Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T14:22:08.153Z Has data issue: false hasContentIssue false

Chapter 16 - The Role of the Placenta in DOHaD

from Section IV - Mechanisms

Published online by Cambridge University Press:  01 December 2022

Lucilla Poston
Affiliation:
King's College London
Keith M. Godfrey
Affiliation:
University of Southampton
Peter D. Gluckman
Affiliation:
University of Auckland
Mark A. Hanson
Affiliation:
University of Southampton
Get access

Summary

Placental function supports the growth and development of the fetus by providing nutrients, removing fetal waste and protecting the fetus from xenobiotics. The placenta also secretes hormones and other endocrine mediators that adapt maternal physiology to support the pregnancy. Where placental function is inadequate, fetal development may be compromised and result in persistent changes in organ structure and function that have consequences for later health.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fleming, T. P., Watkins, A. J., Velazquez, M. A., Mathers, J. C., Prentice, A. M., Stephenson, J., Barker, M., Saffery, R., Yajnik, C. S., Eckert, J. J., Hanson, M. A., Forrester, T., Gluckman, P. D., and Godfrey, K. M. (2018) Origins of lifetime health around the time of conception: causes and consequences. Lancet 391, 1842–1852Google Scholar
Burton, G. J., Fowden, A. L., and Thornburg, K. L. (2016) Placental origins of chronic disease. Physiol Rev 96, 1509–1565CrossRefGoogle Scholar
Sferruzzi-Perri, A. N., and Camm, E. J. (2016) The programming power of the placenta. Front Physiol 7, 33Google Scholar
Lewis, R. M., Cleal, J. K., and Hanson, M. A. (2012) Review: placenta, evolution and lifelong health. Placenta 33 Suppl, S28–32Google Scholar
Sibley, C. P. (2009) Understanding placental nutrient transfer – why bother? New biomarkers of fetal growth. Journal of Physiology 587, 3431–3440Google Scholar
Stirrat, L. I., Sengers, B. G., Norman, J. E., Homer, N. Z. M., Andrew, R., Lewis, R. M., and Reynolds, R. M. (2018) Transfer and metabolism of cortisol by the isolated perfused human placenta. J Clin Endocrinol Metab 103, 640–648Google Scholar
Sferruzzi-Perri, A. N., Vaughan, O. R., Forhead, A. J., and Fowden, A. L. (2013) Hormonal and nutritional drivers of intrauterine growth. Curr Opin Clin Nutr Metab Care 16, 298–309CrossRefGoogle Scholar
Bloise, E., Ortiga-Carvalho, T. M., Reis, F. M., Lye, S. J., Gibb, W., and Matthews, S. G. (2016) ATP-binding cassette transporters in reproduction: a new frontier. Hum Reprod Update 22, 164–181Google Scholar
Whitley, G. S., and Cartwright, J. E. (2010) Cellular and molecular regulation of spiral artery remodelling: lessons from the cardiovascular field. Placenta 31, 465–474Google Scholar
Camm, E. J., Botting, K. J., and Sferruzzi-Perri, A. N. (2018) Near to one’s heart: the intimate relationship between the placenta and fetal heart. Front Physiol 9, 629Google Scholar
Lewis, R. M., Cleal, J. K., and Sengers, B. G. (2020) Placental perfusion and mathematical modelling. Placenta 93, 43–48CrossRefGoogle Scholar
Schumacher, A., Sharkey, D. J., Robertson, S. A., and Zenclussen, A. C. (2018) Immune cells at the fetomaternal interface: how the microenvironment modulates immune cells to foster fetal development. J Immunol 201, 325–334Google Scholar
Napso, T., Yong, H. E., Lopez-Tello, J., and Sferruzzi-Perri, A. N. (2018) The role of placental hormones in mediating maternal adaptations to support pregnancy and lactation. Front Physiol 9, 1091Google Scholar
Sferruzzi-Perri, A. N., Lopez-Tello, J., Napso, T., and Yong, H. E. (2020) Exploring the causes and consequences of maternal metabolic maladaptations during pregnancy. Placenta 98, 43–51Google Scholar
Handwerger, S., and Freemark, M. (2000) The roles of placental growth hormone and placental lactogen in the regulation of human fetal growth and development. J Pediatr Endocrinol Metab 13, 343–356Google Scholar
