Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-08T09:09:08.670Z Has data issue: false hasContentIssue false

Part I - The Biology of Cementum

Published online by Cambridge University Press:  20 January 2022

Stephan Naji
Affiliation:
New York University
William Rendu
Affiliation:
University of Bordeaux (CNRS)
Lionel Gourichon
Affiliation:
Université de Nice, Sophia Antipolis
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Aggarwal, P., Saxena, S., and Bansal, P.. 2008. Incremental Lines in Root Cementum of Human Teeth: An Approach to Their Role in Age Estimation Using Polarizing Microscopy. Indian Journal of Dental Research 19(4): 326–30.CrossRefGoogle ScholarPubMed
Avadhani, A., Tupkari, J. V., Khambaty, A., and Sardar, M.. 2009. Cementum Annulations and Age Determination. Journal of Forensic Dental Sciences 1(2): 73.Google Scholar
Azaz, B., Ulmansky, M., Moshev, R., and Sela, J.. 1974. Correlation between Age and Thickness of Cementum in Impacted Teeth. Oral Surgery, Oral Medicine, Oral Pathology 38(5): 691–4.CrossRefGoogle ScholarPubMed
Bertrand, B., Cunha, E., and Hédouin, V.. 2018. Cementochronology: Too Precise to Be True or Too Precise to Be Accurate? American Journal of Physical Anthropology 165 (S66): 27.Google Scholar
Bennett, G. W. 2009. The Root of Dental Anatomy: A Case for Naming Eustachius the “Father of Dental Anatomy.Journal of the History of Dentistry 57: 85–8.Google ScholarPubMed
Black, G. V. 1887. A Study of the Histological Characters of the Periostium and Peridental Membrane. Chicago, IL: W. T. Keener.Google Scholar
Blondiaux, J., Gabart, N., Alduc-Le Bagousse, A., Niel, C., and Tyler, E.. 2006. Relevance of Cement Annulations to Paleopathology. Paleopathology Newsletter 135: 413.Google Scholar
Bojarun, R., Garmus, A., and Jankauskas, R.. 2003. Microstructure of Dental Cementum and Individual Biological Age Estimation. Medicina (Kaunas) 39(10): 960–4.Google Scholar
Bosshardt, D. D., and Selvig, K. A.. 1997. Dental Cementum: The Dynamic Tissue Covering of the Root. Periodontology 13(1): 4175.CrossRefGoogle ScholarPubMed
Broomell, I. N. 1898. The Histology of Cementum. Dent Cosmos 40(9): 697723.Google Scholar
Broucker, A. de, Colard, T., Penel, G., Blondiaux, J., and Naji, S.. 2016. The Impact of Periodontal Disease on Cementochronology Age Estimation. International Journal of Paleopathology 15 (December): 128–33.CrossRefGoogle ScholarPubMed
Caplazi, G. 2004. Eine Untersuchung über die Auswirkungen von Tuberkulose auf Anlagerungsfrequenz und Beschaffenheit der Zementringe desmenschlichen Zahnes. Bulletin de la Société Suisse d’Anthropologie 10(1): 3583.Google Scholar
Charles, D. K., Condon, K., Cheverud, J. M., and Buikstra, J. E.. 1986. Cementum Annulation and Age Determination in Homo Sapiens. 1. Tooth Variability and Observer Error. American Journal of Physical Anthropology 71: 311–20.Google Scholar
Colard, T., Bertrand, B., Naji, S., Delannoy, Y., and Bécart, A.. 2015. Toward the Adoption of Cementochronology in Forensic Context. International Journal of Legal Medicine 129: 18.Google Scholar
Colard, T., Falgayrac, G., Bertrand, B., Naji, S., Devos, O., Balsack, C., Delannoy, Y., and Penel, G.. 2016. New Insights on the Composition and the Structure of the Acellular Extrinsic Fiber Cementum by Raman Analysis. PLOS ONE 11(12): e0167316.Google Scholar
Condon, K., Charles, D. K., Cheverud, J. M., and Buikstra, J. E.. 1986. Cementum Annulation and Age Determination in Homo Sapiens. II. Estimates and Accuracy. American Journal of Physical Anthropology 71(3): 321–30.Google Scholar
Cunha, E., Baccino, E., Martrille, L., Ramsthaler, F., Prieto, J., Schuliar, Y., Lynnerup, N., and Cattaneo, C.. 2009. The Problem of Aging Human Remains and Living Individuals: A Review. Forensic Science International 193: 113.Google Scholar
Czermak, A., Czermak, A., Ernst, H., and Grupe, G.. 2011. Age at Death Evaluation by Tooth Cementum Annulation (TCA) – A Software for an Automated Incremental Line Counting. Poster presented at the 80th annual meeting of the American Association of Physical Anthropologists, Minneapolis, MN.Google Scholar
Dalitz, G. D. 1962. Age Determination of Adult Human Remains by Teeth Examination. PhD thesis, University of Melbourne: Australia.CrossRefGoogle Scholar
Dean, C., Le Cabec, A., Spiers, K., Zhang, Y., and Garrevoet, J.. 2018. Incremental Distribution of Strontium and Zinc in Great Ape and Fossil Hominin Cementum Using Synchrotron X-Ray Fluorescence Mapping. Journal of the Royal Society, Interface 15 (138).CrossRefGoogle ScholarPubMed
Denton, G. B. 1941. The Discovery of Cementum. Chicago: Northwestern University.Google Scholar
Dias, P. E. M., Beaini, T. L., and Melani, R. F. H.. 2010. Age Estimation from Dental Cementum Incremental Lines and Periodontal Disease. Journal of Forensic Odontostomatology 28(1): 1321.Google ScholarPubMed
Erickson, J. A., and Seliger, W. G.. 1969.Efficient Sectioning of Incisors for Estimating Age of Mule Deer. Journal of Wildlife Management 33(2): 384–88.CrossRefGoogle Scholar
Foster, B. L. 2017. On the Discovery of Cementum. Journal of Periodontal Research 52(4): 666–85.CrossRefGoogle ScholarPubMed
Garant, P. R. 1995. G. V. Black’s Contribution to the Structural Biology of the Periodontium. Periodontal Clinical Investigation 17: 1620.Google Scholar
Garmus, A. 1996. Lithuanian Forensic Osteology. Vilnus, Lithuania: Baltic Medico-Legal Association.Google Scholar
Gilbert, F. F. 1966. Aging White-Tailed Deer by Annuli in the Cementum of the First Incisor. Journal of Wildlife Management 30(1): 200–2.CrossRefGoogle Scholar
Gottlieb, B. 1943. Continuous Deposition of Cementum. Journal of American Dental Association 30: 842–7.CrossRefGoogle Scholar
Gowda, C. B. K., Srinivasa Reddy, P., Kokila, G., and Pradeep, L.. 2014. Cemental Annulation and Phase Contrast Microscope: Tool for Age Estimation. Journal of South India Medicolegal Association 6(1): 913.Google Scholar
Grosskopf, B. 1990. Individual Age Determination Using Growth Rings in the Cementum of Buried Human Teeth. Zeitschrift für Rechtsmedizin 103(5): 351–59.Google Scholar
Grue, H., and Jensen, B.. 1979. Review of the Formation of Incremental Lines in Tooth Cementum of Terrestrial Mammals. Danish Review of Game Biology 11: 148.Google Scholar
Gupta, P. 2014. Human Age Estimation from Tooth Cementum and Dentin. Journal of Clinical and Diagnostic Research 8(4): 710.Google ScholarPubMed
Gustafson, G. 1950. Age Determination of Teeth. Journal of American Dental Association 41: 4554.Google Scholar
Hast, M. H., and Garrison, D. H.. 1995. Andreas Vesalius on the Teeth: An Annotated Translation from De Humani Corporis Fabrica 1543. Clinical Anatomy 8: 134138.Google Scholar
Hopewell-Smith, A. 1920. Concerning Human Cementum. Philadelphia: Evans Dental Institute, University of Pennsylvania.Google Scholar
Hoppa, R. D., and Vaupel, J. W., eds. 2002. Paleodemography: Age Distributions from Skeletal Samples. Cambridge: Cambridge University Press.Google Scholar
Jankauskas, R., Barakauskas, S., and Bojarun, R.. 2001. Incremental Lines of Dental Cementum in Biological Age Estimation. HOMO – Journal of Comparative Human Biology 52(1): 5971.Google Scholar
Joshi, P. S., Chougule, M. S., and Agrawal, G. P.. 2010. Comparison of Polarizing & Phase Contrast Microscopy for Estimation of Age Based on Cemental Annulations. Indian Journal of Forensic Odontology 3(3): 1725.Google Scholar
Kagerer, P., and Grupe, G.. 2001a. On the Validity of Individual Age-at-Death Diagnosis by Incremental Line Counts in Human Dental Cementum. Technical Considerations. Anthropologischer Anzeiger 59(4): 331–42.Google ScholarPubMed
Kagerer, P., and Grupe, G. 2001b. Age-at-Death Diagnosis and Determination of Life-History Parameters by Incremental Lines in Human Dental Cementum as an Identification Aid. Forensic Science International 118(1): 7582.Google Scholar
Kasetty, S., Rammanohar, M., and Ragavendra, T. R.. 2010. Dental Cementum in Age Estimation: A Polarized Light and Stereomicroscopic Study. Journal of Forensic Sciences 55(3): 779–83.Google Scholar
Kasuya, T. 1976. Reconsideration of Life History Parameters of the Spotted and Striped Dolphins Based on Cemental Layers. Scientific Reports of the Whales Research Institute 28: 73106.Google Scholar
Kasuya, T. 1977. Age Determination and Growth of the Baird’s Beaked Whale with a Comment of the Fetal Growth Rate. Scientific Reports of the Whales Research Institute 29: 120.Google Scholar
Kasuya, T., and Matsui, S.. 1984. Age Determination and Growth of the Short-Finned Pilot Whale off the Pacific Coast of Japan. Scientific Reports of the Whales Research Institute 35: 5791.Google Scholar
Kaur, P., Astekar, M., Singh, J., Arora, K. S., and Bhalla, G.. 2015. Estimation of Age Based on Tooth Cementum Annulations: A Comparative Study Using Light, Polarized, and Phase Contrast Microscopy. Journal of Forensic Dental Sciences 7(3): 215–21.Google Scholar
Keiss, R. E. 1969. Comparison of Eruption-Wear Patterns and Cementum Annuli as Age Criteria in Elk. Journal of Wildlife Management 3(1): 175–80.Google Scholar
Klauenberg, K., and Lagona, F.. 2007. Hidden Markov Random Field Models for TCA Image Analysis. Computational Statistics & Data Analysis 52(2): 855–68.CrossRefGoogle Scholar
Klevezal’, G. A. 1996. Recording Structures of Mammals: Determination of Age and Reconstruction of Life History. Rotterdam: A. A. Balkema Series.Google Scholar
Klevezal’, G. A., and Kleinenberg, S. E. 1969. Age Determination of Mammals from Annual Layers in Teeth and Bones. Akademiya Nauk S.S.S.R, 1967. Translated 1969 from Russian by Israel Progr. Sci. Transl. Jerusalem.Google Scholar
Klevezal’, G.A., and Shishlina, N. I.. 2001. Assessment of the Season of Death of Ancient Human from Cementum Annual Layers. Journal of Archaeological Science 28(5): 481–6.Google Scholar
