Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-13T00:50:36.904Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 October 2015

E. F. Assmus
Affiliation:
Lehigh University, Pennsylvania
J. D. Key
Affiliation:
Clemson University, South Carolina
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] R. W., Ahrens and G., Szekeres. On a combinatorial generalization of 27 lines associated with a cubic surface. J. Austral. Math. Soc, 10:485–492, 1969.Google Scholar
[2] W. O., Alltop. An infinite class of 5–designs. J. Combin. Theory, 12:390–395, 1972.Google Scholar
[3] J., André. Über nicht–Desarguessche Ebenen mit transitiver Translationsgruppe. Math. Z., 60:156–186, 1954.Google Scholar
[4] B. R., Andriamanalimanana. Ovals, Unitals and Codes. PhD thesis, Lehigh University, 1979.Google Scholar
[5] E., Artin. Geometric Algebra. New York: Wiley Interscience, 1957.Google Scholar
[6] E. F. Assmus, Jr. The binary code arising from a 2–design with a nice collection of ovals. IEEE Trans. Inform. Theory, 29:367–369, 1983.CrossRefGoogle Scholar
[7] E. F. Assmus, Jr.On the theory of designs. In J., Siemons, editor, Surveys in Combinatorics, 1989, pages 1–21. Cambridge: Cambridge University Press, 1989. London Mathematical Society Lecture Note Series 141.Google Scholar
[8] E. F. Assmus, Jr.On the Reed–Muller codes. Discrete Math., 106/107:25–33, 1992.CrossRefGoogle Scholar
[9] E. F. Assmus, Jr. and J. D., Key. On an infinite class of Steiner systems with t = 3 and k = 6. J. Combin. Theory, Ser. A, 42:55–60, 1986.CrossRefGoogle Scholar
[10] E. F. Assmus, Jr. and J. D., Key. Arcs and ovals in the hermitian and Ree unitals. European J. Combin., 10:297–308, 1989.CrossRefGoogle Scholar
[11] E. F. Assmus, Jr. and J. D., Key. Affine and projective planes. Discrete Math., 83:161–187, 1990.CrossRefGoogle Scholar
[12] E. F. Assmus, Jr. and J. D., Key. Baer subplanes, ovals and unitals.In Dijen, Ray–Chaudhuri, editor, Coding Theory and Design Theory, Part I, pages 1–8. New York: Springer–Verlag, 1990. IMA Volumesin Mathematics and its Applications, 20.Google Scholar
[13] E. F., Assmus|Jr. and J. D., Key. Translation planes and derivation sets. J. Geom., 37:3–16, 1990.Google Scholar
[14] E. F. Assmus, Jr. and J. D., Key. Hadamard matrices and their designs: a coding–theoretic approach. Trans. Amer. Math. Soc, 330:269–293, 1992.CrossRefGoogle Scholar
[15] E. F. Assmus, Jr. and J. H. van, Lint.Ovals in projective designs. J. Combin. Theory, Ser. A, 27:307–324, 1979.CrossRefGoogle Scholar
[16] E. F. Assmus, Jr. and H. F. Mattson, Jr.Perfect codes and the Mathieu groups. Arch. Math., 17:122–135, 1966.CrossRefGoogle Scholar
[17] E. F. Assmus, Jr. and H. F. Mattson, Jr.On tactical configurations and error–correcting codes. J. Combin. Theory, 2:243–257, 1967.CrossRefGoogle Scholar
[18] E. F. Assmus, Jr. and H. F. Mattson, Jr.New 5–designs. J. Combin. Theory, 6:122–151, 1969.CrossRefGoogle Scholar
[19] E. F. Assmus, Jr. and H. F. Mattson, Jr.Coding and combinatorics. SIAM Review, 16:349–388, 1974.CrossRefGoogle Scholar
[20] E. F. Assmus, Jr., H. F., Mattson|Jr., and R. J., Turyn. Research to Develop the Algebraic Theory of Codes. Applied Research Laboratory, Sylvania Electronic Systems, June 1967. No. AFCRL–67–0365. Contract No. AF19(628)–5998.
[21] E. F. Assmus, Jr. and A. R., Prince. Biplanes and near biplanes. J. Geom., 40:1–14, 1991.CrossRefGoogle Scholar
[22] E. F. Assmus, Jr. and H. E., Sachar. Ovals from the point of view of coding theory. In M., Aigner, editor, Higher Combinatorics, pages 213–216. Dordrecht: D. Reidel, 1977. Proceedings of the NATO Conference, Berlin 1976.Google Scholar
[23] E. F. Assmus, Jr. and C. J., Salwach.The (16,6,2) designs. Intemat. J. Math. & Math. Sci., 2:261–281, 1979.Google Scholar
[24] R., Baer. Homogeneity of projective planes. Amer. J. Math, 64:137–152, 1942.Google Scholar
[25] R., Baer. Projectivities of finite projective planes. Amer. J. Math, 69:653–684, 1947.Google Scholar
[26] R., Baer. Linear Algebra and Projective Geometry. New York: Academic Press. 1952.Google Scholar
[27] B., Bagchi and N. S. N., Sastry. Even order inversive planes, generalized quadrangles and codes. Geom. Dedicata, 22:137–147, 1987.Google Scholar
[28] S., Bagchi and B., Bagchi. Designs from pairs of finite fields: I. A cyclic unital [/(6) and other regular Steiner 2–designs. J. Combin. Theory, Ser. A, 52:51–61, 1989.Google Scholar
[29] R. D., Baker and G. L., Ebert. Intersection of unitals in the desarguesian plane. In Proceedings of the S.E. Conference on Combinatorics, Graph Theory and Computing, 1989.Google Scholar
[30] A., Barlotti. Un'estensione del teorema di Segre–Kustaanheimo. Boll. Un. Mat Ital, Gruppo IV, Serie III, 10:498–506, 1955.Google Scholar
[31] L. M., Batten. Combinatorics of Finite Geometries. Cambridge: Cambridge University Press, 1986.Google Scholar
[32] L., Bénéteau. Topics about 3–Moufang loops and Hall triple systems. Simon Stevin, 54(2): 107–128, 1980.Google Scholar
[33] T., Berger and P., Charpin. The automorphism group of the generalized Reed–Muller codes. Paris: INRIA Rapports de Recherche No. 1363, 1991.