Turco, M. Y., Gardner, L., Kay, R. G., Hamilton, R. S., Prater, M., Hollinshead, M. S., McWhinnie, A., Esposito, L., Fernando, R., Skelton, H., Reimann, F., Gribble, F. M., Sharkey, A., Marsh, S. G. E., O’Rahilly, S., Hemberger, M., Burton, G. J., and Moffett, A. (2018) Trophoblast organoids as a model for maternal-fetal interactions during human placentation. Nature 564, 263–267CrossRefGoogle Scholar
Vento-Tormo, R., Efremova, M., Botting, R. A., Turco, M. Y., Vento-Tormo, M., Meyer, K. B., Park, J. E., Stephenson, E., Polanski, K., Goncalves, A., Gardner, L., Holmqvist, S., Henriksson, J., Zou, A., Sharkey, A. M., Millar, B., Innes, B., Wood, L., Wilbrey-Clark, A., Payne, R. P., Ivarsson, M. A., Lisgo, S., Filby, A., Rowitch, D. H., Bulmer, J. N., Wright, G. J., Stubbington, M. J. T., Haniffa, M., Moffett, A., and Teichmann, S. A. (2018) Single-cell reconstruction of the early maternal-fetal interface in humans. Nature 563, 347–353CrossRefGoogle Scholar
Michelsen, T. M., Henriksen, T., Reinhold, D., Powell, T. L., and Jansson, T. (2019) The human placental proteome secreted into the maternal and fetal circulations in normal pregnancy based on 4-vessel sampling. FASEB J 33, 2944–2956Google Scholar
Sferruzzi-Perri, A. N. (2018) Assessment of placental transport function in studies of disease programming. Methods Mol Biol Chapter 14, 1735, 1239–1250Google Scholar
Roseboom, T., de Rooij, S., and Painter, R. (2006) The Dutch famine and its long-term consequences for adult health. Early Hum Dev 82, 485–491Google Scholar
Roseboom, T. J., Painter, R. C., de Rooij, S. R., van Abeelen, A. F., Veenendaal, M. V., Osmond, C., and Barker, D. J. (2011) Effects of famine on placental size and efficiency. Placenta 32, 395–399Google Scholar
van Abeelen, A. F., de Rooij, S. R., Osmond, C., Painter, R. C., Veenendaal, M. V., Bossuyt, P. M., Elias, S. G., Grobbee, D. E., van der Schouw, Y. T., Barker, D. J., and Roseboom, T. J. (2011) The sex-specific effects of famine on the association between placental size and later hypertension. Placenta 32, 694–698Google Scholar
Glazier, J. D., Hayes, D. J. L., Hussain, S., D’Souza, S. W., Whitcombe, J., Heazell, A. E. P., and Ashton, N. (2018) The effect of Ramadan fasting during pregnancy on perinatal outcomes: a systematic review and meta-analysis. BMC Pregnancy Childbirth 18, 421Google Scholar
Lewis, R. M., Wadsack, C., and Desoye, G. (2018) Placental fatty acid transfer. Curr Opin Clin Nutr Metab Care 21, 78–82Google Scholar
Vaughan, O. R., Rosario, F. J., Powell, T., and Jansson, T. (2017) Regulation of placental amino acid transport and fetal growth. Prog Mol Biol Transl Sci. 2017;145:217–251. doi: 10.1016/bs.pmbts.2016.12.008. Epub 2017 Jan 16.Google Scholar
Cleal, J. K., Day, P. E., Simner, C. L., Barton, S. J., Mahon, P. A., Inskip, H. M., Godfrey, K. M., Hanson, M. A., Cooper, C., Lewis, R. M., Harvey, N. C., and Group, S. W. S. S. (2015) Placental amino acid transport may be regulated by maternal vitamin D and vitamin D-binding protein: results from the Southampton Women’s Survey. Br J Nutr 113, 1903–1910Google Scholar
Fowden, A. L., Camm, E. J., and Sferruzzi-Perri, A. N. (2020) Effects of maternal obesity on placental phenotype. Curr Vasc Pharmacol 19, 113–131Google Scholar
Myatt, L., and Thornburg, K. L. (2018) Effects of prenatal nutrition and the role of the placenta in health and disease. Methods Mol Biol 1735, 19–46Google Scholar
Lewis, R. M., and Desoye, G. (2017) Placental lipid and fatty acid transfer in maternal overnutrition. Ann Nutr Metab 70, 228–231Google Scholar
Rad, H. S., Rohl, J., Stylianou, N., Allenby, M. C., Bazaz, S. R., Warkiani, M. E., Guimaraes, F. S. F., Clifton, V. L., and Kulasinghe, A. (2021) The effects of COVID-19 on the placenta during pregnancy. Front Immunol 12, 743022Google Scholar
