Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-07T12:32:26.469Z Has data issue: false hasContentIssue false

11 - Diatoms in ancient lakes

from Part II - Diatoms as indicators of environmental change in flowing waters and lakes

Published online by Cambridge University Press:  05 June 2012

Anson W. MacKay
Affiliation:
Environmental Change Research Centre (ECRC)
Mark B. Edlund
Affiliation:
St. Croix Watershed Research Station
Galina Khursevich
Affiliation:
M. Tank State Pedagogical University
John P. Smol
Affiliation:
Queen's University, Ontario
Eugene F. Stoermer
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

We define ancient lakes as those that contain sedimentary records that span timescales since at least the last interglacial (c. 128 ka before present (BP)). We use this definition because by far the majority of diatom applications and reconstructions are undertaken on lakes that have formed since the end of the last glaciation (Termination 1). Ancient lakes are commonly found within grabens in active rift zones. Important examples include lakes Baikal (Russia), Biwa (Japan), Hövsgöl (Mongolia), Kivu (Democratic Republic of Congo, Rwanda), Malawi (Malawi, Mozambique, Tanzania), Ohrid (Albania and Macedonia) and Prespa (Greece, Albania and Macedonia), Tanganyika (Burundi, Congo, Tanzania), Titicaca (Bolivia, Peru), Tule (USA), and Victoria (Kenya, Tanzania, Uganda). These extant lakes contain sedimentary archives that often span at least the full Quaternary period (c. 2.6 million years (Ma)). Other ancient lakes with significantly long sedimentary archives include those associated with volcanic activity, e.g. Lake Albano (Italy), karst landscapes, e.g. Ioannina (Greece), and meteorite-impact craters such as El'gygytgyn (Russia), Pingualuit (Canada), Bosumtwi (Ghana), and Tswaing (formerly known as the Pretoria Salt Pan) (South Africa).

Diatom records from ancient lakes provide potentially powerful insights into mechanisms of environmental change over glacial–interglacial (G–IG) timescales, with most studies focusing on interpretation of paleoclimate records. However, records from ancient lakes can also provide useful insights into ecology and evolution of diatoms over long timescales (Khursevich et al. 2001).

Type
Chapter
Information
The Diatoms
Applications for the Environmental and Earth Sciences
, pp. 209 - 228
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Austin, P., Mackay, A. W., Palushkina, O., … Leng, M. (2007). A high-resolution diatom-inferred palaeoconductivity and sea-level record of the Aral Sea for the last ca. 1600 years. Quaternary Research, 67, 383–93.CrossRefGoogle Scholar
Baker, P., Seltzer, G., Fritz, S., et al. (2001). The history of South American tropical precipitation for the past 25,000 years. Science, 291, 640–3.CrossRefGoogle ScholarPubMed
Battarbee, R. W., Mackay, A. W., Jewson, D., Ryves, D. B., & Sturm, M. (2005). Differential dissolution of Lake Baikal diatoms: correction factors and implications for palaeoclimatic reconstruction. Global & Planetary Change, 46, 75–86.CrossRefGoogle Scholar
Bond, G., Showers, W., Cheseby, M., et al. (1997). A pervasive millennial scale cycle in North Atlantic Holocene and glacial climates. Science, 278, 1257–6.CrossRefGoogle Scholar
Bondarenko, N. A., Tuji, A., & Nakanishi, M. (2006). A comparison of phytoplankton communities between the ancient lakes Biwa and Baikal. Hydrobiologia, 568, 25–29.CrossRefGoogle Scholar
Bradbury, J. P. (1991). The late Cenozoic diatom stratigraphy and paleolimnology of Tule Lake, Siskiyou Co. California. Journal of Paleolimnology, 6, 205–55.CrossRefGoogle Scholar