Kronfeld, R. 1938. The Biology of Cementum. Journal of the American Dental Association 25: 1451–61.Google Scholar
Kvaal, S. I., and Solheim, T.. 1995. Incremental Lines in Human Dental Cementum in Relation to Age. European Journal of Oral Sciences 103(4): 225–30.Google Scholar
Laws, R. M. 1952. A New Method of Age Determination for Mammals. Nature 169: 972–3.CrossRefGoogle ScholarPubMed
Lipsinic, F. E., Paunovich, D. G., Houston, D. G., and Robinson, S. F.. 1986. Correlation of Age and Incremental Lines in the Cementum of Human Teeth. Journal of Forensic Sciences 31: 982–9.Google Scholar
Lovejoy, C. O., Meindl, R. S., Mensforth, R. P., and Barton, T. J.. 1985. Multifactorial Determination of Skeletal Age at Death: A Method and Blind Tests of Its Accuracy. American Journal of Physical Anthropology 68: 114.CrossRefGoogle Scholar
Low, W. A., and Cowan, I. McT. 1963. Age Determination of Deer by Annular Structure of Dental Cementum. Journal of Wildlife Management 27(3): 466–71.Google Scholar
Lucas, P. W., and Loh, H. S.. 1986. Are the Incremental Lines in Human Cementum Laid Down Annually? Annals of the Academy of Medicine, Singapore 15(3): 384–6.Google Scholar
Maat, G. J. R., Gerretsen, R. R. R., and Aarents, M. J.. 2006. Improving the Visibility of Tooth Cementum Annulations by Adjustment of the Cutting Angle of Microscopic Sections. Forensic Science International 159, Supplement (0): S9599.CrossRefGoogle ScholarPubMed
Magitot, E. 1878. Experimental and Therapeutic Investigations. Boston: Houghton, Osgood, and Company.Google Scholar
Matson, G., Van Daele, L., Goodwin, E., Aumiller, L., Reynolds, H., and Hristienko, H.. 1993. A Laboratory Manual for Cementum Age Determination of Alaska Brown Bear First Premolar Teeth. Milltown, MT: Alaska Department of Fish and Game. Division of Wildlife Conservation and The Matson Laboratory.Google Scholar
McEwan, E. H. 1963. Seasonal Annuli in the Cementum of the Teeth of Barren Ground Caribou. Canadian Journal of Zoology 41: 111–13.Google Scholar
Meinl, A., Huber, C. D., Tangl, S., Gruber, G. M., Teschler-Nicola, M., and Watzek, G.. 2008. Comparison of the Validity of Three Dental Methods for the Estimation of Age at Death. Forensic Science International 178(2–3): 96105.Google Scholar
Miller, C. F., Dove, S. B., and Cottone, J. A.. 1988. Failure of Use of Cemental Annulations in Teeth to Determine the Age of Humans. Journal of Forensic Sciences 33: 137–43.CrossRefGoogle ScholarPubMed
Mitchell, B. 1963. Growth Layers in Dental Cement for Determining the Age of Red Seer (Cervus elaphus L.). Journal of Animal Ecology 36(2): 279–93.Google Scholar
Morris, P. A. 1972. A Review of Mammalian Age Determination Methods. Mammal Review 2(3): 69104.Google Scholar
Naji, S., Colard, T., Blondiaux, J., Bertrand, B., d’Incau, E., and Bocquet-Appel, J.-P.. 2016. Cementochronology, to Cut or Not to Cut? International Journal of Paleopathology 15 (December): 113–9.Google Scholar
Naylor, J. W., Miller, W. G., Stokes, G. N., and Stow, G. G.. 1985. Cemental Annulation Enhancement: A Technique for Age Determination in Man. American Journal of Physical Anthropology 68: 197200.CrossRefGoogle ScholarPubMed
Novakowski, N. S. 1965. Cemental Deposition as an Age Criterion in Bison, and the Relation of Incisor Wear, Eye-Lens Weight, and Dressed Bison Carcass Weight to Age. Canadian Journal of Zoology 43(1): 173–8.CrossRefGoogle ScholarPubMed
Padavala, S., and Gheena, S.. 2015. Estimation of Age Using Cementum Annulations. Journal of Pharmaceutical Sciences & Research 7(7): 461–3.Google Scholar
Pilloud, S. 2004. Läßt sich mittels der Altersbestimmung anhand Zahnzementes auch bei ӓlteren Individuen ein signifikanter Zusammenhang zwischen histologischem und reellem finden? Anthropologischer Anzeiger 62(2): 231–9.Google Scholar
Pundir, S., Saxena, S., and Aggrawal, P.. 2009. Estimation of Age Based on Tooth Cementum Annulations Using Three Different Microscopic Methods. Journal of Forensic Dental Sciences 1(2): 82.Google Scholar
Ransom, A. B. 1966. Determining Age of White-Tailed Deer from Layers in Cementum of Molars. Journal of Wildlife Management 30(1): 197–9.CrossRefGoogle Scholar
Rao, N. G., and Rao, N. N.. 1998. CCTV Study of Cemental Annulations in Determining the Age from a Single Tooth. Indian Journal of Dental Research 9: 41–5.Google ScholarPubMed
Renz, H., and Radlanski, R. J.. 2006. Incremental Lines in Root Cementum of Human Teeth – A Reliable Age Marker? HOMO – Journal of Comparative Human Biology 57(1): 2950.CrossRefGoogle ScholarPubMed
Ristova, M., Talevska, M., and Stojanovska, Z.. 2018. Accurate Age Estimations from Dental Cementum and a Childbirth Indicator – A Pilot Study. Journal of Forensic Science & Criminology 6: 112.Google Scholar
Saunders, J. B., and O’Malley, C. D.. 1944. A Reading from the De Humane Corporals Fabric of Andreas Vesalius. Journal of the American College of Dentists 11: 211–18.Google Scholar
Saxon, A., and Higham, C. 1968. Identification and Interpretation of Growth Rings in the Secondary Dental Cementum of Ovis aries. Nature 219: 634–5.Google Scholar
Saxon, A. , and Higham, C 1969. A New Research Method for Economic Prehistorians. American Antiquity 34(3): 303–11.Google Scholar
Scheffer, V. B. 1950. Growth Layer on the Teeth of Pinnipedia as an Indication of Age. Science 112: 309–11.Google Scholar
Sergeant, D. E., and Pimlott, D. H. 1959. Age Determination in Moose from Sectioned Incisor Teeth. Journal of Wildlife Management 23(3): 315–21.Google Scholar
Shklar, G., and Brackett, C. A.. 2009. Galen on Oral Anatomy. Journal of the History of Dentition 57: 24–8.Google ScholarPubMed
Shklar, G., and Chernin, D.. 2000. Eustachio Libellus de Dentibus the First Book Devoted to the Structure and Function of the Teeth. Journal of the History of Dentition 48: 2530.Google Scholar
Shruthi, B. S., Donoghue, M., Selvamani, M., and Kumar, P. V.. 2015. Comparison of the Validity of Two Dental Age Estimation Methods: A Study on South Indian Population. Journal of Forensic Dental Sciences 7(3): 189–94.Google Scholar
Sousa, E. M., Stott, G. G., and Alves, J. B.. 1999. Determination of Age from Cemental Incremental Lines for Forensic Dentistry. Biotechnic & Histochemistry: Official Publication of the Biological Stain Commission 74(4): 185–93.Google Scholar
Spiess, A. 1976. Determining Season of Death of Archaeological Fauna by Analysis of Teeth. Arctic 29(1): 53–5.Google Scholar
Spinage, C. A. 1976a. Age Determination of the Female Grant’s Gazelle. African Journal of Ecology 14(2): 121–34.CrossRefGoogle Scholar
Spinage, C. A. 1976b. Incremental Cementum Lines in the Teeth of Tropical African Mammals. Journal of the Zoological Society of London 178: 117–31.Google Scholar
Spinage, C. A. 1973. A Review of the Age Determination of Mammals by Means of Teeth, with Special Reference to Africa. East Africa Wildlife Journal 11: 165–87.Google Scholar
Stallibrass, S. 1982. The Use of Cement Layers for Absolute Ageing of Mammalian Teeth: A Selective Review of the Literature, with Suggestions for Further Studies and Alternative Applications. In Ageing and Sexing Animal Bones from Archaeological Sites. Wilson, B, Grigson, C, and Payne, S, eds. BAR International Series 109. Oxford: British Archaeological Report, 109–26.Google Scholar
Stein, T. J., and Corcoran, J. F.. 1994. Pararadicular Cementum Deposition as a Criterion for Age Estimation in Human Beings. Oral Surgery, Oral Medicine, Oral Pathology 77(3): 266–70.CrossRefGoogle ScholarPubMed
Stillson, W. C. 1917. A Study of Cementum. Dental Summary 37: 30.Google Scholar
Stock, S. R., Finney, L. A., Telser, A., Maxey, E., Vogt, S., and Okasinski, J. S.. 2017. Cementum Structure in Beluga Whale Teeth. Acta Biomaterialia 48 (January): 289–99.Google Scholar
Stott, G. G., Sis, R. F., and Levy, B. M.. 1982. Cemental Annulation as an Age Criterion in Forensic Dentistry. Journal of Dental Research 61(6): 814–17.Google Scholar
Stutz, A. J. 2002a. Polarizing Microscopy Identification of Chemical Diagenesis in Archaeological Cementum. Journal of Archaeological Science 29(11): 1327–47.CrossRefGoogle Scholar
Swetha, G., Kattappagari, K. K., Poosarla, C. S., Chandra, L. P., Gontu, S. R., and Badam, V. R. R.. 2018. Quantitative Analysis of Dental Age Estimation by Incremental Line of Cementum. Journal of Oral and Maxillofacial Pathology 22(1): 138.Google ScholarPubMed
Trenouth, M. J. 2014. The Origin of the Terms Enamel, Dentine, and Cementum. Faculty Dental Journal 5(1): 2631.Google Scholar
van Zuylen, J. 1981. The Microscopes of Antoni van Leeuwenhoek. Journal of Microscopy 121: 309–28.Google Scholar
Wedel, V. L., and Wescott, D. J.. 2016. Using Dental Cementum Increment Analysis to Estimate Age and Season of Death in African Americans from an Historical Cemetery in Missouri. International Journal of Paleopathology 15 (December): 134–9.Google Scholar
Wiebusch, F. B. 1957. Periodontal Research: Problems Related to Practice. Journal of the American Dental Association 55: 612–16.Google Scholar
Wittwer-Backofen, U. 2012. Age Estimation Using Tooth Cementum Annulation. In Forensic Microscopy for Skeletal Tissues: Methods and Protocols. Bell, L. S., ed., Chapter 8. Methods in Molecular Biology, 915: 129–43.Google Scholar
Wittwer-Backofen, U., and Buba, H.. 2002. Age Estimation by Tooth Cementum Annulation: Perspective of a New Validation Study. In Paleodemography, Age Distributions from Skeletal Samples. Hoppa, R .D. and Vaupel, J. W., eds. Cambridge: Cambridge University Press, 107–28.Google Scholar
Wittwer-Backofen, U., Gampe, J., and Vaupel, J. W.. 2004. Tooth Cementum Annulation for Age Estimation: Results from a Large Known-Age Validation Study. American Journal of Physical Anthropology 123(2): 119–29.Google Scholar