[34] E. R., Berlekamp. Factoring polynomials over finite fields. Bell System Tech. J., 46:1853–1859, 1967.Google Scholar
[35] E. R., Berlekamp and L. R., Welch. Weight distributions of the cosets of the (32,6) Reed–Muller code. IEEE Trans. Inform. Theory, 18:203– 207, 1972.Google Scholar
[36] S. D., Berman. On the theory of group codes. Kibemetika, 3(l):31–39, 1967.Google Scholar
[37] Th., Beth, D., Jungnickel, and H., Lenz. Design Theory. Mannheim, Wien, Zürich: Bibliographisches Institut Wissenschaftsverlag, 1985.Google Scholar
[38] V. N., Bhat and S. S., Shrikhande. Non–isomorphic solutions of some balanced incomplete block designs. I. J. Combin. Theory, 9:174–191, 1970.Google Scholar
[39] N. L., Biggs and A. T., White. Permutation Groups and Combinatorial Structures. Cambridge: Cambridge University Press, 1979. London Mathematical Society Lecture Notes Series 33.Google Scholar
[40] R. E., Blahut. Transform techniques for error control codes. IBM J. Res. Develop., 23:299–315, 1979.Google Scholar
[41] R. E., Blahut. Theory and Practice of Error Control Codes. New York: Addison–Wesley, 1983.Google Scholar
[42] I. F., Blake and R. C., Mullin. The Mathematical Theory of Coding. New York: Academic Press, 1975.Google Scholar
[43] R. E., Block. On the orbits of collineation groups. Math. Z., 96:33–49, 1967.Google Scholar
[44] A., Blokhuis, A., Brouwer, and H., Wilbrink. Hermitian unitals are codewords. Discrete Math., 97:63–68, 1991.Google Scholar
[45] R. C., Bose and D. K., Ray–Chaudhuri. On a class of error correcting binary group codes. Inform, and Control, 3:68–79, 1960.Google Scholar
[46] R. C., Bose and S. S., Shrikhande. A note on a result in the theory of code construction. Inform, and Control, 2:183–194, 1959.Google Scholar
[47] R. C., Bose and S. S., Shrikhande. On the construction of sets of mutually orthogonal latin squares and the falsity of a conjecture of Euler. Trans. Amer. Math. Soc, 95:191–209, 1960.Google Scholar
[48] R., Brauer. On the connection between the ordinary and the modular characters of groups of finite order. Ann. Math., 42:926–935, 1941.Google Scholar
[49] W. G., Bridges. Algebraic duality theorems with combinatorial applications. Linear Algebra Appl, 22:157–162, 1978.Google Scholar
[50] A. E., Brouwer. Some unitals on 28 points and their embeddings in projective planes of order 9. In M., Aigner and D., Jungnickel, editors, Geometries and Groups, pages 183–188. Berlin: Springer–Verlag, 1981. Lecture Notes in Mathematics, 893.Google Scholar
[51] A. E., Brouwer, A. M., Cohen, and A.|Neumaier. Distance–Regular Graphs. Ergebnisse der Mathematik und ihrer Grenzgebiete, Folge 3, Band 18. Berlin, New York: Springer–Verlag, 1989.Google Scholar
[52] R. H., Bruck. Construction problems in finite projective spaces. In A., Barlotti, editor, Finite Geometric Structures and their Applications, pages 105–188. C.I.M.E., Edizioni Cremonese, Roma, 1973. Corso tenuto a Bressannone dal 18 al 27 Giugno 1972.Google Scholar
[53] R. H., Bruck and R. C., Bose. The construction of translation planes from projective spaces. J. Algebra, 1:85–102, 1964.Google Scholar
[54] A. A., Bruen. Blocking sets in finite projective planes. SIAM J. Appl. Math., 21:380–392, 1971.Google Scholar
[55] A. A., Bruen and J. W. P., Hirschfeld. Intersections in projective space I: Combinatorics. Math. Z., 193:215–225, 1986.Google Scholar
[56] A. A., Bruen and U., Ott. On the p–rank of incidence matrices and a question of E. S. Lander. Contemp. Math., 111:39–45, 1990.Google Scholar
[57] F., Buekenhout. Existence of unitals in finite translation planes of order q2 with a kernel of order q. Geom. Dedicata, 5:189–194, 1976.Google Scholar
[58] F., Buekenhout, A., Delandtsheer, and J.|Doyen. Finite linear spaces with flag–transitive groups. J. Combin. Theory, Ser. A, 49:268–293, 1988.Google Scholar
[59] F., Buekenhout, A., Delandtsheer, J., Doyen, P. B., Kleidman, M. W., Liebeck, and J., Saxl. Linear spaces with flag–transitive automorphism groups. Preprint.
[60] W., Burau. Uber die zur Kummerkonfiguration analogen Schematavon 16 Punkten und 16 Blocken und ihre Gruppen. Abh. Math. Sem. Univ. Hamburg, 26:129–144, 1963.Google Scholar
[61] A. R., Calderbank, P., Delsarte, and N. J. A., Sloane. A strengthening of the Assmus–Mattson theorem. IEEE Trans. Inform. Theory, 37:1261–1268, 1991.Google Scholar
[62] P. J., Cameron. Biplanes. Math. Z, 131:85–101, 1973.Google Scholar
[63] P. J., Cameron. Parallelisms of Complete Designs. Cambridge: Cambridge University Press, 1976. London Mathematical Society Lecture Notes Series 23.Google Scholar
[64] P. J., Cameron and J. H. van, Lint. Graphs, Codes and Designs. Cambridge: Cambridge University Press, 1980. London Mathematical Society Lecture Notes Series 43.Google Scholar
[65] P., Camion. Difference Sets in Elementary Abelian Groups. Les Presses de l'Univérsite de Montreal, 1979. Seminaire de Mathématiques Supérieures, Département de Mathématiques et de Statistique, Université de Montréal.
[66] J., Cannon. Cayley: A Language for Group Theory. Department of Mathematics, University of Sydney, July 1982.Google Scholar
[67] P., Charpin. Codés cycliques étendus invariants sous le groupe affine. Thése de Doctorat d'État, Université Paris VII, 1987.Google Scholar
[68] P., Charpin. A new description of some polynomial codes: the primitive generalized Reed–Muller code. Technical report, Université Paris VII, 1985.Google Scholar
[69] P., Charpin. Une généralisation de la construction de Berman des codes de Reed et Muller p–aires. Communications in Algebra, 16:2231–2246, 1988.Google Scholar
[70] P., Charpin. Codes cycliques étendus affines–invariants et antichaines d'un ensemble partiellement ordonné. Discrete Math., 80:229–247, 1990.Google Scholar
[71] W. E., Cherowitzo. Hyper ovals in desarguesian planes of even order. Ann. of Discrete Math., 37:87–94, 1988.Google Scholar
[72] W. E.|Cherowitzo. Hyper ovals in the translation planes of order 16. J. Combin. Math. & Combin. Comput., 9:39–55, 1991.