Bradbury, J. P. (1999). Continental diatoms as indicators of long-term environmental change. In The Diatoms: Applications for the Environmental and Earth Sciences, ed. Stoermer, E. F. & Smol, J. P.. Cambridge: Cambridge University Press, pp. 167–82.Google Scholar
Bradbury, J. P. & Krebs, W. N. (1982). Neogene and Quaternary lacustrine diatoms of the Western Snake River Basin, Idaho–Oregon, USA. Acta Geologica Academiaea Scientiarum Hungaricae, 25, 97–122.Google Scholar
Bradbury, J. P., Bezrukova, Ye. V., et al. (1994). A synthesis of post-glacial diatom records from Lake Baikal. Journal of Paleolimnology, 10, 213–52.CrossRefGoogle Scholar
Bramberger, A. J., Haffner, G. D., Hamilton, P. B., Hinz, F., & Hehanussa, P. E. (2006). An examination of species within the genus Surirella from the Malili Lakes, Sulawesi Island, Indonesia, with descriptions of 11 new taxa. Diatom Research, 21, 1–56.CrossRefGoogle Scholar
Braun, H., Christl, M., Rahmstorf, S., et al. (2005). Possible solar origin of the 1,470-year glacial climate cycle demonstrated in a coupled model. Nature, 438, 208–11.CrossRefGoogle Scholar
Brooks, J. L. (1950). Speciation in ancient lakes. Quarterly Review of Biology, 25, 30–60, 131–76.CrossRefGoogle ScholarPubMed
Campbell, I. D., Campbell, C., Apps, M., Rutter, N. W., & Bush, A. B. G. (1998). Late Holocene ∼1500 yr climatic periodicities and their implications. Geology, 26, 471–3.2.3.CO;2>CrossRefGoogle Scholar
Chen, F. H., Qiang, M. R., Feng, Z. D., Wang, H. B., & Bloemendal, J. (2003). Stable East Asian monsoon climate during the last interglacial (Eemian) indicated by paleosol S1 in the western part of the Chinese Loess Plateau. Global and Planetary Change, 36, 171–9.CrossRefGoogle Scholar
Cocquyt, C., Vyverman, W., & Compère, P. (1993). A check-list of the algal flora of the East African Great Lakes. Scripta Botanica Belgica, 8, 1–55.Google Scholar
Dansgaard, W., Johnsen, S., Clausen, H. B., et al. (1993). Evidence for general instability of past climate from a 250-kyr ice core record. Nature, 364, 218–20.CrossRefGoogle Scholar
Edgar, S. M. & Theriot, E. C. (2004). Phylogeny of Aulacoseira (Bacillariophyta) based on molecules and morphology. Journal of Phycology, 40, 772–88.CrossRefGoogle Scholar
Edlund, M. B. (2006). Persistent low diatom plankton diversity within the otherwise highly diverse Lake Baikal ecosystem. Nova Hedwigia Beiheft, 130, 339–56.Google Scholar
Edlund, M. B. & Stoermer, E. F. (2000). A 200,000-year, high-resolution record of diatom productivity and community makeup from Lake Baikal shows high correspondence to the marine oxygen-isotope record of climate change. Limnology and Oceanography, 45, 948–62.CrossRefGoogle Scholar
Edlund, M. B., Williams, R. M., & Soninkhishig, N. (2003). The planktonic diatom diversity of ancient Lake Hövsgöl, Mongolia. Phycologia, 42, 232–60.CrossRefGoogle Scholar
Edlund, M. B., Levkov, Z., Soninkhishig, N., Krstic, S., & Nakov, T. (2006a). Diatom species flocks in large ancient lakes: the Navicula reinhardtii complex from Lakes Hövsgöl (Mongolia) and Prespa (Macedonia). In Proceedings of the 18th International Diatom Symposium, ed. Witkowski, A., Bristol: Biopress Ltd., pp. 61–74.Google Scholar
Edlund, M. B., Soninkhishig, N., & Stoermer, E. F. (2006b). The diatom (Bacillariophyta) flora of Lake Hövsgöl National Park, Mongolia. In The Geology, Biodiversity and Ecology of Lake Hövsgöl (Mongolia), ed. Goulden, C., Sitnikova, T., Gelhaus, J., & Boldgiv, B., Leiden: Backhuys Publishers, pp. 145–77.Google Scholar
Edlund, M. B. & Soninkhishig, N. (2009). The Navicula reinhardtii species flock (Bacillariophyceae) in ancient Lake Hövsgöl, Mongolia: description of four taxa. Nova Hedwigia, Beiheft, 135, 239–56.Google Scholar