Yoneda, M. 1982. Growth Layers in Dental Cementum of Saguinus Monkeys in South America. Primates 23(3): 460–64.CrossRefGoogle Scholar
Zander, H. A., and Hürzeler, B.. 1958. Continuous Cementum Apposition. Journal of Dental Research 6: 1035–44.Google Scholar

References

Ababneh, K. T., Hall, R. C., and Embery, G.. 1998. Immunolocalization of glycosaminoglycans in ageing, healthy and periodontally diseased human cementum. Arch Oral Biol 43 (3): 235–46.Google Scholar
Ababneh, K. T., Hall, R. C., and Embery, G. 1999. The proteoglycans of human cementum: Immunohistochemical localization in healthy, periodontally involved and ageing teeth. J Periodontal Res 34 (2): 8796.Google Scholar
Aidos, H., Diogo, P., and Santos, J. M.. 2018. Root resorption classifications: A narrative review and a clinical aid proposal for routine assessment. Eur Endod J 3 (3): 134–45.Google Scholar
Alfaqeeh, S. A., Gaete, M., and Tucker, A. S.. 2013. Interactions of the tooth and bone during development. J Dent Res 92(12): 1129–35.Google Scholar
Andujar, M. B., Hartmann, D. J., Emonard, H., and Magloire, H.. 1988. Distribution and synthesis of type I and type III collagens in developing mouse molar tooth root. Histochemistry 88 (2): 131–40.Google Scholar
Arshad, A. I., Ahmad, P., Dummer, P. M. H., Alam, M. K., Asif, J. A., Mahmood, Z., Rahman, N. A., and Mamat, N.. 2020. Citation classics on dental caries: A systematic review. Eur J Dent 14 (1): 128–43.Google Scholar
Arzate, H., Zeichner-David, M., and Mercado-Celis, G.. 2015. Cementum proteins: Role in cementogenesis, biomineralization, periodontium formation and regeneration. Periodontol 2000 67 (1): 211–33.CrossRefGoogle ScholarPubMed
Ballard, D. J., Jones, A. S., Petocz, P., and Darendeliler, M. A.. 2009. Physical properties of root cementum: Part 11. Continuous vs intermittent controlled orthodontic forces on root resorption. A microcomputed-tomography study. Am J Orthod Dentofacial Orthop 136 (1): 8.e1–8; discussion 89.Google Scholar
Barrios-Garay, K., Agudelo-Sanchez, L., Aguirre-Urizar, J., and Gay-Escoda, C.. 2020. Analyses of odontogenic tumours: The most recent classification proposed by the World Health Organization (2017). Med Oral Patol Oral Cir Bucal 25(6): e7328.CrossRefGoogle ScholarPubMed
Bartlett, J. D. 2013. Dental enamel development: Proteinases and their enamel matrix substrates. ISRN Dent 2013: 684607.Google Scholar
Becker, J., Schuppan, D., Rabanus, J. P., Rauch, R., Niechoy, U., and Gelderblom, H. R.. 1991. Immunoelectron microscopic localization of collagens type I, V, VI and of procollagen type III in human periodontal ligament and cementum. J Histochem Cytochem 39 (1): 103–10.Google Scholar
Beertsen, W., Van den Bos, T., and Everts, V.. 1990. The possible role of alkaline phosphatase in acellular cementum formation. J Biol Buccale 18 (3): 203–5.Google Scholar
Birkedal-Hansen, H., Butler, W. T., and Taylor, R. E.. 1977. Proteins of the periodontium. Characterization of the insoluble collagens of bovine dental cementum. Calcif Tissue Res 23 (1): 3944.Google Scholar
Bonewald, L. F. 2011. The amazing osteocyte. J Bone Miner Res 26 (2): 229–38.Google Scholar
Boskey, A. L., Spevak, L., Paschalis, E., Doty, S. B., and McKee, M. D.. 2002. Osteopontin deficiency increases mineral content and mineral crystallinity in mouse bone. Calcif Tissue Int 71 (2): 145–54.Google Scholar
Bosshardt, D. D., and Schroeder, H. E.. 1992. Initial formation of cellular intrinsic fiber cementum in developing human teeth. A light- and electron-microscopic study. Cell Tissue Res 267 (2): 321–35.Google Scholar
Bosshardt, D. D., and Schroeder, H. E. 1996. Cementogenesis reviewed: A comparison between human premolars and rodent molars. Anat Rec 245 (2): 267–92.Google Scholar
Bosshardt, D. D., and Sculean, A.. 2009. Does periodontal tissue regeneration really work? Periodontol 2000 51: 208–19.Google Scholar
Bosshardt, D. D., and Selvig, K. A.. 1997. Dental cementum: The dynamic tissue covering of the root. Periodontol 2000 13: 4175.Google Scholar
Bosshardt, D., Luder, H. U., and Schroeder, H. E.. 1989. Rate and growth pattern of cementum apposition as compared to dentine and root formation in a fluorochrome-labelled monkey (Macaca fascicularis). J Biol Buccale 17 (1): 313.Google Scholar
Bosshardt, D. D. 2005. Are cementoblasts a subpopulation of osteoblasts or a unique phenotype? J Dent Res 84 (5): 390406.CrossRefGoogle ScholarPubMed
Bosshardt, D. D., and Schroeder, H. E.. 1991. Initiation of acellular extrinsic fiber cementum on human teeth. A light- and electron-microscopic study. Cell Tissue Res 263 (2): 311–24.Google Scholar
Bosshardt, D. D., and Schroeder, H. E. 1996. Cementogenesis reviewed: A comparison between human premolars and rodent molars. Anat Rec 245 (2): 267–92.Google Scholar
Bosshardt, D. D., Zalzal, S., McKee, M. D., and Nanci, A.. 1998. Developmental appearance and distribution of bone sialoprotein and osteopontin in human and rat cementum. Anat Rec 250 (1): 1333.Google Scholar
Brezniak, N., and Wasserstein, A.. 2002. Orthodontically induced inflammatory root resorption. Part I: The basic science aspects. Angle Orthod 72 (2): 175–9.Google Scholar
Butler, W. T. 1998. Dentin matrix proteins. Eur J Oral Sci 106 Suppl 1: 204–10.Google Scholar
Chan, E., and Darendeliler, M. A.. 2006. Physical properties of root cementum: Part 7: Extent of root resorption under areas of compression and tension. Am J Orthod Dentofacial Orthop 129 (4): 504–10.CrossRefGoogle ScholarPubMed
Cho, M. I., and Garant, P. R.. 1988. Ultrastructural evidence of directed cell migration during initial cementoblast differentiation in root formation. J Periodontal Res 23 (4): 268–76.Google Scholar
Darcey, J., and Qualtrough, A.. 2013. Resorption: Part 1: Pathology, classification and aetiology. Br Dent J 214 (9): 439–51.Google Scholar
Darendeliler, M. A., Kharbanda, O. P., Chan, E. K., Srivicharnkul, P., Rex, T., Swain, M. V., Jones, A. S., and Petocz, P.. 2004. Root resorption and its association with alterations in physical properties, mineral contents and resorption craters in human premolars following application of light and heavy controlled orthodontic forces. Orthod Craniofac Res 7 (2): 7997.Google Scholar
Diekwisch, T. G. 2001. The developmental biology of cementum. Int J Dev Biol 45 (5–6): 695706.Google ScholarPubMed
Embery, G., Hall, R., Waddington, R., Septier, D., and Goldberg, M.. 2001. Proteoglycans in dentinogenesis. Crit Rev Oral Biol Med 12 (4): 331–49.Google Scholar
Fleischmannova, J., Matalova, E., Sharpe, P. T., Misek, I., and Radlanski, R. J.. 2010. Formation of the tooth-bone interface. J Dent Res 89 (2): 108–15.Google Scholar
Foster, B. L. 2012. Methods for studying tooth root cementum by light microscopy. Int J Oral Sci 4 (3): 119–28.Google Scholar
Foster, B. L. 2017. On the discovery of cementum. J Periodontal Res 52 (4): 666–85.Google Scholar
Foster, B. L., Ao, M., Salmon, C. R., Chavez, M. B., Kolli, T. N., Tran, A. B., Chu, E. Y., Kantovitz, K. R., Yadav, M., Narisawa, S., Millan, J. L., Nociti, F. H., Jr., and Somerman, M. J.. 2018. Osteopontin regulates dentin and alveolar bone development and mineralization. Bone 107: 196207.Google Scholar
Foster, B. L., Ao, M., Willoughby, C., Soenjaya, Y., Holm, E., Lukashova, L., Tran, A. B., Wimer, H. F., Zerfas, P. M., Nociti, F. H., Jr., Kantovitz, K. R., Quan, B. D., Sone, E. D., Goldberg, H. A., and Somerman, M. J.. 2015. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein. Bone 78: 150–64.Google Scholar
Foster, B. L., Nagatomo, K. J., Nociti, F. H., Fong, H., Dunn, D., Tran, A. B., Wang, W., Narisawa, S., Millán, J. L., and Somerman, M. J.. 2012. Central role of pyrophosphate in acellular cementum formation. PLoS One 7 (6): e38393.CrossRefGoogle ScholarPubMed
Foster, B. L., Nociti, F. H., Jr., and Somerman, M. J.. 2014. The rachitic tooth. Endocr Rev 35 (1): 134.CrossRefGoogle ScholarPubMed
Foster, B. L., Popowics, T. E., Fong, H. K., and Somerman, M. J.. 2007. Advances in defining regulators of cementum development and periodontal regeneration. Curr Top Dev Biol 78: 47126.Google Scholar
Foster, B. L., Ramnitz, M. S., Gafni, R. I., Burke, A. B., Boyce, A. M., Lee, J. S., Wright, J. T., Akintoye, S. O., Somerman, M. J., and Collins, M. T.. 2014. Rare bone diseases and their dental, oral, and craniofacial manifestations. J Dent Res 93 (7 Suppl): 7S19S.Google Scholar
Foster, B. L., Soenjaya, Y., Nociti, F. H., Jr., Holm, E., Zerfas, P. M., Wimer, H. F., Holdsworth, D. W., Aubin, J. E., Hunter, G. K., Goldberg, H. A., and Somerman, M. J.. 2013. Deficiency in acellular cementum and periodontal attachment in bsp null mice. J Dent Res 92 (2): 166–72.Google Scholar
Foster, B. L., Nociti, F. H., Jr., and Somerman, M. J.. 2013. Tooth Root Formation. In Stem Cells, Craniofacial Development and Regeneration, eds. Huang, G. T. J. and Thesleff, I.. Hoboken, NJ: Wiley-Blackwell.Google Scholar
Ganss, B., Kim, R. H., and Sodek, J.. 1999. Bone sialoprotein. Crit Rev Oral Biol Med 10 (1): 7998.CrossRefGoogle ScholarPubMed
Garg, N., and Garg, A.. 2018. Textbook of Endodontics, 3rd ed. New Delhi: JayPee Brothers.Google Scholar
Goldberg, M., Kulkarni, A. B., Young, M., and Boskey, A.. 2011. Dentin: Structure, composition and mineralization. Front Biosci (Elite Ed) 3: 711–35.Google Scholar
Groeneveld, M. C., Everts, V., and Beertsen, W.. 1995. Alkaline phosphatase activity in the periodontal ligament and gingiva of the rat molar: Its relation to cementum formation. J Dent Res 74 (7): 1374–81.Google Scholar
Groeneveld, M. C., Van den Bos, T., Everts, V., and Beertsen, W.. 1996. Cell-bound and extracellular matrix-associated alkaline phosphatase activity in rat periodontal ligament. Experimental Oral Biology Group. J Periodontal Res 31 (1): 73–9.Google Scholar