[73] J. H., Conway. Three lectures on exceptional groups. In M. B., Powell and G., Higman, editors, Finite Simple Groups, pages 215–247. New York, London: Academic Press, 1971. Proceedings of an Instructional Conference Organized by the London Mathematical Society — a NATO Advanced Study Institute.Google Scholar
[74] J. H., Conway and V., Pless. On the enumeration of self–dual codes. J. Combin. Theory, Ser. A, 28:26–53, 1980.Google Scholar
[75] J. H., Conway and N. J. A., Sloane. Sphere Packings, Lattices and Groups. Grundlehren der mathematischen Wissenschaften 290. New York: Springer–Verlag, 1988.Google Scholar
[76] R. T., Curtis. The regular dodecahedron and the binary Golay code. Ars Combin., 29B:55–64, 1990.Google Scholar
[77] R. T., Curtis. On graphs and codes. Geom. Dedicata, 41:127–134, 1992.Google Scholar
[78] T., Czerwinski and D. J., Oakden. The translation planes of order twenty–five. J. Combin. Theory, Ser. A, 59:193–217, 1992.Google Scholar
[79] M., Dehon. Ranks of incidence matrices of t–designs S (t,t + 1, A). European J. Combin., 1:97–100, 1980.Google Scholar
[80] P., Delsarte. A geometric approach to a class of cyclic codes. J. Combin. Theory, 6:340–358, 1969.Google Scholar
[81] P., Delsarte. On cyclic codes that are invariant under the general linear group. IEEE Trans. Inform. Theory, 16:760–769, 1970.Google Scholar
[82] P., Delsarte. Majority logic decodable codes derived from finite inversive planes. Inform, and Control, 18:319–325, 1971.Google Scholar
[83] P., Delsarte, J. M., Goethals, and F. J., MacWilliams. On generalized Reed–Muller codes and their relatives. Inform, and Control, 16:403– 442, 1970.Google Scholar
[84] P., Delsarte, J. M., Goethals, and J. J., Seidel. Spherical codes and designs. Geom. Dedicata, 6:363–388, 1977.Google Scholar
[85] P., Dembowski. Finite Geometries. Ergebnisse der Mathematik undihrer Grenzbegiete, Band 44. Berlin, Heidelberg, New York: Springer–Verlag, 1968.Google Scholar
[86] P., Dembowski and A., Wagner. Some characterizations of finite projective spaces. Arch. Math., 11:465–469, 1960.Google Scholar
[87] U., Dempwolff and A., Reifart. The classification of the translation planes of order 16, I. Geom. Dedicata, 15:137–153, 1983.Google Scholar
[88] R. H. F., Denniston. Some new 5–designs. Bull. London Math. Soc, 8:263–267, 1976.Google Scholar
[89] L. E., Dickson. Linear Groups with an Exposition of the Galois Field Theory. New York: Dover Publications, 1958. (With an introduction by Wilhelm Magnus).Google Scholar
[90] J., Dieudonné. La Géométrie des Groupes Classiques. Ergebnisseder Mathematik und ihrer Grenzgebiete, Neue Folge, Band 5. Berlin, Gottingen, Heidelberg: Springer–Verlag, second edition, 1963.Google Scholar
[91] J., Dieudonné. Sur les Groupes Classiques. Actualites scientifiques et industrielles 1040. Paris: Hermann, third edition, 1973.Google Scholar
[92] J. F., Dillon. Private communication.
[93] J. F., Dillon. A survey of bent functions. NSAL–S–203,092.
[94] J. F., Dillon. Elementary Hadamard Difference Sets. PhD thesis, University of Maryland, 1974.Google Scholar
[95] J. F., Dillon. Elementary Hadamard difference sets. Congressus Numerantium, 14:237–249, 1975.Google Scholar
[96] J. F., Dillon and J. R., Schatz. Block designs with the symmetric difference property. In Robert L., Ward, editor, Proceedings of the NSA Mathematical Sciences Meetings, pages 159–164. The United States Government, 1987.Google Scholar
[97] S. T., Dougherty. Nets and their codes. PhD thesis, Lehigh University, 1992.Google Scholar
[98] J., Doyen. Linear spaces and Steiner systems. In M.|Aigner and D., Jungnickel, editors, Geometries and Groups, pages 30–42. Berlin: Springer–Verlag, 1981. Lecture Notes in Mathematics, 893.Google Scholar
[99] J., Doyen, X., Hubaut, and M., Vandensavel. Ranks of incidence matrices of Steiner triple systems. Math. Z., 163:251–259, 1978.Google Scholar
[100] G. L., Ebert. Translation planes of order q2: asymptotic estimates. Trans. Amer. Math. Soc, 238:301–308, 1978.Google Scholar
[101] J. C., Fisher, J. W. P., Hirschfeld, and J. A., Thas. Complete arcs in planes of square order. Ann. Discrete Math., 30:243–250, 1986.Google Scholar
[102] M. J., Ganley. A class of unitary block designs. Math. Z., 128:34–42, 1972.Google Scholar
[103] D., Ghinelli–Smit. Functions on symmetric designs. Ars Combin., 24B:217–230, 1987.Google Scholar
[104] D., Gluck. Affine planes and permutation polynomials. In Dijen, Ray–Chaudhuri, editor, Coding Theory and Design Theory, Part II, pages 99–100. Springer–Verlag, 1990. IMA Volumes in Mathematics and its Applications, 21.Google Scholar
