Diabetes & Endocrinology, 3, 286295.Google Scholar
Zohar, A. H., Giladi, L., & Givati, T. (2007). Holocaust exposure and disordered eating: A study of multi-generational transmission. European Eating Disorders Review, 15, 5057.Google Scholar
Zuccoli, G., Marcello, N., Pisanello, A., Servadei, F., Vaccaro, S., Mukherjee, P., & Seyfried, T. N. (2010). Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: Case report. Nutrition & Metabolism, 7, 17.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Richard J. Stevenson, Macquarie University, Sydney, Heather Francis, Macquarie University, Sydney
  • Book: Diet Impacts on Brain and Mind
  • Online publication: 02 February 2023
  • Chapter DOI: https://doi.org/10.1017/9781108755399.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Richard J. Stevenson, Macquarie University, Sydney, Heather Francis, Macquarie University, Sydney
  • Book: Diet Impacts on Brain and Mind
  • Online publication: 02 February 2023
  • Chapter DOI: https://doi.org/10.1017/9781108755399.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Richard J. Stevenson, Macquarie University, Sydney, Heather Francis, Macquarie University, Sydney
  • Book: Diet Impacts on Brain and Mind
  • Online publication: 02 February 2023
  • Chapter DOI: https://doi.org/10.1017/9781108755399.012
Available formats
×