Heitz-Mayfield, L. J., Trombelli, L., Heitz, F., Needleman, I., and Moles, D.. 2002. A systematic review of the effect of surgical debridement vs non-surgical debridement for the treatment of chronic periodontitis. J Clin Periodontol 29 (Suppl 3): 92–102; discussion 160–2.Google Scholar
Ho, S. P., Balooch, M., Marshall, S. J., and Marshall, G. W.. 2004. Local properties of a functionally graded interphase between cementum and dentin. J Biomed Mater Res A 70 (3): 480–9.Google ScholarPubMed
Ho, S. P., Kurylo, M. P., Grandfield, K., Hurng, J., Herber, R. P., Ryder, M. I., Altoe, V., Aloni, S., Feng, J. Q., Webb, S., Marshall, G. W., Curtis, D., Andrews, J. C., and Pianetta, P.. 2013. The plastic nature of the human bone-periodontal ligament-tooth fibrous joint. Bone 57 (2): 455–67.Google Scholar
Holliday, S., Schneider, B., Galang, M. T., Fukui, T., Yamane, A., Luan, X., and Diekwisch, T. G.. 2005. Bones, teeth, and genes: A genomic homage to Harry Sicher’s “Axial Movement of Teeth.World J Orthod 6 (1): 6170.Google Scholar
Hu, J. C., Chun, Y. H., Al Hazzazzi, T., and Simmer, J. P.. 2007. Enamel formation and amelogenesis imperfecta. Cells Tissues Organs 186 (1): 7885.Google Scholar
Huang, X., Bringas, P., Jr., Slavkin, H. C., and Chai, Y.. 2009. Fate of HERS during tooth root development. Dev Biol 334 (1): 2230.CrossRefGoogle ScholarPubMed
Liang, Y., Luan, X., and Liu, X.. 2020. Recent advances in periodontal regeneration: A biomaterial perspective. Bioact Mater 5 (2): 297308.Google Scholar
Luan, X., Ito, Y., and Diekwisch, T. G.. 2006. Evolution and development of Hertwig’s epithelial root sheath. Dev Dyn 235 (5): 1167–80.Google Scholar
Luan, X., Ito, Y., Holliday, S., Walker, C., Daniel, J., Galang, T. M., Fukui, T., Yamane, A., Begole, E., Evans, C., and Diekwisch, T. G.. 2007. Extracellular matrix-mediated tissue remodeling following axial movement of teeth. J Histochem Cytochem 55 (2): 127–40.Google Scholar
Lungova, V., Radlanski, R. J., Tucker, A. S., Renz, H., Misek, I., and Matalova, E.. 2011. Tooth-bone morphogenesis during postnatal stages of mouse first molar development. J Anat 218 (6): 699716.Google Scholar
MacNeil, R. L., Berry, J., D’Errico, J., Strayhorn, C., Piotrowski, B., and Somerman, M. J.. 1995. Role of two mineral-associated adhesion molecules, osteopontin and bone sialoprotein, during cementogenesis. Connect Tissue Res 33 (1–3): 17.Google Scholar
McKee, M. D., and Nanci, A. 1995. Post-embedding colloidal-gold immunocytochemistry of noncollagenous extracellular matrix proteins in mineralized tissues. Microsc Res Tech 31: 4462.CrossRefGoogle Scholar
MacNeil, R. L., Berry, J. E., Strayhorn, C. L., Shigeyama, Y., and Somerman, M. J.. 1998. Expression of type I and XII collagen during development of the periodontal ligament in the mouse. Arch Oral Biol 43 (10): 779–87.Google Scholar
Marks, S. C., Jr., and Schroeder, H. E.. 1996. Tooth eruption: Theories and facts. Anat Rec 245 (2): 374–93.Google Scholar
McKee, M. D., Zalzal, S., and Nanci, A.. 1996. Extracellular matrix in tooth cementum and mantle dentin: Localization of osteopontin and other noncollagenous proteins, plasma proteins, and glycoconjugates by electron microscopy. Anat Rec 245 (2): 293312.Google Scholar
Naji, S., Colard, T., Bertrand, B., D’Incau, E., Lanteri, L., Brandt, E., and Blondiaux, J.. 2013. Cementochronology, to cut or not to cut? Am J Phys Anthropol 150: 204–5.Google Scholar
Nanci, A. 2018. Periodontium. In Ten Cate’s Oral Histology. St. Louis, MO: Elsevier.Google Scholar
Nanci, A., and Somerman, M. J.. 2008. Periodontium. In Ten Cate’s Oral Histology: Development, Structure, and Function, ed. Nanci, A.. St. Louis, MO: Mosby.Google Scholar
Neely, A. L., Thumbigere-Math, V., Somerman, M. J., and Foster, B. L.. 2016. A familial pattern of multiple idiopathic cervical root resorption with a 30-year follow-up. J Periodontol 87 (4): 426–33.Google Scholar
Nel, C., Yakoob, Z., Schouwstra, C. M., and van Heerden, W. F.. 2020. Familial florid cemento-osseous dysplasia: A report of three cases and review of the literature. Dentomaxillofac Radiol 50(1): 20190486.Google Scholar
Newman, M., Takei, H., Klokkevold, P., and Carranza, F.. 2018. Newman and Carranza’s Clinical Periodontology, 13th ed. Philadelphia: Elsevier.Google Scholar
Prasad, M., Butler, W. T., and Qin, C.. 2010. Dentin sialophosphoprotein in biomineralization. Connect Tissue Res 51 (5): 404–17.Google Scholar
Proffit, W. R., Fields, H. W., Larson, B. E., and Sarver, D. M.. 2018. Contemporary Orthodontics, 6th ed. Philadelphia: Elsevier.Google Scholar
Rajendran, A., and Sivapathasundharam, B.. 2012. Shafer’s Textbook of Oral Pathology, 7th ed. New Delhi: Elsevier.Google Scholar
Renvoise, E., and Michon, F.. 2014. An Evo-Devo perspective on ever-growing teeth in mammals and dental stem cell maintenance. Front Physiol 5: 324.Google Scholar
Sawada, T., Ishikawa, T., Shintani, S., and Yanagisawa, T.. 2012. Ultrastructural immunolocalization of dentin matrix protein 1 on Sharpey’s fibers in monkey tooth cementum. Biotech Histochem 87 (5): 360–5.Google Scholar
Schatzle, M., Tanner, S. D., and Bosshardt, D. D.. 2005. Progressive, generalized, apical idiopathic root resorption and hypercementosis. J Periodontol 76 (11): 2002–11.Google ScholarPubMed
Sequeira, P., Bosshardt, D. D., and Schroeder, H. E.. 1992. Growth of acellular extrinsic fiber cementum (AEFC) and density of inserting fibers in human premolars of adolescents. J Periodontal Res 27 (2): 134–42.Google Scholar
Sodek, J., Ganss, B., and McKee, M. D.. 2000. Osteopontin. Crit Rev Oral Biol Med 11 (3): 279303.Google Scholar
Sodek, J., and McKee, M. D.. 2000. Molecular and cellular biology of alveolar bone. Periodontol 2000 24: 99126.Google Scholar
Sodek, J., and McKee, M. D. 2000. Molecular and cellular biology of alveolar bone. Periodontol 2000 24: 99126.Google Scholar
Takano, Y., Sakai, H., Watanabe, E., Ideguchi-Ohma, N., Jayawardena, C. K., Arai, K., Asawa, Y., Nakano, Y., Shuda, Y., Sakamoto, Y., and Terashima, T.. 2003. Possible role of dentin matrix in region-specific deposition of cellular and acellular extrinsic fibre cementum. J Electron Microsc (Tokyo) 52 (6): 573–80.Google Scholar
Thomas, H. F. 1995. Root formation. Int J Dev Biol 39 (1): 231–7.Google Scholar
Thumbigere-Math, V., Sabino, M. C., Gopalakrishnan, R., Huckabay, S., Dudek, A. Z., Basu, S., Hughes, P. J., Michalowicz, B. S., Leach, J. W., Swenson, K. K., Swift, J. Q., Adkinson, C., and Basi, D. L.. 2009. Bisphosphonate-related osteonecrosis of the jaw: Clinical features, risk factors, management, and treatment outcomes of 26 patients. J Oral Maxillofac Surg 67 (9): 1904–13.Google Scholar
Toyosawa, S., Okabayashi, K., Komori, T., and Ijuhin, N.. 2004. mRNA expression and protein localization of dentin matrix protein 1 during dental root formation. Bone 34 (1): 124–33.Google Scholar
van Bezooijen, R. L., Bronckers, A. L., Gortzak, R. A., Hogendoorn, P. C., van der Wee-Pals, L., Balemans, W., Oostenbroek, H. J., Van Hul, W., Hamersma, H., Dikkers, F. G., Hamdy, N. A., Papapoulos, S. E., and Lowik, C. W.. 2009. Sclerostin in mineralized matrices and van Buchem disease. J Dent Res 88 (6): 569–74.Google Scholar
Van den Bos, T., Bronckers, A. L., Goldberg, H. A., and Beertsen, W.. 1999. Blood circulation as source for osteopontin in acellular extrinsic fiber cementum and other mineralizing tissues. J Dent Res 78 (11): 1688–95.Google Scholar
Veis, A. 1993. Mineral-matrix interactions in bone and dentin. J Bone Miner Res 8 (Suppl 2): S493–7.Google Scholar
Walker, C. G., Ito, Y., Dangaria, S., Luan, X., and Diekwisch, T. G.. 2008. RANKL, osteopontin, and osteoclast homeostasis in a hyperocclusion mouse model. Eur J Oral Sci 116 (4): 312–8.Google Scholar
Wan, J. T., Sheeley, D. M., Somerman, M. J., and Lee, J. S.. 2020. Mitigating osteonecrosis of the jaw (ONJ) through preventive dental care and understanding of risk factors. Bone Res 8: 14.Google Scholar
Wang, H. M., Nanda, V., Rao, L. G., Melcher, A. H., Heersche, J. N., and Sodek, J.. 1980. Specific immunohistochemical localization of type III collagen in porcine periodontal tissues using the peroxidase-antiperoxidase method. J Histochem Cytochem 28 (11): 1215–23.Google Scholar
Winter, B. U., Stenvik, A., and Vandevska-Radunovic, V.. 2009. Dynamics of orthodontic root resorption and repair in human premolars: a light microscopy study. Eur J Orthod 31 (4): 346–51.Google Scholar
Wise, G. E., and King, G. J.. 2008. Mechanisms of tooth eruption and orthodontic tooth movement. J Dent Res 87 (5): 414–34.Google Scholar
Yamamoto, T., Hasegawa, T., Yamamoto, T., Hongo, H., and Amizuka, N.. 2016. Histology of human cementum: Its structure, function, and development. Jpn Dent Sci Rev 52 (3): 6374.Google Scholar
Ye, L., Zhang, S., Ke, H., Bonewald, L. F., and Feng, J. Q.. 2008. Periodontal breakdown in the Dmp1 null mouse model of hypophosphatemic rickets. J Dent Res 87 (7): 624–9.Google Scholar
Zhao, N., Foster, B. L., and Bonewald, L. F.. 2016. The cementocyte – An osteocyte relative? J Dent Res 95 (7): 734–41.Google Scholar
Zhao, N., Nociti, F. H. Jr., Duan, P., Prideaux, M., Zhao, H., Foster, B. L., Somerman, M. J., and Bonewald, L. F.. 2016. Isolation and functional analysis of an immortalized murine cementocyte cell line, IDG-CM6. J Bone Miner Res 31 (2): 430–42.Google Scholar
Zweifler, L. E., Patel, M. K., Nociti, F. H., Wimer, H. F., Millan, J. I., Somerman, M. J., and Foster, B. L.. 2014. Counter-regulatory phosphatases TNAP and NPP1 temporally regulate tooth root cementogenesis. Int J Oral Sci. In press.Google Scholar

References

Ao, M., Chavez, M. B., Chu, E. Y., Hemstreet, K. C., Yin, Y., Yadav, M. C., Millan, J. L., Fisher, L. W., Goldberg, H. A., Somerman, M. J., and Foster, B. L.. 2017. Overlapping functions of bone sialoprotein and pyrophosphate regulators in directing cementogenesis. Bone 105: 134–47.Google Scholar