[105] J. M., Goethals and P., Delsarte. On a class of majority–logic decodable cyclic codes. IEEE Trans. Inform. Theory, 14:182–188, 1968.Google Scholar
[106] J. M., Goethals and J. J., Seidel. Strongly regular graphs derived from combinatorial designs. Canad. J. Math., 22:597–614, 1970.Google Scholar
[107] M. J. E., Golay. Notes on digital coding. Proc. IRE, 37:657, 1949.Google Scholar
[108] M. J. E., Golay. Anent codes, priorities, patents, etc. Proc. IEEE, 64:572, 1976.Google Scholar
[109] R. L., Graham and F. J., MacWilliams. On the number of information symbols in difference–set cyclic codes. Bell System Tech. J., 45:1057–1070, 1966.Google Scholar
[110] K., Grey. Further results on designs carried by a code. Ars Combin., 26B:133–152, 1988.Google Scholar
[111] B. H., Gross. Intersection triangles and block intersection numbers of Steiner systems. Math. Z., 139:87–104, 1974.Google Scholar
[112] K. W., Gruenberg and A. J., Weir. Linear Geometry. Graduate Texts in Mathematics: 49. New York: Springer Verlag, second edition, 1977.Google Scholar
[113] J., Hadamard. Résolution d'une question relative aux determinants. Bull. Sci. Math., 2:240–246, 1893.Google Scholar
[114] A. J., Hahn and O. T., O'Meara. The Classical Groups and K–Theory. Grundlehren der mathematischen Wissenschaften 291. New York: Springer–Verlag, 1989.Google Scholar
[115] M. Hall, Jr.Projective planes. Trans. Amer. Math. Soc, 54:229–277, 1943.CrossRefGoogle Scholar
[116] M. Hall, Jr.Cyclic projective planes. Duke Math. J., pages 1079–1090. 1947.Google Scholar
[117] M. Hall, Jr.A survey of difference sets. Proc. Amer. Math. Soc, 7:975–986, 1956.CrossRefGoogle Scholar
[118] M. Hall, Jr.Automorphisms of Steiner triple systems. Proc. Sympos. Pure Math., 6:47–66, 1962.Google Scholar
[119] M. Hall, Jr.Note on the Mathieu group M12. Arch. Math., 13:334–340, 1962.CrossRefGoogle Scholar
[120] M. Hall, Jr.Ovals in the desarguesian plane of order 16. Ann. Mat. Pura Appl. (4), 102:159–176, 1975. CLXXIV della Raccolta sotto gli auspici del Consiglio Nazionale delle Ricerche.CrossRefGoogle Scholar
[121] M. Hall, Jr.Semi–automorphisms of Hadamard matrices. Math. Proc. Camb. Phil. Soc, 77:459–473, 1975.CrossRefGoogle Scholar
[122] M. Hall, Jr.Combinatorial Theory. New York: Wiley, second edition, 1986.Google Scholar
[123] M. Hall, Jr. and H. J., Ryser.Cyclic incidence matrices. Canad. Math. J., 3:495–502, 1951.CrossRefGoogle Scholar
[124] N., Hamada. The rank of the incidence matrix of points and d–flats in finite geometries. J. Sci. Hiroshima Univ. Ser. A–I, 32:381–396, 1968.Google Scholar
[125] N., Hamada. On the p–rank of the incidence matrix of a balanced or partially balanced incomplete block design and its applications to error correcting codes. Hiroshima Math. J., 3:153–226, 1973.Google Scholar
[126] N., Hamada. The geometric structure and the p–rank of an affine triple system derived from a nonassociative Moufang loop with the maximum associative center. J. Combin. Theory, Ser. A, 30:285–297, 1981.Google Scholar
[127] N., Hamada and H., Ohmori. On the BIB design having the minimum p–rank. J. Combin. Theory, Ser. A, 18:131–140, 1975.Google Scholar
[128] R. W., Hamming. Error detecting and error correcting codes. Bell System Tech. J., 29:147–160, 1950.Google Scholar
[129] R. W., Hamming. Coding and Information Theory. Englewood Cliffs, N.J.: Prentice Hall, 1980.Google Scholar
[130] H., Hanani.On quadruple systems. Canad. J. Math, 12:145–157, 1960.Google Scholar
[131] H., Hanani. The existence and construction of balanced incomplete block designs. Ann. Math. Statist, 32:361–386, 1961.Google Scholar
[132] H., Hanani. A class of three–designs. J. Combin. Theory, Ser. A, 26:1–19, 1979.Google Scholar
[133] C., Hering. On codes and projective designs. Technical Report 344, Kyoto University Mathematics Research Institute Seminar Notes, 1979.
[134] R., Hill. A First Course in Coding Theory. Oxford Applied Mathematics and Computing Science Series. Oxford: Oxford University Press, 1986.Google Scholar
[135] G., Hillebrandt. The p –rank of (0, l)–matrices. J. Combin. Theory, Ser. A, 60:131–139, 1992.Google Scholar
[136] J. W. P., Hirschfeld. Projective Geometries over Finite Fields. Oxford: Oxford University Press, 1979.Google Scholar
[137] J. W. P., Hirschfeld. Finite Projective Spaces of Three Dimensions. Oxford: Oxford University Press, 1985.Google Scholar
[138] G., Hiss. On the incidence matrix of the Ree unital. Preprint.