Nelson, S. M., Coan, P. M., Burton, G. J., and Lindsay, R. S. (2009) Placental structure in Type 1 Diabetes 58, 2634–2641Google Scholar
Calderon, I. M., Damasceno, D. C., Amorin, R. L., Costa, R. A., Brasil, M. A., and Rudge, M. V. (2007) Morphometric study of placental villi and vessels in women with mild hyperglycemia or gestational or overt diabetes. Diabetes Res Clin Pract 78, 65–71Google Scholar
Castillo-Castrejon, M., and Powell, T. L. (2017) Placental nutrient transport in gestational diabetic pregnancies. Front Endocrinol (Lausanne) 8, 306Google Scholar
Mayhew, T. M., Wijesekara, J., Baker, P. N., and Ong, S. S. (2004) Morphometric evidence that villous development and fetoplacental angiogenesis are compromised by intrauterine growth restriction but not by pre-eclampsia. Placenta 25, 829–833Google Scholar
Hayward, C. E., Greenwood, S. L., Sibley, C. P., Baker, P. N., Challis, J. R., and Jones, R. L. (2012) Effect of maternal age and growth on placental nutrient transport: potential mechanisms for teenagers’ predisposition to small-for-gestational-age birth? Am J Physiol Endocrinol Metab 302, E233242Google Scholar
Palomba, S., de Wilde, M. A., Falbo, A., Koster, M. P., La Sala, G. B., and Fauser, B. C. (2015) Pregnancy complications in women with polycystic ovary syndrome. Hum Reprod Update 21, 575–592Google Scholar
Maliqueo, M., Lara, H. E., Sanchez, F., Echiburu, B., Crisosto, N., and Sir-Petermann, T. (2013) Placental steroidogenesis in pregnant women with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol 166, 151–155Google Scholar
Clapp, J. F. (2006) Influence of endurance exercise and diet on human placental development and fetal growth. Placenta 27, 527–534Google Scholar
Brett, K. E., Ferraro, Z. M., Holcik, M., and Adamo, K. B. (2015) Prenatal physical activity and diet composition affect the expression of nutrient transporters and mTOR signaling molecules in the human placenta. Placenta 36, 204–212Google Scholar
Day, P. E., Ntani, G., Crozier, S. R., Mahon, P. A., Inskip, H. M., Cooper, C., Harvey, N. C., Godfrey, K. M., Hanson, M. A., Lewis, R. M., and Cleal, J. K. (2015) Maternal Factors are associated with the expression of placental genes involved in amino acid metabolism and transport. PloS one 10, e0143653Google Scholar
Mayhew, T. M. (2003) Changes in fetal capillaries during preplacental hypoxia: growth, shape remodelling and villous capillarization in placentae from high-altitude pregnancies. Placenta 24, 191–198Google Scholar
Zamudio, S., Baumann, M. U., and Illsley, N. P. (2006) Effects of chronic hypoxia in vivo on the expression of human placental glucose transporters. Placenta 27, 49–55CrossRefGoogle Scholar
Jauniaux, E., and Burton, G. J. (2007) Morphological and biological effects of maternal exposure to tobacco smoke on the feto-placental unit. Early Hum Dev 83, 699–706Google Scholar
Hayward, C. E., Greenwood, S. L., Sibley, C. P., Baker, P. N., and Jones, R. L. (2011) Effect of young maternal age and skeletal growth on placental growth and development. Placenta 32, 990–998CrossRefGoogle Scholar
Lean, S. C., Heazell, A. E. P., Dilworth, M. R., Mills, T. A., and Jones, R. L. (2017) Placental dysfunction underlies increased risk of fetal growth restriction and stillbirth in advanced maternal age women. Sci Rep 7, 9677Google Scholar
Perazzolo, S., Lewis, R. M., and Sengers, B. G. (2017) Modelling the effect of intervillous flow on solute transfer based on 3D imaging of the human placental microstructure. Placenta 60, 21–27CrossRefGoogle Scholar
Sferruzzi-Perri, A. N., Owens, J. A., Pringle, K. G., and Roberts, C. T. (2010) The neglected role of insulin-like growth factors in the maternal circulation regulating fetal growth. J Physiol 589, 7–20CrossRefGoogle Scholar
Fowden, A. L., Forhead, A. J., Sferruzzi-Perri, A. N., Burton, G. J., and Vaughan, O. R. (2015) Endocrine regulation of placental phenotype. Placenta 36, S5059Google Scholar