Baroncelli, G. I., Angiolini, M., Ninni, E., Galli, V., Saggese, R., and Giuca, M. R.. 2006. Prevalence and pathogenesis of dental and periodontal lesions in children with X-linked hypophosphatemic rickets. Eur J Paediatr Dent 7 (2): 61–6.Google Scholar
Barros, N. M., Hoac, B., Neves, R. L., Addison, W. N., Assis, D. M., Murshed, M., Carmona, A. K., and McKee, M. D.. 2013. Proteolytic processing of osteopontin by PHEX and accumulation of osteopontin fragments in Hyp mouse bone, the murine model of X-linked hypophosphatemia. J Bone Miner Res 28 (3): 688–99.Google Scholar
Beertsen, W., VandenBos, T., and Everts, V.. 1999. Root development in mice lacking functional tissue non-specific alkaline phosphatase gene: Inhibition of acellular cementum formation. J Dent Res 78 (6): 1221–9.Google Scholar
Bergwitz, C., and Jüppner, H.. 2010. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23. Annu Rev Med 61: 91104.Google Scholar
Biosse Duplan, M., Coyac, B. R., Bardet, C., Zadikian, C., Rothenbuhler, A., Kamenicky, P., Briot, K., Linglart, A., and Chaussain, C.. 2017. Phosphate and vitamin D prevent periodontitis in x-linked hypophosphatemia. J Dent Res 96 (4): 388–95.Google Scholar
Bosshardt, D., Luder, H. U., and Schroeder, H. E.. 1989. Rate and growth pattern of cementum apposition as compared to dentine and root formation in a fluorochrome-labelled monkey (Macaca fascicularis). J Biol Buccale 17 (1): 313.Google Scholar
Bosshardt, D. D., and Schroeder, H. E.. 1996. Cementogenesis reviewed: A comparison between human premolars and rodent molars. Anat Rec 245 (2): 267–92.Google Scholar
Bosshardt, D. D. 2005. Are cementoblasts a subpopulation of osteoblasts or a unique phenotype? J Dent Res 84 (5): 390406.Google Scholar
Bosshardt, D. D., Zalzal, S, McKee, M. D., and Nanci, A.. 1998. Developmental appearance and distribution of bone sialoprotein and osteopontin in human and rat cementum. Anat Rec 250 (1): 1333.Google Scholar
Boukpessi, T., Septier, D., Bagga, S., Garabedian, M., Goldberg, M., and Chaussain-Miller, C.. 2006. Dentin alteration of deciduous teeth in human hypophosphatemic rickets. Calcif Tissue Int 79 (5): 294300.Google Scholar
Bruckner, R. J., Rickles, N. H., and Porter, D. R.. 1962. Hypophosphatasia with premature shedding of teeth and aplasia of cementum. Oral Surg Oral Med Oral Pathol 15: 1351–69.Google Scholar
Burke, A. M., and Castanet, J.. 1995. Histological observations of cement growth in horse teeth and their applications to archaeology. J Archaeol Sci 22: 479–93.Google Scholar
Carpenter, T. O., Imel, E. A., Holm, I. A., Jan de Beur, S. M., and Insogna, K. L.. 2011. A clinician’s guide to X-linked hypophosphatemia. J Bone Miner Res 26 (7): 1381–8.Google Scholar
Chaussain-Miller, C., Sinding, C., Wolikow, M., Lasfargues, J. J., Godeau, G., and Garabédian, M.. 2003. Dental abnormalities in patients with familial hypophosphatemic vitamin D-resistant rickets: Prevention by early treatment with 1-hydroxyvitamin D. J Pediatr 142 (3): 324–31.Google Scholar
Cipriano, A. 2002. Cold stress in captive great apes recorded in incremental lines of dental cementum. Folia Primatol (Basel) 73 (1): 2131.Google Scholar
Colard, T., Falgayrac, G., Bertrand, B., Naji, S., Devos, O., Balsack, C., Delannoy, Y., and Penel, G.. 2016. New insights on the composition and the structure of the acellular extrinsic fiber cementum by Raman analysis. PLoS One 11 (12): e0167316.Google Scholar
Condon, K., Charles, D. K., Cheverud, J. M., and Buikstra, J. E.. 1986. Cementum annulation and age determination in Homo sapiens. II. Estimates and accuracy. Am J Phys Anthropol 71 (3): 321–30.Google Scholar
Coyac, B. R., Falgayrac, G., Baroukh, B., Slimani, L., Sadoine, J., Penel, G., Biosse-Duplan, M., Schinke, T., Linglart, A., McKee, M. D., Chaussain, C., and Bardet, C.. 2017. Tissue-specific mineralization defects in the periodontium of the Hyp mouse model of X-linked hypophosphatemia. Bone 103: 334–46.Google Scholar
Eicher, E. M., Southard, J. L., Scriver, C. R., and Glorieux, F. H.. 1976. Hypophosphatemia: Mouse model for human familial hypophosphatemic (vitamin D-resistant) rickets. Proc Natl Acad Sci USA 73 (12): 4667–71.Google Scholar
Fisher, L. W., and Fedarko, N. S.. 2003. Six genes expressed in bones and teeth encode the current members of the SIBLING family of proteins. Connect Tissue Res 44 (Suppl) 1: 3340.Google Scholar
Fong, H., Chu, E. Y., Tompkins, K. A., Foster, B. L., Sitara, D., Lanske, B., and Somerman, M. J.. 2009. Aberrant cementum phenotype associated with the hypophosphatemic hyp mouse. J Periodontol 80 (8): 1348–54.Google Scholar
Fong, R. K., LeBlanc, A. R., Berman, D. S., and Reisz, R. R.. 2016. Dental histology of Coelophysis bauri and the evolution of tooth attachment tissues in early dinosaurs. J Morphol 277 (7): 916–24.Google Scholar
Foster, B. L. 2017. On the discovery of cementum. J Periodontal Res 52 (4): 666–85.Google Scholar
Foster, B. L., Ao, M., Willoughby, C., Soenjaya, Y., Holm, E., Lukashova, L., Tran, A. B., Wimer, H. F., Zerfas, P. M., Nociti, F. H., Jr., Kantovitz, K. R., Quan, B. D., Sone, E. D., Goldberg, H. A., and Somerman, M. J.. 2015. Mineralization defects in cementum and craniofacial bone from loss of bone sialoprotein. Bone 78: 150–64.Google Scholar
Foster, B. L., Nagatomo, K. J., Nociti, F. H., Jr., Fong, H., Dunn, D., Tran, A. B., Wang, W., Narisawa, S., Millan, J. L., and Somerman, M. J.. 2012. Central role of pyrophosphate in acellular cementum formation. PLoS One 7 (6): e38393.Google Scholar
Foster, B. L., Nagatomo, K. J., Tso, H. W., Tran, A. B., Nociti, F. H., Narisawa, S., Yadav, M. C., McKee, M. D., Millán, J. L., and Somerman, M. J.. 2012. Tooth root dentin mineralization defects in a mouse model of hypophosphatasia. J Bone Miner Res 28(2): 271–82.Google Scholar
Foster, B. L., Nociti, F. H., Jr., and Somerman, M. J.. 2014. The rachitic tooth. Endocr Rev 35 (1): 134.Google Scholar
Foster, B. L., Popowics, T. E., Fong, H. K., and Somerman, M. J.. 2007. Advances in defining regulators of cementum development and periodontal regeneration. Curr Top Dev Biol 78: 47126.Google Scholar
Foster, B. L., Ramnitz, M. S., Gafni, R. I., Burke, A. B., Boyce, A. M., Lee, J. S., Wright, J. T., Akintoye, S. O., Somerman, M. J., and Collins, M. T.. 2014. Rare bone diseases and their dental, oral, and craniofacial manifestations. J Dent Res 93 (7 Suppl): 7S19S.Google Scholar
Foster, B. L., Soenjaya, Y., Nociti, F. H., Jr., Holm, E., Zerfas, P. M., Wimer, H. F., Holdsworth, D. W., Aubin, J. E., Hunter, G. K., Goldberg, H. A., and Somerman, M. J.. 2013. Deficiency in acellular cementum and periodontal attachment in bsp null mice. J Dent Res 92 (2): 166–72.Google Scholar
Foster, B. L., and Hujoel, P. P.. 2018. Vitamin D in dentoalveolar and oral health. In Vitamin D, eds. Feldman, D., Pike, J. W., and Bouillon, R.. London: Academic Press.Google Scholar
Foster, B. L., and Somerman, M. J.. 2012. Cementum. In Mineralized Tissues in Oral and Craniofacial Science: Biological Principles and Clinical Correlates, eds. McCauley, L. K. and Somerman, M. J.. Ames, IA: Wiley-Blackwell.Google Scholar
Gaengler, P. 2000. Evolution of tooth attachment in lower vertebrates to tetrapods. In Development, Function and Evolution of Teeth, eds. Teaford, M., Smith, M., and Ferguson, M.. Cambridge: Cambridge University Press.Google Scholar
Goldberg, H. A., and Hunter, G. K.. 2012. Functional domains of bone sialoprotein. In Phosphorylated Extracellular Matrix Proteins of Bone and Dentin, ed. Goldberg., M. France: Bentham Science Publishers.Google Scholar
Grosskopf, B. 1990. Individual age determination using growth rings in the cementum of buried human teeth. Z Rechtsmed 103 (5): 351–9.Google Scholar
Grosskopf, B., and McGlynn, G.. 2011. Age diagnosis based on incremental lines in dental cementum: a critical reflection. Anthropol Anz 68 (3): 275–89.Google Scholar
Grue, H., and Jensen, B.. 1979. Review of the formation of incremental lines in tooth cementum of terrestrial animals. Dan Rev Game Biol 11: 348.Google Scholar
Gurley, K. A., Chen, H., Guenther, C., Nguyen, E. T., Rountree, R. B., Schoor, M., and Kingsley, D. M.. 2006. Mineral formation in joints caused by complete or joint-specific loss of ANK function. J Bone Miner Res 21 (8): 1238–47.Google Scholar
Hall, B., Limaye, A., and Kulkarni, A. B.. 2009. Overview: Generation of gene knockout mice. Curr Protoc Cell Biol, Chapter 19, Unit 19.12, 19.12: 117.Google Scholar
Harris, N. L., Rattray, K. R., Tye, C. E., Underhill, T. M., Somerman, M. J., D’Errico, J. A., Chambers, A. F., Hunter, G. K., and Goldberg, H. A.. 2000. Functional analysis of bone sialoprotein: Identification of the hydroxyapatite-nucleating and cell-binding domains by recombinant peptide expression and site-directed mutagenesis. Bone 27 (6): 795802.Google Scholar
Ho, A. M., Johnson, M. D., and Kingsley, D. M.. 2000. Role of the mouse ank gene in control of tissue calcification and arthritis. Science 289 (5477): 265–70.Google Scholar
Holm, E., Aubin, J. E., Hunter, G. K., Beier, F., and Goldberg, H. A.. 2015. Loss of bone sialoprotein leads to impaired endochondral bone development and mineralization. Bone 71: 145–54.Google Scholar
Hu, J. C., Plaetke, R., Mornet, E., Zhang, C., Sun, X., Thomas, H. F., and Simmer, J. P.. 2000. Characterization of a family with dominant hypophosphatasia. Eur J Oral Sci 108 (3): 189–94.Google Scholar
Johnson, K., Goding, J., Van Etten, D., Sali, A., Hu, S. I., Farley, D., Krug, H., Hessle, L., Millán, J. L., and Terkeltaub, R.. 2003. Linked deficiencies in extracellular PP(i) and osteopontin mediate pathologic calcification associated with defective PC-1 and ANK expression. J Bone Miner Res 18 (6): 9941004.Google Scholar