[139] A., Hocquenghem. Codes correcteurs d'erreurs. Chiffres, 2:147–158, 1959.Google Scholar
[140] G., Hölz. Construction of designs which contain a unital. Arch. Math., 37:179–183, 1981.Google Scholar
[141] D. A., Huffman. The synthesis of linear sequential coding networks. In Colin, Cherry, editor, Information Theory. London: Butterworths Scientific Publishers, 1956. Papers read at a Symposium on ‘Information Theory’ held in London in 1955.Google Scholar
[142] D. R., Hughes. On t–designs and groups. Amer. J. Math., 87:761–778, 1965.Google Scholar
[143] D. R., Hughes and F. C., Piper. Projective Planes. Graduate Texts in Mathematics 6. New York: Springer–Verlag, 1973.Google Scholar
[144] D. R., Hughes and F. C., Piper. Design Theory. Cambridge: Cambridge University Press, 1985.Google Scholar
[145] B., Huppert. Endliche Gruppen I. Berlin, Heidelberg: Springer Verlag, 1967.Google Scholar
[146] Q. M., Hussain. On the totality of the solutions for the symmetrical incomplete block designs A = 2, k = 5 or 6. Sankhya, 7:204–208, 1945.Google Scholar
[147] N., Ito, J. S., Leon, and J. Q., Longyear. Classification of 3–(24,12,5) designs and 24–dimensional Hadamard matrices. J. Combin. Theory, Ser. A, 31:66–93, 1981.Google Scholar
[148] D., Jungnickel and V. D., Tonchev. On symmetric and quasi–symmetric designs with the symmetric difference property and their codes. J. Combin. Theory, Ser. A, 59:40–50, 1992.Google Scholar
[149] W. M., Kantor. Plane geometries associated with certain 2–transitive groups. J. Algebra, 37:489–521, 1975.Google Scholar
[150] W. M., Kantor. Symplectic groups, symmetric designs and line ovals. J. Algebra, 33:43–58, 1975.Google Scholar
[151] W. M., Kantor. Homogeneous designs and geometric lattices. J. Combin. Theory, Ser. A, 38:66–74, 1985.Google Scholar
[152] I., Kaplansky. Linear Algebra and Geometry—A Second Course. Boston: Allyn and Bacon, 1969.Google Scholar
[153] T., Kasami, S., Lin, and W. W., Peterson. Some results on cyclic codes which are invariant under the affine group and their applications. Inform, and Control, 11:475–496, 1967.Google Scholar
[154] T., Kasami, S., Lin, and W. W., Peterson. New generalizations of the Reed–Muller codes. Part I: Primitive codes. IEEE Trans. Inform. Theory, 14:189–199, 1968.Google Scholar
[155] T., Kasami, S., Lin, and W. W., Peterson. Polynomial codes. IEEE Trans. Inform. Theory, 14:807–814, 1968.Google Scholar
[156] B. C., Kestenband. Unital intersections in finite projective planes. Geom. Dedicata, 11:107–117, 1981.Google Scholar
[157] J. D., Key. A class of 1–designs. European J. Combin., 14:37–41, 1993.Google Scholar
[158] J. D., Key. Hermitian varieties as codewords. Des. Codes Cryptogr., 1:255–259, 1991.Google Scholar
[159] J. D.|Key. Extendable Steiner systems. Geom. Dedicata, 41:201–205, 1992.
[160] J. D., Key and K., Mackenzie. An upper bound for the p–rank of a translation plane. J. Combin. Theory, Ser. A, 56:297–302, 1991.Google Scholar
[161] J. D., Key and K., Mackenzie. Ovals in the designs W (2m). Ars Combin., 33:113–117, 1992.Google Scholar
[162] J. D., Key and E. E., Shult. Steiner triple systems with doubly transitive automorphism groups: a corollary to the classification theorem for finite simple groups. J. Combin. Theory, Ser. A, 36:105–110, 1984.Google Scholar
[163] J. D., Key and A., Wagner. On an infinite class of Steiner systems constructed from affine spaces. Arch. Math., 47:376–378, 1986.Google Scholar
[164] R. E., Kibler. A summary of noncyclic difference sets, k < 20. J. Combin. Theory, Ser. A, 25:62–67, 1978.Google Scholar
[165] H., Kimura. Classification of Hadamard matrices of order 28 with Hall sets. Preprint.
[166] H., Kimura. On equivalence of Hadamard matrices. Hokkaido Math. J., 17:139–146, 1988.Google Scholar
[167] H., Kimura. New Hadamard matrix of order 24. Graphs and Combin., 5:235–242, 1989.Google Scholar
[168] H., Kimura and H., Ohmori. Construction of Hadamard matrices of order 28. Graphs Combin., 2:247–257, 1986.Google Scholar
[169] T. P., Kirkman. On a problem in combinations. Cambridge and Dublin Math. J., 2:191–204, 1847.Google Scholar
[170] E., Kleinfeld. Techniques for enumerating Veblen–Wedderburn systems. J. Assoc. Comput. Mach., 7:330–337, 1960.Google Scholar
[171] M., Klemm. Über die Reduktion von Permutationsmoduln. Math. Z., 143:113–117, 1975.Google Scholar
[172] M., Klemm. Über den p–Rang von Inzidenzmatrizen. J. Combin. Theory, Ser. A, 43:138–139, 1986.Google Scholar
[173] H., Koch. On self–dual, doubly even codes of length 32. J. Combin. Theory, Ser. A, 51:63–76, 1989.Google Scholar
[174] H., Koch. On self–dual doubly–even extremal codes. Discrete Math., 83:291–300, 1990.Google Scholar
[175] G., Korchmáros. Old and new results on ovals in finite projective planes. In A. D., Keedwell, editor, Surveys in Combinatorics, 1991, pages 41–72. Cambridge: Cambridge University Press, 1991. London Mathematical Society Lecture Note Series 166.Google Scholar
[176] C. W. H., Lam. The search for a finite projective plane of order 10. Amer. Math. Monthly, 98:305–318, 1991.Google Scholar
[177] C. W. H., Lam, G., Kolesova, and L., Thiel. A computer search for finite projective planes of order 9. Discrete Math., 92:187–195, 1991.Google Scholar
[178] C. W. H., Lam, L., Thiel, and A., Pautasso. On self–dual ternary codes generated by the inequivalent Hadamard matrices of order 24. Preprint.
[179] C. W. H., Lam, L., Thiel, and S., Swiercz. The non–existence of finite projective planes of order 10. Canad. J. Math., 41:1117–1123, 1989.Google Scholar
[180] C. W. H., Lam, L., Thiel, S., Swiercz, and J., McKay. The non–existence of ovals in a projective plane of order 10. Discrete Math., 45:319–321, 1983.Google Scholar
[181] E. S., Lander. Symmetric Designs: an Algebraic Approach. Cambridge: Cambridge University Press, 1983. London Mathematical Society Lecture Notes Series 74.Google Scholar
[182] P., Landrock and O., Manz. Classical codes as ideals in group algebras. Des. Codes Cryptogr., 2:273–285, 1992.Google Scholar
[183] J. S., Leon, V., Pless, and N. J. A., Sloane. Self–dual codes over GF(5). J. Combin. Theory, Ser. A, 32:178–194, 1982.Google Scholar
[184] J. S., Leon, V., Pless, and N. J. A., Sloane. On ternary self–dual codes of length 24. IEEE Trans. Inform. Theory, 27:176–180, 1981.Google Scholar
[185] R., Lidl and H., Niederreiter. Introduction to Finite Fields and their Applications. Cambridge: Cambridge University Press, 1986.Google Scholar
[186] J. H. van, Lint. Coding Theory. Lecture Notes in Mathematics, 201. Berlin: Springer–Verlag, 1970.Google Scholar
[187] J. H. van, Lint, A survey of perfect codes. Rocky Mountain J. Math., 5:199–224, 1975.Google Scholar
[188] J. H. van, Lint. Introduction to Coding Theory. Graduate Texts in Mathematics 86. New York: Springer–Verlag, 1982.Google Scholar
[189] J. H. van, Lint. Algebraic geometric codes. In Dijen, Ray–Chauddhuri, editor, Coding Theory and Design Theory, Part I, pages 137–162. New York: Springer–Verlag, 1990. IMA Volumes in Mathematics and its Applications, 20.Google Scholar
[190] J. H. van, Lint. Codes and combinatorial designs. In D., Jungnickel et al., editors, Design Theory, Coding Theory and Group Theory. New York: Wiley Inter science.