Genkal, S. I. & Bondarenko, N. A. (2006). Are the Lake Baikal diatoms endemic? Hydrobiologia, 568, 143–53.CrossRefGoogle Scholar
Goldberg, E. L., Phedorin, M. A., Grachev, M. A., et al. (2000). Geochemical signals of orbital forcing in the records of paleoclimates found in the sediments of Lake Baikal. Nuclear Instruments and Methods in Physics Research A, 448, 384–93.CrossRefGoogle Scholar
Grachev, M. A., Vorobyova, S. S., Likhoshway, Y. V., et al. (1998). A high-resolution diatom record of the palaeoclimates of east Siberia for the last 2.5 My from Lake Baikal. Quaternary Science Reviews, 17, 1101–6.CrossRefGoogle Scholar
Haberyan, K. A. (1985). The role of copepod fecal pellets in the deposition of diatoms in Lake Tanganyika. Limnology and Oceanography, 30, 1010–23.CrossRefGoogle Scholar
Haberyan, K. A. (1990). The misrepresentation of the planktonic diatom assemblage in traps and sediments: southern Lake Malawi, Africa. Journal of Paleolimnology, 3, 35–44.CrossRefGoogle Scholar
Heinrich, H. (1988). Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quaternary Research, 29, 142–52.CrossRefGoogle Scholar
Hustedt, F. (1937–1939). Systematische und ökologische Untersuchungen über die Diatomeen-Flora von Java, Bali und Sumatra nach dem Material der Deutschen Limnologischen Sunda-Expedition. Archiv für Hydrobiologie, Supplement, 15, 131–77, 187–95, 393–506, 638–790; 16, 1–155, 274–394.Google Scholar
Hustedt, F. (1949). Süsswasser-Diatomeen aus dem Albert-Nationalpark in Belgisch Kongo. Exploration du Parc National Albert Mission H. Damas (1935–1936), 8, 1–199.Google Scholar
Hutchinson, G. E. (1961). The paradox of the plankton. The American Naturalist, 95, 137–45.CrossRefGoogle Scholar
Jewson, D. H., Granin, N. G., Zhdarnov, A. A., et al. (2008). Resting stages and ecology of the planktonic diatom Aulacoseira skvortzowii in Lake Baikal. Limnology and Oceanography, 53, 1125–36.CrossRefGoogle Scholar
Julius, M. L. & Stoermer, E. F. (1999). Morphometric relationships in the Cyclotella baicalensis species complex. Abstract, Fifteenth North American Diatom Symposium, September 22–25, Pingree Park, Colorado.
Julius, M. L. & Curtin, M. (2006) Morphological patterns in three endemic Cyclotella species from Lake Baikal. Geological Society of America, Abstracts with Programs, 38, 264.Google Scholar
Jurilj, A. (1949). Nove dijatomeje–Surirellaceae–iz Ohridskog jezera i njihovo filogenetsko znacenenje. Zagreb: Jugoskavenska Akademija Znanosti i Umjetnosti, pp. 1–94.Google Scholar
Karabanov, E. B., Prokopenko, A. A., Williams, D. F., & Khursevich, G. K. (2000). Evidence for mid-Eemian cooling in continental climatic record from Lake Baikal. Journal of Paleolimnology, 23, 365–71.CrossRefGoogle Scholar
Kawanabe, H., Coulter, G. W., & Roosevelt, A. C. (eds.) (1999). Ancient Lakes: Their Cultural and Biological Diversity. Ghent: Kenobi Productions, pp. 1–340.Google Scholar
Khursevich, G. (2006). Evolution of the extinct genera belonged to the family Stephanodiscaceae (Bacillariophyta) during the last eight million years in Lake Baikal. In Advances in Phycological Studies: Festschrift in Honour of Prof. Dobrina Temniskova-Topalova, ed. Ognjanova-Rumenova, N. & Manoylov, K., Sofia, Bulgaria: PENSOFT Publishers and St. Kliment Ohridski University Press, pp. 73–89.Google Scholar
Khursevich, G. K. & Fedenya, S. A. (2006). Fossil centric diatoms from Upper Cenozoic sediments of Lake Baikal: change over time. In The 19th International Diatom Symposium: Abstracts (Listvyanka, 28 August – 2 September, 2006), ed. Likhoshway, Ye. V. & Crawford, R.M.,– Irkutsk: V.B. Sochava Institute of Geography SB RAS. p. 71.Google Scholar