Kagerer, P., and Grupe, G.. 2001. Age-at-death diagnosis and determination of life-history parameters by incremental lines in human dental cementum as an identification aid. Forensic Sci Int 118 (1): 7582.Google Scholar
Kay, R. F., Rasmussen, D. T., and Beard, K. C.. 1984. Cementum annulus counts provide a means for age determination in Macaca mulatta (primates, anthropoidea). Folia Primatol (Basel) 42 (2): 8595.Google Scholar
Klevezal’, G. A., and Kleĭnenberg, S. E.. 1969. Age Determination of Mammals from Annual Layers in Teeth and Bones [by] G. A. Klevezal’ and S. E. Kleinenberg. Jerusalem: Israel Program for Scientific Translations.Google Scholar
Klevezal’, G. A. 1996. Recording Structures of Mammals: Determination of Age and Reconstruction of Life History. trans. M. V. Mina and A. V. Oreshkin. Rotterdam: A. A. Balkema.Google Scholar
Klevezal’, G. A., and Shishlina, N. I.. 2001. Assessment of the season of death of ancient human from cementum annual layers. J Archaeol Sci 28 (5): 481–86.Google Scholar
LeBlanc, A. R., and Reisz, R. R.. 2013. Periodontal ligament, cementum, and alveolar bone in the oldest herbivorous tetrapods, and their evolutionary significance. PLoS ONE 8 (9): e74697.Google Scholar
LeBlanc, A. R., Reisz, R. R., Brink, K. S., and Abdala, F.. 2016. Mineralized periodontia in extinct relatives of mammals shed light on the evolutionary history of mineral homeostasis in periodontal tissue maintenance. J Clin Periodontol 43 (4): 323–32.Google Scholar
Lieberman, D. E. 1994 . The biological basis for seasonal increments in dental cementum and their application to archaeological research. J Archaeol Sci 21 (4): 525–39.Google Scholar
Luan, X., Walker, C., Dangaria, S., Ito, Y., Druzinsky, R., Jarosius, K., Lesot, H., and Rieppel, O.. 2009. The mosasaur tooth attachment apparatus as paradigm for the evolution of the gnathostome periodontium. Evol Dev 11 (3): 247–59.Google Scholar
Luder, H. U. 2015. Malformations of the tooth root in humans. Front Physiol 6: 307.Google Scholar
Macneil, R. L., Sheng, N., Strayhorn, C., Fisher, L. W., and Somerman, M. J.. 1994. Bone sialoprotein is localized to the root surface during cementogenesis. J Bone Miner Res 9 (10): 1597–606.Google Scholar
Malaval, L., Wade-Guéye, N. M., Boudiffa, M., Fei, J., Zirngibl, R., Chen, F., Laroche, N., Roux, J. P., Burt-Pichat, B., Duboeuf, F., Boivin, G., Jurdic, P., Lafage-Proust, M. H., Amédée, J., Vico, L., Rossant, J., and Aubin, J. E.. 2008. Bone sialoprotein plays a functional role in bone formation and osteoclastogenesis. J Exp Med 205 (5): 1145–53.Google Scholar
Mani-Caplazi, G., Schulz, G., Deyhle, H., Hotz, G., Werner, V., Wittwer-Backofen, U., and Müller, B.. 2017. Imaging of the human tooth cementum ultrastructure of archeological teeth, using hard x-ray microtomography to determine age-at-death and stress periods. Paper read at SPIE Optical Engineering and Applications, 2017, San Diego, CA.Google Scholar
Martin, R. R., Naftel, S. J., Nelson, A. J., Feilen, A. B., and Narvaez, A.. 2004. Synchrotron X-ray fluorescence and trace metals in the cementum rings of human teeth. J Environ Monit 6 (10): 783–6.Google Scholar
McIntosh, J. E., Anderton, X., Flores-De-Jacoby, L., Carlson, D. S., Shuler, C. F., and Diekwisch, T. G.. 2002. Caiman periodontium as an intermediate between basal vertebrate ankylosis-type attachment and mammalian “true” periodontium. Microsc Res Tech 59 (5): 449–59.Google Scholar
McKee, M. D., Nakano, Y., Masica, D. L., Gray, J. J., Lemire, I., Heft, R., Whyte, M. P., Crine, P., and Millán, J. L.. 2011. Enzyme replacement therapy prevents dental defects in a model of hypophosphatasia. J Dent Res 90 (4): 470–76.Google Scholar
McKee, M. D., Zalzal, S., and Nanci, A.. 1996. Extracellular matrix in tooth cementum and mantle dentin: Localization of osteopontin and other noncollagenous proteins, plasma proteins, and glycoconjugates by electron microscopy. Anat Rec 245 (2): 293312.Google Scholar
Millan, J. L., and Whyte, M. P.. 2016. Alkaline phosphatase and hypophosphatasia. Calcif Tissue Int 98 (4): 398416.Google Scholar
Naji, S., Colard, T., Blondiaux, J., Bertrand, B., d’Incau, E., and Bocquet-Appel, J.-P. 2016. Cementochronology, to cut or not to cut? Int J Paleopathol 15:113–9.Google Scholar
Okawa, A., Nakamura, I., Goto, S., Moriya, H., Nakamura, Y., and Ikegawa, S.. 1998. Mutation in Npps in a mouse model of ossification of the posterior longitudinal ligament of the spine. Nat Genet 19 (3): 271–3.CrossRefGoogle Scholar
Pereira, C. M., de Andrade, C. R., Vargas, P. A., Coletta, R. D., de Almeida, O. P., and Lopes, M. A.. 2004. Dental alterations associated with X-linked hypophosphatemic rickets. J Endod 30 (4): 241–5.Google Scholar
Pilloud, S. 2004. Can there be age determination on the basis of the dental cementum also in older individuals as a significant context between histological and real age determination. Anthropol Anz 62 (2): 231–9.Google Scholar
Reibel, A., Maniere, M. C., Clauss, F., Droz, D., Alembik, Y., Mornet, E., and Bloch-Zupan, A.. 2009 . Orodental phenotype and genotype findings in all subtypes of hypophosphatasia. Orphanet J Rare Dis 4 (6).Google Scholar
Ripamonti, U. 2007. Recapitulating development: A template for periodontal tissue engineering. Tissue Eng 13 (1): 5171.Google Scholar
Ruchon, A. F., Tenenhouse, H. S., Marcinkiewicz, M., Siegfried, G., Aubin, J. E., DesGroseillers, L., Crine, P., and Boileau, G.. 2000. Developmental expression and tissue distribution of Phex protein: Effect of the Hyp mutation and relationship to bone markers. J Bone Miner Res 15 (8): 1440–50.Google Scholar
Salmon, B., Bardet, C., Khaddam, M., Naji, J., Coyac, B. R., Baroukh, B., Letourneur, F., Lesieur, J., Decup, F., Le Denmat, D., Nicoletti, A., Poliard, A., Rowe, P. S., Huet, E., Vital, S. O., Linglart, A., McKee, M. D., and Chaussain, C.. 2013. MEPE-derived ASARM peptide inhibits odontogenic differentiation of dental pulp stem cells and impairs mineralization in tooth models of X-linked hypophosphatemia. PLoS One 8 (2): e56749.Google Scholar
Sitara, D., Razzaque, M. S., Hesse, M., Yoganathan, S., Taguchi, T., Erben, R. G., Jüppner, H., and Lanske, B.. 2004. Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice. Matrix Biol 23 (7): 421–32.Google Scholar
Stallibrass, S. 1982. The use of cement layers for absolute ageing of mammalian teeth: A selective review of the literature, with suggestions for further studies. In Ageing and Sexing Animal Bones from Archaeological Sites, eds. Wilson, B., Grigson, C., and Payne, S.. London: BAR Publishing.Google Scholar
Stock, S. R., Finney, L. A., Telser, A., Maxey, E., Vogt, S., and Okasinski, J. S.. 2017. Cementum structure in Beluga whale teeth. Acta Biomater 48: 289–99.Google Scholar
Strott, N., and Grupe, G.. 2003. Structural characteristics of dental cementum of skeletal remains of the first Catholic cemetery in Berlin (St. Hedwig’s Cemetery, Central Berlin; 1777–1834). Anthropol Anz 61 (2): 203–13.Google Scholar
Thumbigere-Math, V., Alqadi, A., Chalmers, N. I., Chavez, M. B., Chu, E. Y., Collins, M. T., Ferreira, C. R., FitzGerald, K., Gafni, R. I., Gahl, W. A., Hsu, K. S., Ramnitz, M. S., Somerman, M. J., Ziegler, S. G., and Foster, B. L.. 2018. Hypercementosis associated with ENPP1 mutations and GACI. J Dent Res 97 (4): 432–41.Google Scholar
Tummers, M., and Thesleff, I.. 2009. The importance of signal pathway modulation in all aspects of tooth development. J Exp Zool B Mol Dev Evol 312B (4): 309–19.Google Scholar
van den Bos, T., Handoko, G., Niehof, A., Ryan, L. M., Coburn, S. P., Whyte, M. P., and Beertsen, W.. 2005. Cementum and dentin in hypophosphatasia. J Dent Res 84 (11): 1021–5.Google Scholar
Wedel, V. L. 2007. Determination of season at death using dental cementum increment analysis. J Forensic Sci 52 (6): 1334–7.Google Scholar
Wittwer-Backofen, U., Gampe, J., and Vaupel, J. W.. 2004. Tooth cementum annulation for age estimation: Results from a large known-age validation study. Am J Phys Anthropol 123 (2): 119–29.Google Scholar
Yadav, M. C., de Oliveira, R. C., Foster, B. L., Fong, H., Cory, E., Narisawa, S., Sah, R. L., Somerman, M., Whyte, M. P., and Millan, J. L.. 2012. Enzyme replacement prevents enamel defects in hypophosphatasia mice. J Bone Miner Res 27 (8): 1722–34.Google Scholar

References

Baglinière, J.-L., Castanet, J., Conand, F. and Meunier, F. J. 1992. Terminologie en sclérochronologie chez les Vertébrés. In Baglinière, J.-L., Castanet, J., Conand, F., and Meunier, F. J., eds. Tissus durs et âge individuel des vertébrés, Paris: ORSTOM/INRA Editions, 443–47.Google Scholar
Bloch‐Zupan, A. 2016. Hypophosphatasia: Diagnosis and clinical signs – A dental surgeon perspective. International Journal of Paediatric Dentistry, 26(6): 426–38.Google Scholar
Colard, T., Falgayrac, G., Bertrand, B., Naji, S., Devos, O., Balsack, C., Delannoy, Y., and Penel, G. 2016. New insights on the composition and the structure of the acellular extrinsic fiber cementum by Raman analysis. PloS One, 11(12): e0167316.Google Scholar
Dumont, E. R. 2010. Bone density and the lightweight skeletons of birds. Proceedings of the Royal Society of London B: Biological Sciences, 277(1691): 2193–8.Google Scholar
Foster, B. L., Nagatomo, K. J., NocitiJr, F. H., Fong, H., Dunn, D., Tran, A. B., Wang, W., Narisawa, S., Millán, J. L. and Somerman, M. J. 2012. Central role of pyrophosphate in acellular cementum formation. PLoS One, 7(6): e38393.Google Scholar
Foster, B. L., Kuss, P., Yadav, M. C., Kolli, T. N., Narisawa, S., Lukashova, L., Cory, E., Sah, R. L., Somerman, M. J., and Millán, J. L. 2017. Conditional ALPL ablation phenocopies dental defects of hypophosphatasia. Journal of Dental Research, 96(1): 8191.Google Scholar