[191] J. H. van, Lint and G. van der, Geer. Introduction to Coding Theory and Algebraic Geometry. DMV Seminar Band 12. Basel: Birkhauser Verlag, 1988.Google Scholar
[192] P., Lorimer. A projective plane of order 16. J. Combin. Theory, 16:334–347, 1974.Google Scholar
[193] H., Lüneburg. Charakterisierungen der endlichen desarguesschen projektiven Ebenen. Math. Z., 85:419–450, 1964.Google Scholar
[194] H., Lüneburg. Some remarks concerning the Ree group of type (G2). J. Algebra, 3:256–259, 1966.Google Scholar
[195] H., Lüneburg. Lectures on projective planes. Technical report, University of Illinois at Chicago Circle, 1968/69.
[196] H., Lüneburg. Transitive Erweiterungen endlicher Permutationsgruppen. Lecture Notes in Mathematics, 84. Berlin: Springer–Verlag, 1969.Google Scholar
[197] H., Lüneburg. Translation Planes. New York: Springer–Verlag, 1980.Google Scholar
[198] L., Lunelli and M., See. k –Archi completi nei piani proietivi desarguesiani di rango 8 e 16. Technical report, Centro Calcoli Numerici,Politecnico di Milano, 1958.
[199] R. J., McEliece. The reliability of computer memories. Scientific American, 252:2–7, 1985.Google Scholar
[200] K., Mackenzie. Codes of Designs. PhD thesis, University of Birmingham, 1989.Google Scholar
[201] S., MacLane and G., Birkoff. Algebra: Second Edition. New York: Collier Macmillan, 1979.Google Scholar
[202] F. J., MacWilliams and H. B., Mann. On the p–rank of the design matrix of a difference set. Inform, and Control, 12:474–489, 1968.Google Scholar
[203] F. J., MacWilliams and N. J. A., Sloane. The Theory of Error– Correcting Codes. Amsterdam: North–Holland, 1983.
[204] F. J., MacWilliams, N. J. A., Sloane, and J. G., Thompson. Good self–dual codes exist. Discrete Math., 3:153–162, 1972.Google Scholar
[205] S. S., Magliveras and D. M., Leavitt. Simple 6–(33,8,36) designs from PFL2(32). In Computational Group Theory, pages 337–352. New York: Academic Press, 1984.Google Scholar
[206] J. A., Maiorana. A classification of the cosets of the Reed–Muller code R (l,6). Math. Comp., 57:403–414, 1991.Google Scholar
[207] H. B., Mann. Addition Theorems: The Addition Theorems of Group Theory and Number theory. Interscience Tracts in Pure and Applied Mathematics: 18. New York: Interscience Publishers, 1965.Google Scholar
[208] A., Maschietti. Hyperovals and Hadamard designs. J. Geom., 44:107– 116, 1992.Google Scholar
[209] J. L., Massey. Book Review: Theory and Practice of Error Control Codes, by R. E., Blahut. IEEE Trans. Inform. Theory, 31:553–554, 1985.Google Scholar
[210] R., Mathon. Constructions of cyclic Steiner 2–designs. Ann. Discrete Math.. 34:353–362, 1987.Google Scholar
[211] H. F., Mattson|Jr. Book Review: The Theory of Error–Correcting Codes, by F. J. Mac, Williams and N. J. A., Sloane. SI AM Review, 22:513–519, 1980.Google Scholar
[212] H. F. Mattson, Jr. and G., Solomon. A new treatment of Bose–Chaudhuri codes. J. Soc. Indust. Appl. Math., 9:654–669, 1961.CrossRefGoogle Scholar
[213] N. S., Mendelsohn and B., Wolk. A search for a non–desarguesian plane of prime order. In C. A., Baker and L. M., Batten, editors, Finite Geometries, pages 199–208. New York: Marcel Dekker, 1985. Lecture Notes in Pure and Applied Mathematics, 103.Google Scholar
[214] P. K., Menon. Difference sets in abelian groups. Proc. Amer. Math. Soc, 11:368–376, 1960.Google Scholar
[215] R., Metz. On a class of unitals. Geom. Dedicata, 8:125–126, 1979.Google Scholar
[216] E. H., Moore. Concerning triple systems. Math. Ann., 43:271–285, 1893.Google Scholar
[217] E. H., Moore. Tactical memoranda I–III. Amer. J. Math., 18:264–303, 1896.Google Scholar
[218] G. E. Moor, house. Bruck nets, codes, and characters of loops. Des. Codes Cryptogr., 1:7–29, 1991.Google Scholar
[219] B., Mortimer. The modular permutation representations of the known doubly transitive groups. Proc. London Math. Soc. (3), 41:1–20, 1980.Google Scholar
[220] D. W., Newhart. On minimum weight codewords in QR codes. J. Combin. Theory, Ser. A, 48:104–119, 1988.Google Scholar
[221] C. W., Norman. Nonisomorphic Hadamard designs. J. Combin. Theory, Ser. A, 21:336–344, 1976.Google Scholar
[222] M. E., O'Nan. Automorphisms of unitary block designs. J. Algebra, 20:495–511, 1972.Google Scholar
[223] T. G., Ostrom. Semi–translation planes. Trans. Amer. Math. Soc, 111:1–18, 1964.Google Scholar
[224] T. G., Ostrom. Finite Translation Planes. Lecture Notes in Mathematics, 158. Berlin: Springer–Verlag, 1970.Google Scholar
[225] T. G., Ostrom and A., Wagner. On projective and affine planes with transitive collineation groups. Math. Z., 71:186–199, 1959.Google Scholar
[226] U., Ott. Endliche zyklische Ebenen. Math. Z., 144:195–215, 1975.Google Scholar
[227] U., Ott. Some remarks on representation theory in finite geometry. In M., Aigner and D., Jungnickel, editors, Geometries and Groups, pages 68–110. Berlin: Springer–Verlag, 1981. Lecture Notes in Mathematics, 893.Google Scholar
[228] U., Ott. An elementary introduction to algebraic methods for finite projective planes. Technical Report 50, Universita di Roma La Sapienza, Marzo 1984. Seminario di Geometrie Combinatorie, diretto da G. Tallini.