Khursevich, G. K., Karabanov, E. B., Prokopenko, A. A., et al. (2001). Insolation regime in Siberia as a major factor controlling diatom production in Lake Baikal during the past 800,000 years. Quaternary International, 80–81, 47–58.CrossRefGoogle Scholar
Khursevich, G. K., Prokopenko, A. A., Fedenya, S. A., Tkachenko, L. I., & Williams, D. F. (2005). Diatom biostratigraphy of Lake Baikal during the past 1.25 Ma: new results from BDP-96–2 and BDP-99 drill cores. Quaternary International, 136, 95–104.CrossRefGoogle Scholar
Kociolek, J. P., Reid, G., & Flower, R. J. (2000). Valve ultrastructure of Didymosphenia dentata (Bacillariophyta): an endemic diatom species from Lake Baikal. Nova Hedwigia, 71, 113–20.Google Scholar
Kuwae, M., Yoshikawa, S., & Inouchi, Y. (2002). A diatom record for the past 400 ka from Lake Biwa in Japan correlates with global paleoclimatic trends. Palaeogeography, Palaeoclimatology, Palaeoecology, 183, 261–74.CrossRefGoogle Scholar
Kuwae, M., Yoshikawa, S., Tsugeki, N., & Inouchi, Y. (2004). Reconstruction of a climate record for the past 140 kyr based on diatom valve flux data from Lake Biwa, Japan. Journal of Paleolimnology, 32, 19–39.CrossRefGoogle Scholar
Levkov, Z. (2009). Amphora sensu lato (Amphora sensu stricto & Halamphora). In Diatoms of Europe: Diatoms of European Inland Waters and Comparable Habitats Elsewhere, ed. Lange-Bertalot, H., Königstein: Koeltz Scientific Books, volume 5, pp. 1–916.Google Scholar
Levkov, Z., Krstic, S., Metzeltin, D., & Nakov, T. (2007). Diatoms from Lakes Prespa and Ohrid. Iconographia Diatomologica, 16, 1–603.Google Scholar
Likhoshway, Ye. V., Kuzmina, A. Ye., Potyemkina, T. G., Potyemkim, V. L., & Shimaraev, M. N. (1996). The distribution of diatoms near a thermal bar in Lake Baikal. Journal of Great Lakes Research, 22, 5–14.CrossRefGoogle Scholar
Mackay, A. W. (2007). The paleoclimatology of Lake Baikal: a diatom synthesis and prospectus. Earth-Science Reviews, 82, 181–215.CrossRefGoogle Scholar
Mackay, A. W., Battarbee, R. W., Flower, R. J., et al. (2003). Assessing the potential for developing internal diatom-based transfer functions for Lake Baikal. Limnology and Oceanography, 48, 1183–92.CrossRefGoogle Scholar
Mackay, A. W., Ryves, D. B., Battarbee, R. W., et al. (2005). 1000 years of climate variability in central Asia: assessing the evidence using Lake Baikal diatom assemblages and the application of a diatom-inferred model of snow thickness. Global and Planetary Change, 46, 281–97.CrossRefGoogle Scholar
Mackay, A. W., Ryves, D. B., Morley, D. W., Jewson, D. J., & Rioual, P. (2006). Assessing the vulnerability of endemic diatom species in Lake Baikal to predicted future climate change: a multivariate approach. Global Change Biology, 12, 2297–315.CrossRefGoogle Scholar
Martens, K., Coulter, G., & Goddeeris, B. (eds.) (1994). Speciation in Ancient Lakes. Advances in Limnology, vol. 44, pp. 1–508.Google Scholar
Metzeltin, D. & Lange-Bertalot, H. (1995). Kritische Wertung der Taxa in Didymosphenia (Bacillariophyceae). Nova Hedwigia, 60, 381–405.Google Scholar
Müller, U. C., Klotz, S., Geyh, M. A., Pross, J., & Bond, G. (2005). Cyclic climate fluctuations during the last interglacial in central Europe. Geology, 33, 449–52.CrossRefGoogle Scholar
Pappas, J. L. & Stoermer, E. F. (2003). Morphometric comparison of the neotype of Asterionella formosa Hassall (Heterokontophyta, Bacillariophyceae) with Asterionella edlundii from Lake Hövsgöl, Mongolia. Diatom, 19, 55–65.Google Scholar
Popovskaya, G. I. (2000). Ecological monitoring of phytoplankton in Lake Baikal. Aquatic Ecosystem Health and Management, 3, 215–25.CrossRefGoogle Scholar