Gaengler, P., and Metzier, E.. 1992. The periodontal differentiation in the phylogeny of teeth–an overview. Journal of Periodontal Research, 27(3): 214–25.Google Scholar
Garcia, R. A., and Zurriaguz, V. 2016. Histology of teeth and tooth attachment in titanosaurs (Dinosauria; Sauropoda). Cretaceous Research, 57: 248–56.Google Scholar
Grue, H., and Jensen, B. 1979. Review of the formation of incremental lines in tooth cementum of terrestrial mammals. Danish Review of Game Biology (Denmark), 11(1979): 148.Google Scholar
Katoh, K., Rozewicki, J., and Yamada, K. D. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20(4): 116–66.Google Scholar
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentjies, P., and Drummond, A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12): 1647–49.Google Scholar
King, G. N., King, N., Cruchley, A. T., Wozney, J. M., and Hughes, F. J. 1997. Recombinant human bone morphogenetic protein-2 promotes wound healing in rat periodontal fenestration defects. Journal of Dental Research, 76(8): 1460–70.Google Scholar
King, G. N., and Hughes, F. J. 1999. Effects of occlusal loading on ankylosis, bone, and cementum formation during bone morphogenetic protein-2-stimulated periodontal regeneration in vivo. Journal of Periodontology, 70(10): 1125–35.Google Scholar
King, G. N., and Hughes, F. J. 2001. Bone morphogenetic protein‐2 stimulates cell recruitment and cementogenesis during early wound healing. Journal of Clinical Periodontology, 28(5): 465–75.Google Scholar
Klevezal’, G. A. 1996. Recording Structures of Mammals: Determination of Age and Reconstruction of Life History, Rotterdam: A. A. Balkema.Google Scholar
Koehne, T., Jeschke, A., Petermann, F., Seitz, S., Neven, M., Peters, S., Luther, J., Schweizer, M., Schinke, T., Kahl-Nieke, B., and Amling, M. 2016. Rsk2, the kinase mutated in Coffin-Lowry syndrome, controls cementum formation. Journal of Dental Research, 95(7): 752–60.Google Scholar
Laws, R. M. 1952. A new method of age determination for mammals. Nature, 169(4310): 972.Google Scholar
LeBlanc, A. R., and Reisz, R. R. 2013. Periodontal ligament, cementum, and alveolar bone in the oldest herbivorous tetrapods, and their evolutionary significance. PLoS One, 8(9): e74697.Google Scholar
LeBlanc, A. R., Reisz, R. R., Brink, K. S., and Abdala, F. 2016. Mineralized periodontia in extinct relatives of mammals shed light on the evolutionary history of mineral homeostasis in periodontal tissue maintenance. Journal of Clinical Periodontology, 43(4): 323–32.Google Scholar
LeBlanc, A. R., Lamoureux, D. O. and Caldwell, M. W. 2017. Mosasaurs and snakes have a periodontal ligament: Timing and extent of calcification, not tissue complexity, determines tooth attachment mode in reptiles. Journal of Anatomy, 231(6): 869–85.Google Scholar
LeBlanc, A. R., Brink, K. S., Cullen, T. M., and Reisz, R. R. 2017. Evolutionary implications of tooth attachment versus tooth implantation: A case study using dinosaur, crocodilian, and mammal teeth. Journal of Vertebrate Paleontology, 37(5): e1354006.Google Scholar
Lieberman, D. E. 1994. The biological basis for seasonal increments in dental cementum and their application to archaeological research. Journal of Archaeological Science, 21: 525–25.Google Scholar
Magitot, E. 1878. Treatise on Dental Caries: Experimental and Therapeutic Investigations. Houghton: Osgood and Company.Google Scholar
Millán, J. L. 2006. Alkaline phosphatases: Structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. Purinergic Signal, 2(2): 335–41.Google Scholar
Millán, J. L., and Whyte, M. P. 2016. Alkaline phosphatase and hypophosphatasia. Calcified Tissue International, 98(4): 398416.Google Scholar
Mornet, E., 2017. Genetics of hypophosphatasia. Archives de Pédiatrie, 24(5): 5S51–6.Google Scholar
Murphy, M., Brown, G., Wallin, C., Tatusova, T., Pruitt, K., Murphy, T., and Maglott, D. 2018. Gene help: Integrated access to genes of genomes in the reference sequence collection. In Gene Help [Internet]. National Center for Biotechnology Information (US). www.ncbi.nlm.nih.gov/books/NBK3841Google Scholar
Naji, S., Colard, T., Blondiaux, J., Bertrand, B., d’Incau, E., and Bocquet-Appel, J.-P. 2016. Cementochronology, to cut or not to cut? International Journal of Paleopathology, 15: 113–9.Google Scholar
Reibel, A., Manière, M. C., Clauss, F., Droz, D., Alembik, Y., Mornet, E., and Bloch-Zupan, A. 2009. Orodental phenotype and genotype findings in all subtypes of hypophosphatasia. Orphanet Journal of Rare Diseases, 4(1): 6.Google Scholar
Samuels, J. X. 2009. Cranial morphology and dietary habits of rodents. Zoological Journal of the Linnean Society, 156(4): 864–88.Google Scholar
Smith, M. D., Wertheim, J. O., Weaver, S., Murrell, B., Scheffler, K., and Kosakovsky Pond, S. L. 2015. Less is more: An adaptive branch-site random effects model for efficient detection of episodic diversifying selection. Molecular Biology and Evolution, 32(5): 1342–53.Google Scholar
Spinage, C. A. 1976. Incremental cementum lines in the teeth of tropical African mammals. Journal of Zoology, 178(1): 117–31.Google Scholar
Stock, S. R., Finney, L. A., Telser, A., Maxey, E, Vogt, S., and Okasinski, J. S.. 2017. Cementum structure in Beluga whale teeth. Acta Biomaterialia, 48(2017): 289–99.Google Scholar
Stott, G. G., Sis, R. F., and Levy, B. M. 1982. Cemental annulation as an age criterion in forensic dentistry. Journal of Dental Research, 61(6): 814–17.Google Scholar
Thesleff, I. 2003. Developmental biology and building a tooth. Quintessence International, 34(8).Google Scholar
van den Bos, T., Handoko, G., Niehof, A., Ryan, L. M., Coburn, S. P., Whyte, M. P., and Beertsen, W. 2005. Cementum and dentin in hypophosphatasia. Journal of Dental Research, 84(11): 1021–25.Google Scholar
Whyte, M. P. 2016. Hypophosphatasia – Aetiology, nosology, pathogenesis, diagnosis and treatment. Nature Reviews Endocrinology, 12(4): 233.Google Scholar
Whyte, M.P. 2017. Hypophosphatasia: An overview for 2017. Bone, 102: 1525.Google Scholar
Yamamoto, H., Niimi, T., Yokota-Ohta, R., Suzuki, K., Sakae, T., and Kozawa, Y. 2009. Diversity of acellular and cellular cementum distribution in human permanent teeth. Journal of Hard Tissue Biology, 18(1): 4044.Google Scholar
Yamashiro, T., Tummers, M., and Thesleff, I. 2003. Expression of bone morphogenetic proteins and Msx genes during root formation. Journal of Dental Research, 82(3): 172–6.Google Scholar
Yan, J., Ma, Z., Xu, X., and Guo, A. Y. 2014. Evolution, functional divergence and conserved exon–intron structure of bHLH/PAS gene family. Molecular Genetics and Genomics, 289(1): 2536.Google Scholar
Yang, Z. 1997. PAML: A program package for phylogenetic analysis by maximum. Computer Applications in the Biosciences: CABIOS, 13(5): 555–6.Google Scholar
Zeichner, -David, M. 2006. Regeneration of periodontal tissues: Cementogenesis revisited. Periodontology 2000, 41(1): 196217.Google Scholar
Zeuner, F. E. 1963. A History of Domesticated Animals. London: Harper & Row.Google Scholar
Zheng, L., Ehardt, L., McAlpin, B., About, I., Kim, D., Papagerakis, S., and Papagerakis, P. 2014. The tick tock of odontogenesis. Experimental Cell Research, 325(2): 83–9.Google Scholar

References

Azaz, B., Michaeli, Y., and Nitzan, D.. 1977. Aging of tissues of the roots of nonfunctional human teeth (impacted canines). Oral Surgery, Oral Medicine, Oral Pathology 43(4): 572–8.Google Scholar
Azaz, B., Ulmansky, M., Moshev, R., and Sela, J.. 1974. Correlation between age and thickness of cementum in impacted teeth. Oral Surgery, Oral Medicine, Oral Pathology 38(5): 691–4.Google Scholar
Bercy, P., and Frank, R. M.. 1980. Microscopie électronique à balayage de la surface du cément humain dans diverses conditions physiologiques et pathologiques. Journal de Biologie Buccale 8(4): 353–73.Google Scholar
Bilgin, E., Gürgan, C. A., Arpak, M. N., Bostanci, H. S., and Güven, K.. 2004. Morphological changes in diseased cementum layers: A scanning electron microscopy study. Calcified Tissue International 74(5): 476–85.Google Scholar
Bosshardt, D. D., and Nanci, A.. 2003. Immunocytochemical characterization of ectopic enamel deposits and cementicles in human teeth. European Journal of Oral Science 111(1): 51–9.Google Scholar
Bosshardt, D. D., and Schroeder, H. E.. 1992. Initial formation of cellular intrinsic fiber cementum in developing human teeth. Cell & Tissue Research 267(2): 321–35.Google Scholar
Bosshardt, D. D., and Schroeder, H. E. 1994. How repair cementum becomes attached to the resorbed roots of human permanent teeth. Acta Anatomica 150(4): 253–66.Google Scholar
Bosshardt, D. D., and Selvig, K. A.. 1997. Dental cementum: The dynamic tissue covering of the root. Periodontology 2000 13: 4175.Google Scholar
Brau, E. 1986. Pathologie du cément. Actualités Odonto-Stomatologiques 40(156): 603–17.Google Scholar
Chan, E., and A. Darendeliler, M.. 2006. Physical properties of root cementum: Part 7. Extent of root resorption under areas of compression and tension. American Journal of Orthodontics and Dentofacial Orthopedics 129(4): 504–10.Google Scholar
Comelli, L., Carlos, R., Lauand, F., Marcantonio, E., and Neto, C. B.. 1978. A contribution to the histological study of hypercementosis using metal staining. Journal of Dental Research 57(1): 146–52.Google Scholar
Comuzzie, A. G., and Gentry Steele, D.. 1989. Enlarged occlusal surfaces on first molars due to severe attrition and hypercementosis: Examples from prehistoric coastal populations of Texas. American Journal of Physical Anthropology 78(1): 915.Google Scholar
Consolaro, A., De Oliveira, L.U., and Vasconcelos, M. H. F.. 1987. Determinação da prevalência da hipercementose e suas implicações etiopatogênicas. Odontologia Moderna 14(3): 614.Google Scholar