[229] L. J., Paige. A note on the Mathieu groups. Canad. J. Math., 9:15–18, 1957.Google Scholar
[230] R. E. A. C., Paley. On orthogonal matrices. J. Math. Phys., 12:311– 320, 1933.Google Scholar
[231] G., Panella. Caratterizzazione delle quadriche di uno spazio (tridimensionale) lineare sopra un corpo finito. Boll. Uni. Mat. Ital, Gruppo IV, Serie III, 10:507–513, 1955.Google Scholar
[232] D. S., Passman. Permutation Groups. New York: W.A. Benjamin Inc., 1968.Google Scholar
[233] S. E., Payne and J. A., Thas. Finite Generalized Quadrangles. Research Notes in Mathematics 110. Boston: Pitman, 1984.Google Scholar
[234] T., Penttila and I., Pinneri. Private communication.
[235] W. W., Peterson. Error–correcting codes. Scientific American, 206:96– 108, 1962.Google Scholar
[236] F., Piper. Unitary block designs. In R.M., Wilson, editor, Graph Theory and Combinatorics, pages 98–105. Pitman, 1979. Research Notes in Math., 34.Google Scholar
[237] V., Pless. Symmetry codes over GF(3) and new 5–designs. J. Combin. Theory, 12:119–142, 1972.Google Scholar
[238] V., Pless. The Theory of Error–Correcting Codes. New York: John Wiley and Sons, 1989. Second Edition.Google Scholar
[239] V., Pless and N. J. A., Sloane. Binary self–dual codes of length 24. Bull. Amer. Math. Soc, 80:1173–1178, 1974.Google Scholar
[240] A., Pott. Applications of the DFT to abelian difference sets. Arch. Math., 51:283–288, 1988.Google Scholar
[241] E., Prange. Cyclic error–correcting codes in two symbols. Electronics Research Directorate, Air Force Cambridge Research Center, September 1957. AFCRC–TN–57–103. ASTIA Document AD133749.
[242] E., Prange. An algorism for factoring xn — 1 over a finite field. Electronics Research Directorate, Air Force Cambridge Research Center, October 1959. AFCRC–TN–59–775.
[243] E., Prange. The use of coset equivalence in the analysis and decoding of group codes. Electronics Research Directorate, Air Force Cambridge Research Center, June 1959. AFCRC–TN–59–164.
[244] B., Qvist. Some remarks concerning curves of second degree in a finite plane. Ann. Acad. Sci. Fenn. Ser. AI, (134), 1952.Google Scholar
[245] D. K., Ray–Chaudhuri and Richard M., Wilson. On t–designs. Osaka J. Math., 12:737–744, 1975.Google Scholar
[246] R., Ree. A family of simple groups associated with the simple Lie algebra of type (G2). Amer. J. Math., 83:432–462, 1961.Google Scholar
[247] K. J., Rose. Generalized Reed–Muller codes and finite geometries. PhD thesis, Lehigh University, 1993.Google Scholar
[248] O. S., Rothaus. On “bent” functions. J. Combin. Theory, Ser. A, 20:300–305, 1976.Google Scholar
[249] L. D., Rudolph. A class of majority logic decodable codes. IEEE Trans. Inform. Theory, 13:305–307, 1967.Google Scholar
[250] H. J., Ryser. Combinatorial Mathematics. Mathematical Association of America, Wiley, 1963.Google Scholar
[251] H., Sachar. The Fp span of the incidence matrix of a finite projective plane. Geom. Dedicata, 8:407–415, 1979.Google Scholar
[252] R., Safavi–Naini and I. F., Blake. Generalized t–designs and weighted majority decoding. Inform, and Control, 42:261–282, 1979.Google Scholar
[253] R., Safavi–Naini and I. F., Blake. On designs from codes. Utilitas Math., 14:49–63, 1979.Google Scholar
[254] U., Scarpis. Sui determinant! di valore massimo. Rendiconti Reale Istituto Lombardo di Scienze e Lettere (Milan Rendiconti), 31:1441– 1446, 1898.Google Scholar
[255] T., Schaub. A linear complexity approach to cyclic codes. PhD thesis, Swiss Federal Institute of Technology, Zurich, 1988. Diss. ETH No. 8730.