Paulsen, M. E., Rosario, F. J., Wesolowski, S. R., Powell, T. L., and Jansson, T. (2019) Normalizing adiponectin levels in obese pregnant mice prevents adverse metabolic outcomes in offspring. FASEB J 33, 2899–2909Google Scholar
Vaughan, O. R., Sferruzzi-Perri, A. N., and Fowden, A. L. (2012) Maternal corticosterone regulates nutrient allocation to fetal growth in mice. J Physiol 590, 5529–5540Google Scholar
Sferruzzi-Perri, A. N., Vaughan, O. R., Coan, P. M., Suciu, M. C., Darbyshire, R., Constancia, M., Burton, G. J., and Fowden, A. L. (2011) Placental-specific Igf2 deficiency alters developmental adaptations to undernutrition in mice. Endocrinology 152, 3202–3212Google Scholar
Yong, H. E., Lopez-Tello, J., Sandovici, I., Constancia, M., and Sferruzzi-Perri, A. N. (2017) Mice with placental junctional zone Igf2 deletion fail to metabolically adapt to pregnancy. Placenta 57, 247–248Google Scholar
Aykroyd, B. R. L., Tunster, S. J., and Sferruzzi-Perri, A. N. (2020) Igf2 deletion alters mouse placenta endocrine capacity in a sexually-dimorphic manner. J Endocrinol 246, 93–108Google Scholar
Hemberger, M., Hanna, C. W., and Dean, W. (2020) Mechanisms of early placental development in mouse and humans. Nat Rev Genet 21, 27–43Google Scholar
Vlahos, A., Mansell, T., Saffery, R., and Novakovic, B. (2019) Human placental methylome in the interplay of adverse placental health, environmental exposure, and pregnancy outcome. PLoS Genet 15, e1008236Google Scholar
Wen, X., Triche, E. W., Hogan, J. W., Shenassa, E. D., and Buka, S. L. (2011) Association between placental morphology and childhood systolic blood pressure. Hypertension 57, 48–55Google Scholar
Hemachandra, A. H., Klebanoff, M. A., Duggan, A. K., Hardy, J. B., and Furth, S. L. (2006) The association between intrauterine growth restriction in the full-term infant and high blood pressure at age 7 years: results from the collaborative perinatal project. Int J Epidemiol 35, 871–877Google Scholar
Risnes, K. R., Romundstad, P. R., Nilsen, T. I., Eskild, A., and Vatten, L. J. (2009) Placental weight relative to birth weight and long-term cardiovascular mortality: findings from a cohort of 31,307 men and women. Am J Epidemiol 170, 622–631Google Scholar
Barker, D. J., Larsen, G., Osmond, C., Thornburg, K. L., Kajantie, E., and Eriksson, J. G. (2012) The placental origins of sudden cardiac death. Int J Epidemiol 41, 1394–1399Google Scholar
Poston, L. (2010) Developmental programming and diabetes – The human experience and insight from animal models. Best Pract Res Clin Endocrinol Metab 24, 541–552Google Scholar
Reynolds, L. P., Borowicz, P. P., Caton, J. S., Vonnahme, K. A., Luther, J. S., Hammer, C. J., Maddock Carlin, K. R., Grazul-Bilska, A. T., and Redmer, D. A. (2010) Developmental programming: the concept, large animal models, and the key role of uteroplacental vascular development. J Anim Sci 88, E6172Google Scholar
Lopez-Tello, J., Arias-Alvarez, M., Gonzalez-Bulnes, A., and Sferuzzi-Perri, A. N. (2019) Models of Intrauterine growth restriction and fetal programming in rabbits. Mol Reprod Dev 86, 1781–1809Google Scholar
Carter, A. M. (2012) Evolution of placental function in mammals: the molecular basis of gas and nutrient transfer, hormone secretion, and immune responses. Physiol Rev 92, 1543–1576CrossRefGoogle Scholar
Mikaelsson, M. A., Constancia, M., Dent, C. L., Wilkinson, L. S., and Humby, T. (2013) Placental programming of anxiety in adulthood revealed by Igf2-null models. Nat Commun 4, 2311Google Scholar
Harrison, D. J., Creeth, H. D. J., Tyson, H. R., Boque-Sastre, R., Hunter, S., Dwyer, D. M., Isles, A. R., and John, R. M. (2021) Placental endocrine insufficiency programs anxiety, deficits in cognition and atypical social behaviour in offspring. Hum Mol Genet Sep 15; 30(19):1863-1880. doi: 10.1093/hmg/ddab154.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×