Popovskaya, G. I., Genkal, S. I., & Likhoshway, Y. V. (2002). Diatoms of the Plankton of Lake Baikal: Atlas & Key. Novosibirsk, Russia: Nauka, pp. 1–168.Google Scholar
Prokopenko, A. A., Hinnnov, L. A., Williams, D. F., & Kuzmin, M. I. (2006). Orbital forcing of continental climate during the Pleistocene: a complete astronomically tuned climatic record from Lake Baikal, SE Siberia. Quaternary Science Reviews, 25, 3431–57.CrossRefGoogle Scholar
Prokopenko, A. A., Karabanov, E. B., Williams, D. F., & Khursevich, G. K. (2002b). The stability and the abrupt ending of the last interglaciation in southeastern Siberia. Quaternary Research, 58, 56–9.CrossRefGoogle Scholar
Prokopenko, A. A., Williams, D. F., Karabanov, E. B., & Khursevich, G. K. (2001). Continental response to Heinrich events and Bond cycles in sedimentary record of Lake Baikal, Siberia. Global and Planetary Change, 28, 217–26.CrossRefGoogle Scholar
Prokopenko, A. A., Williams, D. F., Kuzmin, M. I., et al. (2002a). Muted climate variations in continental Siberia during the mid-Pleistocene epoch. Nature, 418, 65–8.CrossRefGoogle ScholarPubMed
Rioual, P. & Mackay, A. W. (2005). A diatom record of centennial resolution for the Kazantsevo interglacial stage in Lake Baikal (Siberia). Global and Planetary Change, 46, 199–219.CrossRefGoogle Scholar
Rossiter, A. & Kawanabe, H. (eds.) (2000). Ancient Lakes: Biodiversity, Ecology and Evolution, Advances in Ecological Research, vol. 31.
Ryves, D. B., Jewson, D. H., Sturm, M., et al. (2003). Quantitative and qualitative relationships between planktonic diatom communities and diatom assemblages in sedimenting material and surface sediments in Lake Baikal, Siberia. Limnology and Oceanography, 48, 1643–61.CrossRefGoogle Scholar
Sarnthein, M., Stattegger, K., Dreger, D., et al. (2001). Fundamental modes and abrupt changes in North Atlantic circulation and climate over the last 60 ky – concepts, reconstruction, and numerical modeling. In The Northern North Atlantic: a Changing Environment, ed. Schäfer, P., Ritzrau, W., Schlüter, M., Thiede, J., Berlin: Springer-Verlag, pp. 365–410.CrossRefGoogle Scholar
Scherbakova, T. A., Kiril'chik, S. V., Likhoshway, Ye. V., & Grachev, M. A. (1998). Phylogenetic position of some diatom algae of the genus Aulacoseira from Lake Baikal following from comparison of sequences of the 18S rRNA gene fragments. Molecular Biology, 32, 735–40. (In Russian, English summary).Google Scholar
Shackleton, N. J., Berger, A., & Peltier, W. R. (1990). An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Transactions of the Royal Society of Edinburgh: Earth Science, 81, 251–61.CrossRefGoogle Scholar
Shackleton, N. J., Sánchez-Goñi, M. F., Pailler, D., & Lancelot, Y. (2003). Marine isotope stage 5e and the Eemian interglacial. Global and Planetary Change, 36, 151–5.CrossRefGoogle Scholar
Short, D. A., Mengel, J. G., Crowley, T. J., Hyde, W. T., & North, G. R. (1991). Filtering of Milankovitch cycles by Earth's geography. Quaternary Research, 35, 157–71.CrossRefGoogle Scholar
Sirocko, F., Seelos, K., Schaber, K., et al. (2005). A late Eemian aridity pulse in central Europe during the last glacial inception. Nature, 436, 833–6.CrossRefGoogle ScholarPubMed
Skvortzow, B. W. (1937). Bottom diatoms from Olkhon Gate of Baikal Lake, Siberia. Philippine Journal of Science, 62, 293–377.Google Scholar
Stager, J. C., Cumming, B., & Meeker, L. (1997). A high-resolution 11,400-yr diatom record from Lake Victoria, East Africa. Quaternary Research, 47, 81–9.CrossRefGoogle Scholar