[256] W. M., Schmidt. Equations over Finite Fields: An elementary approach. Berlin: Springer–Verlag, 1976.Google Scholar
[257] R., Schoof and M. van der, Vlugt. Hecke operators and the weight distributions of certain codes. J. Combin. Theory, Ser. A, 57:163–186, 1991.Google Scholar
[258] M. P., Schiitzenberger. A non–existence theorem for an infinite family of symmetrical block designs. Ann. Eugenics, pages 286–287, 1949.Google Scholar
[259] B., Segre. Ovals in a finite projective plane. Canad. J. Math., 7:414–416, 1955.Google Scholar
[260] C. E., Shannon. A mathematical theory of communication. Bell System Tech. J., 27:379–423,623–656, 1948.Google Scholar
[261] E. P., Shaughnessy. Associated t–designs and automorpism groups of certain linear codes. PhD thesis, Lehigh University, 1969.Google Scholar
[262] M. S., Shrikhande and S. S., Sane. Quasi–Symmetric Designs. Cambridge: Cambridge University Press, 1991. London Mathematical Society Lecture Notes Series, 164.Google Scholar
[263] S. S., Shrikhande and N. K., Singh. On a method of constructing incomplete block designs. Sankhya, A, 24:25–32, 1962.Google Scholar
[264] J., Siemons. Orbits in finite incidence structures. Geom. Dedicata, 14:87–94, 1983.Google Scholar
[265] J., Singer. A theorem in finite projective geometry and some applications to number theory. Trans. Amer. Math. Soc, 43:377–385, 1938.Google Scholar
[266] D., Slepian. Some further theory of group codes. Bell System Tech. J., 39:1219–1252, 1960.Google Scholar
[267] K. J. C., Smith. On the p–rank of the incidence matrix of points and hyperplanes in a finite projective geometry. J. Combin. Theory, 7:122–129, 1969.Google Scholar
[268] J., Steiner. Combinatorische Aufgabe. Crelle's Journal, XLV:181–182, 1853.Google Scholar
[269] J. J., Sylvester. Thoughts on Inverse Orthogonal Matrices, simultaneous Sign–succession, and Tessellated Pavements in two or more colours, with applications to Newton's Rule, Ornamental Tile–work, and the Theory of Numbers. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 34:461–475, December 1867.Google Scholar
[270] L., Teirlinck. On projective and affine hyperplanes. J. Combin. Theory, Ser. A, 28:290–306, 1980.Google Scholar
[271] L., Teirlinck. Non–trivial t–designs without repeated blocks exist for all t. Discrete Math., 65:301–311, 1987.Google Scholar
[272] J. A., Thas. Extensions of finite generalized quadrangles. Symposia Mathematica, 28:127–143, 1986. Published by Istituto Nazionale di Alta Matematica Francesco Severi and distributed by Academic Press.Google Scholar
[273] J. A., Thas. Solution of a classical problem on finite inversive planes. In W.M., Kantor, R.A., Liebler, S.E., Payne, and E.E., Shult, editors, Finite Geometries, Buildings, and Related Topics, pages 145–159. Oxford: Oxford University Press, 1990.Google Scholar
[274] J. G., Thompson. Fixed point free involutions and finite projective planes. In Michael J., Collins, editor, Finite Simple Groups II, pages 321–337. New York: Academic Press, 1980.Google Scholar
[275] A., Tietavainen. On the nonexistence of perfect codes over finite fields. SI AM J. Appl. Math., 24:88–96, 1973.Google Scholar
[276] J., Tits. Les groupes simples de Suzuki et de Ree. Seminaire Bourbaki, 13, 210:1–18, 1960/61.Google Scholar
[277] J. A., Todd. A combinatorial problem. J. Math. Phys., 12:321–333, 1933.Google Scholar
[278] J. A., Todd. Projective and Analytic Geometry. Pitman, 1947.
[279] V. D., Tonchev. Hadamard matrices of order 28 with automorphisms of order 7. J. Combin. Theory, Ser. A, 40:62–81, 1985.Google Scholar
[280] V. D., Tonchev. Quasi–symmetric 2–(31,7,7) designs and a revision of Hamada's conjecture. J. Combin. Theory, Ser. A, 42:104–110, 1986.Google Scholar
[281] V. D., Tonchev. Combinatorial Configurations. Pitman Monographs and Surveys in Pure and Applied Mathematics, 40. New York: Longman, 1988.Google Scholar
[282] V. D., Tonchev. Unitals in the Holz design on 28 points. Geom. Dedicata, 38:357–363, 1991.Google Scholar
[283] R. J., Turyn. Character sums and difference sets. Pacific J. Math., 15:319–346, 1965.Google Scholar
[284] Ju. L., Vasil'ev. On nongroup close–packed codes. Probl. Kibemet, 8:337–339, 1962. Translated from the Russian in Probleme der Kybernetik, 8(1965), 375–378.Google Scholar
[285] O., Veblen and J. H., Maclaglan–Wedderburn. Non–desarguesian and non–pascalian geometries. Trans. Amer. Math. Soc, 8:379–388, 1907.Google Scholar
[286] O., Veblen and J. W., Young. Projective Geometry: Volumes I and II. Boston: Ginn and Co., 1918.Google Scholar
[287] H. L. de, Vries. Some Steiner Quadruple Systems 5(3,4,16) such that all 16 derived Steiner Triple Systems 5(2,3,15) are isomorphic. Ars Combin., 24A: 107–129, 1987.Google Scholar
[288] A., Wagner. Orbits on finite incidence structures. Symposia Mathematica, 28:219–229, 1986.Google Scholar
[289] H. N., Ward. On Ree's series of simple groups. Trans. Amer. Math. Soc, 121:62–89, 1966.Google Scholar
[290] H. N., Ward. Quadratic residue codes and symplectic groups. J. Algebra, 29:150–171, 1974.Google Scholar
[291] H. N., Ward. Quadratic residue codes in their prime. J. Algebra,150:87–100, 1992.Google Scholar
[292] E. J. Weldon, Jr.New generalizations of the Reed–Muller codes. Part II: Nonprimitive codes. IEEE Trans. Inform. Theory, 14:199–205, 1968.Google Scholar
[293] M. A., Wertheimer. Designs in Quadrics. PhD thesis, University of Pennsylvania, 1986.Google Scholar
[294] M. A., Wertheimer. Oval designs in quadrics. Contemp. Math., 111:287–297, 1990.Google Scholar
[295] H., Weyl. The Classical Groups. Princeton: Princeton University Press, 1946.Google Scholar
[296] H., Wielandt. Finite Permutation Groups. New York: Academic Press, 1964.Google Scholar
[297] H., Wilbrink. A characterization of the classical unitals. In N. L., Johnson, M. J., Kallaher, and C. T., Long, editors, Finite Geometries, pages 445–454. Marcel Dekker,Inc, 1983. Lecture Notes in Pure and Applied Mathematics, 82.Google Scholar
[298] H. S., Wilf. The ‘Snake Oil’ method for proving combinatorial identities. In J., Siemons, editor, Surveys in Combinatorics, 1989, pages 208–217. Cambridge: Cambridge University Press, 1989. London Mathematical Society Lecture Note Series 141.
[299] R. M., Wilson. Inequalities in S(t,k,v). Lecture notes, IMA, Minnesota, 1988.
[300] E., Witt. Uber Steinersche Systeme. Abh. Math. Sem. Univ. Hamburg, 12:265–275, 1938.Google Scholar
[301] H. P., Young. Affine triple systems and matroid designs. Math. Z., 132:343–359. 1973.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • E. F. Assmus, Lehigh University, Pennsylvania, J. D. Key, Clemson University, South Carolina
  • Book: Designs and their Codes
  • Online publication: 05 October 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316529836.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • E. F. Assmus, Lehigh University, Pennsylvania, J. D. Key, Clemson University, South Carolina
  • Book: Designs and their Codes
  • Online publication: 05 October 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316529836.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • E. F. Assmus, Lehigh University, Pennsylvania, J. D. Key, Clemson University, South Carolina
  • Book: Designs and their Codes
  • Online publication: 05 October 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316529836.010
Available formats
×