Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- Part I Introduction
- Part II Diatoms as indicators of environmental change in flowing waters and lakes
- Part III Diatoms as indicators in Arctic, Antarctic, and alpine lacustrine environments
- Part IV Diatoms as indicators in marine and estuarine environments
- Part V Other applications
- 24 Diatoms of aerial habitats
- 25 Diatoms as indicators of environmental change in wetlands and peatlands
- 26 Tracking fish, seabirds, and wildlife population dynamics with diatoms and other limnological indicators
- 27 Diatoms and archeology
- 28 Diatoms in oil and gas exploration
- 29 Forensic science and diatoms
- 30 Toxic marine diatoms
- 31 Diatoms as markers of atmospheric transport
- 32 Diatoms as non-native species
- 33 Diatomite
- 34 Stable isotopes from diatom silica
- 35 Diatoms and nanotechnology: early history and imagined future as seen through patents
- Part VI Conclusions
- Glossary, acronyms, and abbreviations
- Index
- References
29 - Forensic science and diatoms
from Part V - Other applications
Published online by Cambridge University Press: 05 June 2012
- Frontmatter
- Contents
- List of contributors
- Preface
- Part I Introduction
- Part II Diatoms as indicators of environmental change in flowing waters and lakes
- Part III Diatoms as indicators in Arctic, Antarctic, and alpine lacustrine environments
- Part IV Diatoms as indicators in marine and estuarine environments
- Part V Other applications
- 24 Diatoms of aerial habitats
- 25 Diatoms as indicators of environmental change in wetlands and peatlands
- 26 Tracking fish, seabirds, and wildlife population dynamics with diatoms and other limnological indicators
- 27 Diatoms and archeology
- 28 Diatoms in oil and gas exploration
- 29 Forensic science and diatoms
- 30 Toxic marine diatoms
- 31 Diatoms as markers of atmospheric transport
- 32 Diatoms as non-native species
- 33 Diatomite
- 34 Stable isotopes from diatom silica
- 35 Diatoms and nanotechnology: early history and imagined future as seen through patents
- Part VI Conclusions
- Glossary, acronyms, and abbreviations
- Index
- References
Summary
Introduction
The legal process has used scientific procedures for many years in its various deliberations. Some of these, for instance DNA profiling of body fluids, are now essential and routine practice. The use of diatoms in forensic science is naturally much smaller, but in certain types of investigation, diatom taxonomy and ecology play a significant role. A diatomist may be able to provide investigations with evidence, which will enable the court to reach its verdict, and may be used by either the prosecution or the defence. Below we summarize some of the major applications of diatoms to forensic science.
Drowning
The most frequent application of diatoms in forensic science is in diagnosis of death by drowning. Drowning is a very common accidental cause of death, and thousands die each year in this fashion. The majority of these individuals die in circumstances that are not contentious, where there are witnesses, or strong indications of suicide, such as a note. Where circumstances surrounding an individual's death are less clear, it is often important to be as certain as possible of how death occurred.
Where a body is fresh, the pathologist may have little difficulty in reaching a verdict of drowning. However, the histopathological signs of drowning are often transient and overlaid by the grosser effects of decomposition. Additionally, in cases where an individual has been severely injured before being immersed in water, it is obviously important to determine whether death is due to these injuries or because of drowning.
- Type
- Chapter
- Information
- The DiatomsApplications for the Environmental and Earth Sciences, pp. 534 - 539Publisher: Cambridge University PressPrint publication year: 2010
References
- 7
- Cited by