Stager, J. C., Mayewski, P. A., & Meeker, L. D. (2002). Cooling cycles, Heinrich event 1, and the desiccation of Lake Victoria. Palaeogeography, Palaeoclimatology, Palaeoecology, 183, 169–78.CrossRefGoogle Scholar
Stoermer, E. F. & Edlund, M. B. (1999). No paradox in the plankton? – diatom communites in large lakes. In Proceedings of the XIVth International Diatom Symposium, ed. Mayama, S., Idei, M. & Koizumi, I.. Königstein: Koeltz Scientific Books, pp. 49–61.Google Scholar
Swann, G. E. A., Mackay, A. W., Leng, M., & Demoray, F. (2005). Climatic change in central Asia during MIS 3: a case study using biological responses from Lake Baikal sediments. Global and Planetary Change, 46, 235–53.CrossRefGoogle Scholar
Tapia, P. M., Fritz, S. C., Baker, P. A., Seltzer, G. O., & Dunbar, R. B. (2003). A late Quaternary diatom record of tropical climatic history from Lake Titicaca (Peru and Bolivia). Palaeogeography, Palaeoclimatology, Palaeoecology, 194, 139–64.CrossRefGoogle Scholar
Tarasov, P., Granoszewski, W., Bezrukova, E., et al. (2005). Quantitative reconstruction of the last interglacial climate based on the pollen record from Lake Baikal, Russia. Climate Dynamics, 25, 625–37.CrossRefGoogle Scholar
Theriot, E. C., Fritz, S. C., Whitlock, C., & Conley, D. J. (2006). Late Quaternary rapid morphological evolution of an endemic diatom in Yellowstone Lake, Wyoming. Paleobiology, 32, 38–54.CrossRefGoogle Scholar
Tréguer, P., Nelson, D. M., Bennekom, A. J., et al. (1995). The silica balance in the world ocean: a re-estimate. Science, 268, 375–9.CrossRefGoogle Scholar
Tuji, A. & Houki, A. (2001). Centric diatoms in Lake Biwa. Lake Biwa Study Monographs, 7, 1–90.Google Scholar
Tzedakis, P. C., Frogley, M. R. & Heaton, T. H. E. (2003). Last interglacial conditions in southern Europe: evidence from Ionnina, northwest Greece. Global and Planetary Change, 36, 157–70.CrossRefGoogle Scholar
Verschuren, D.Johnson, T. C., Kling, H. J., et al. (2002). History and timing of human impact on Lake Victoria, East Africa. Proceedings of the Royal Society of London, B 269, 289–94.CrossRefGoogle Scholar
Wagner, B., Lotter, A. F., Nowacyk, N., et al. (2008). A 40,000-year record of environmental change from ancient Lake Ohrid (Albania and Macedonia). Journal of Paleolimnology, 41, 407–30.CrossRefGoogle Scholar
Williams, D. M., Khursevich, G. K., Fedenya, S. A., & Flower, R. J. (2006). The fossil record in Lake Baikal: comments on the diversity and duration of some benthic species, with special reference to the genus Tetracyclus. In Proceedings of the 18th International Diatom Symposium, ed. Witkowski, A., Bristol: Biopress Ltd., pp. 465–78.Google Scholar
Williams, D. F., Kuzmin, M. I., Prokopenko, A. A., et al. (2001). The Lake Baikal Drilling Project in the context of a global lake drilling initiative. Quaternary International, 80–81, 3–18.CrossRefGoogle Scholar
Williams, D. F., Peck, J., Karabanov, E. B., et al. (1997). Lake Baikal record of continental climate response to orbital insolation during the past 5 million years. Science, 278, 1114–17.CrossRefGoogle Scholar
Williams, D. M. & Reid, G. (2006). Amphorotia nov. gen., a New Genus in the Family Eunotiaceae (Bacillariophyceae), Based on Eunotia clevei Grunow in Cleve et Grunow, Diatom Monographs, vol. 6, ed. Witkowski, A., Ruggell: A. R. G. Gantner Verlag.Google Scholar
Xiao, J., Kumai, H., et al. (1997). Biogenic silica record in Lake Biwa of central Japan over the past 450,000 years. Quaternary Research, 47, 277–83.CrossRefGoogle Scholar
Zhisheng, A. & Porter, S. C. (1997). Millennial scale climatic oscillations during the last interglacial in central China. Geology, 25, 603–6.2.3.CO;2>CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×