Corruccini, R. S., Jacobi, K. P., Handler, J. S., and Aufderheide, A. C.. 1987. Implications of tooth root hypercementosis in a Barbados slave skeletal collection. American Journal of Physical Anthropology 74(2): 179–84.Google Scholar
Craddock, H. L., Youngson, C. C., Manogue, M., and Blance, A.. 2007. Occlusal changes following posterior tooth loss in adults. Part 1: A study of clinical parameters associated with the extent and type of supraeruption in unopposed posterior teeth. Journal of Prosthodontics 16(6): 485–94.Google Scholar
Dastmalchi, R., Polson, A., Bouwsma, O., and Proskin, H.. 1990. Cementum thickness and mesial drift. Journal of Clinical Periodontology 17(10): 709–13.Google Scholar
d’Incau, E. 2012. Hypercementosis: Definition, classification and frequency. Application of these results to the Neanderthal line. PhD dissertation, University of Bordeaux, Talence. [In French.]Google Scholar
d’Incau, E., Couture, C., and Maureille, B.. 2012. Human tooth wear in the past and the present: Tribological mechanisms, scoring systems, dental and skeletal compensations. Archives of Oral Biology 57(3): 214–29.Google Scholar
d’Incau, E., Rouas, P., and Couture-Veschambre, C.. 2015. Tooth wear and compensatory modification of the dentoalveolar complex in a Nubian sample. Journal of Craniomandibular Function 7(4): 315–36.Google Scholar
d’Incau, E., Couture, C., Crépeau, N., Chenal, F., Beauval, C., Vanderstraete, V., and Maureille, B.. 2015. Determination and validation of criteria to define hypercementosis in two medieval samples from France (Sains-en-Gohelle, AD 7th-17th; Jau-Dignac-et-Loirac, AD 7th-8th century). Archives of Oral Biology 60(2): 293303.Google Scholar
Eberhard, J., and Plagmann, H.-C.. 1999. Changes in the periodontal membrane due to apical periodontitis. Journal of Endodontics 25(7): 486–9.Google Scholar
Fox, L. 1933. Paget’s disease (osteitis deformans) and its effect on maxillary bones and teeth. The Journal of the American Dental Association 20(10): 1823–29.Google Scholar
Fujita, T., Montet, X., Tanne, K., and Kiliaridis, S.. 2009. Supraposition of unopposed molars in young and adult rats. Archives of Oral Biology 54(1): 40–4.Google Scholar
Gardner, B. S., and Goldstein, H.. 1931. The significance of hypercementosis. The Dental Cosmos 73(11): 1065–69.Google Scholar
Geppert, E.-G., and Müller, K.-H.. 1951. Die wurzelzementapposition als meßbarer ausdruck der kaudruckbelastung des zahnes. Deutsche Zahn-, Mund-, und Kieferheilkunde mit Zentralblatt für die Gesamte, 15 (1–2/3–4): 3048, 97119.Google Scholar
Hanihara, T., Ishida, H., Ohshima, N., Kondo, O., and Masuda, T.. 1994. Dental calculus and other dental disease in a human skeleton of the Okhotsk Culture unearthed at Hamanaka-2 site, Rebun Island, Hokkaido, Japan. International Journal of Osteoarchaeology 4(4): 343–51.Google Scholar
Henry, J. L., and Weinmann, J. P.. 1951. The pattern of resorption and repair of human cementum. The Journal of the American Dental Association 42(3): 270–90.Google Scholar
Holliday, S., Schneider, B., Galang, M.T. S., Fukui, T., Yamane, A., Luan, X., and Diekwisch, T. G. H.. 2005. Bones, teeth, and genes: A genomic hommage to Harry Sicher’s “axial movement of teeth.World Journal of Orthodontics 6(1): 6170.Google Scholar
Humerfelt, A., and Reitan, K.. 1966. Effects of hypercementosis on the movability of teeth during orthodontic treatment. The Angle Orthodontist 36(3): 179–89.Google Scholar
Hunter, J. 1778. The Natural History of the Human Teeth: Explaining Their Structure, Use, Formation, Growth, and Diseases. 2nd ed. London: J. Johnson.Google Scholar
Israel, H. 1984. Early hypercementosis and arrested dental eruption: Heritable multiple ankylodontia. Journal of Craniofacial Genetics and Developmental Biology 4(3): 243–46.Google Scholar
Jones, S. J., and Boyde, A.. 1972. A study of human root cementum surfaces as prepared for and examined in the scanning electron microscope. Zeitschrift für Zellforschung und Mikroskopische Anatomie 130(3): 318–37.Google Scholar
Kaifu, Y., Kasai, K., Townsend, G. C., and Richards, L. C.. 2003. Tooth wear and the “design” of the human dentition: A perspective from evolutionary medicine. American Journal of Physical Anthropology 122(Suppl. 37): 4761.Google Scholar
Kashyap, R. R., Babu, G. S., and Shetty, S. R.. 2011. Dental patient with acromegaly: A case report. Journal of Oral Science 53(1): 133–36.Google Scholar
Kato, S., Nakagaki, H., Kunisaki, H., Sugihara, N., Noguchi, T., Ito, F., Yoshioka, I., Weatherell, J. A., and Robinson, C.. 1992. The thickness of the sound and periodontally diseased human cementum. Archives of Oral Biology 37(8): 675–76.Google Scholar
Kellner, E. 1931. Das verhältnis der zement-und periodontalbreiten zur funktionellen beanspruchung der zähne. Zeitschrift für Stomatologie 29: 4462.Google Scholar
Kim, S. H., Hwang, E. H., and Lee, S. R.. 1991. A radiographic study of hypercementosis. Korean Journal of Oral and Maxillofacial Radiology 21(2): 249–59. [In Korean.]Google Scholar
Kronfeld, R. 1938. The biology of cementum. The Journal of the American Dental Association 25(9): 1451–61.Google Scholar
Künzler, A., and Farmand, M.. 1991. Typical changes in the viscerocranium in acromegaly. Journal of Cranio-Maxillo facial Surgery 19(8): 332–40.Google Scholar
Kupfer, C. 1954. Relationship of hypercementosis to the exophtalmos of hyperthyroidism. AMA Archives of Ophthalmology 52(6): 942–5.Google Scholar
Kupfer, I. J. 1951. Correlation of hypercementosis with toxic goiter; a preliminary report. Journal of Dental Research 30(5): 734–6.Google Scholar
Lacy, S. A., Xiu-Jie, Wu, Jin, C.-Z., Qin, D.-G., Cai, Y.-J, and Trinkaus, E.. 2012. Dentolveolar paleopathology of the early modern humans from Zhirendong, South China. International Journal of Paleopathology 2(1): 1018.Google Scholar
Leider, A. S., and Garbarino, V. E.. 1987. Generalized hypercementosis. Oral Surgery, Oral Medicine, Oral Pathology 63(3): 375–80.Google Scholar
Lindskog-Stokland, B., Hansen, K., Tomasi, C., Hakeberg, M., and Wennström, J. L.. 2012. Changes in molar position associated with missing opposed and/or adjacent tooth: A 12-year study in women. Journal of Oral Rehabilitation 39(2): 136–43.Google Scholar
Malueg, L.A., Wilcox, L. R., and Johnson, W.. 1996. Examination of external apical root resorption with scanning electron microscopy. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology and Endodontics 82(1): 8993.Google Scholar
Moskow, B. S. 1971. Origin, histogenesis and fate of calcified bodies in the periodontal ligament. Journal of Periodontology 42(3): 131–43.Google Scholar
Moxham, B. J., and Berkovitz, B. K. B.. 1995. The periodontal ligament and physiological tooth movements. In The Periodontal Ligament in Health and Disease. 2nd ed. B. K. B. Berkovitz, B. Moxham, J., and Newman, H. N., eds. Barcelona: Mosby-Wolfe, 183214.Google Scholar
Müller, G., and Zander, H. A.. 1960. Cementum of periodontally diseased teeth from India. Journal of Dental Research 39(2): 385–90.Google Scholar
Murphy, T. 1959. Compensatory mechanisms in facial height adjustment to functional tooth attrition. Australian Dental Journal 4(5): 312–23.Google Scholar
Pinheiro, B. C., Pinheiro, T. N., Capelozza, A. L., and Consolaro, A.. 2008. A scanning electron microscopic study of hypercementosis. Journal of Applied Oral Science 16(6): 380–84.Google Scholar
Polson, A., Caton, J., Polson, A. P., Nyman, S., Novak, J., and Reed, B.. 1984. Periodontal response after tooth movement into intrabony defects. Journal of Periodontology 55(4): 197202.Google Scholar
Prabhakar, A. R., Reddy, V. V., and Bassappa, N.. 1998. Duplication and dilaceration of a crown with hypercementosis of the root following trauma: A case report. Quintessence International 29(10): 655–7.Google Scholar
Saffar, J.-L., Lasfargues, J.-J., and Cherruau, M.. 1997. Alveolar bone and the alveolar process: The socket that is never stable. Periodontology 2000 13: 7690.Google Scholar
Schehl, S. 1966. Röntgenologisch-statistische untersuchungen über hyperzementosen. Wissenschaftliche Zeitschrift der Ernst-Moritz-Arndt-Universität Greifswald 15: 279–83.Google Scholar
Schroeder, H. E. 1986. The Periodontium. Berlin: Springer-Verlag.Google Scholar
Schroeder, H. E. 1993. Human cellular mixed stratified cementum: A tissue with alternating layers of acellular extrinsic and cellular intrinsic fiber cementum. Schweizerische Monatsschrift für Zahnmedizin 103(5): 550–60.Google Scholar
Schüpbach, P., Guggenheim, B., and Lutz, F.. 1989. Human root caries: Histology of initial lesions in cementum and dentin. Journal of Oral Pathology & Medicine 18(3): 146–56.Google Scholar
Seed, R., and Nixon, P. P.. 2004. Generalised hypercementosis: A case report. Primary Dental Care 11(4): 119–22.Google Scholar
Selmer-Olsen, R. 1937. The normal movement of the mandibular teeth and the crowding of the incisors as a result of growth and function. The Dental Records 57(9): 465–77.Google Scholar
Sharma, C. G. D., and Pradeep, A. R.. 2007. Localized attachment loss in Pendred syndrome: Incidental? Journal of Periodontology 78(5): 948–54.Google Scholar
Shmamine, T. 1910. Das sekundäre Zement: (Cementhyperplasie, Cementhypertrophie, Hypercementitis USW). Deutsche Zahnheilkunde in Vorträgen, Heft 13. Leipzig: Thieme.Google Scholar
Siatkowski, R. E. 1974. Incisor uprighting: Mechanism for late secondary crowding in the anterior segments of the dental arches. American Journal of Orthodontics 66(4): 398410.Google Scholar
Sicher, H., and Bhaskar, S. N.. 1972. Orban’s Oral Histology and Embryology. 7th ed. St Louis: Mosby.Google Scholar
Smid, J. R., Rowland, J. E., Young, W. G., Daley, T. J., Coschigano, K. T., Kopchick, J. J., and Waters, M. J.. 2004. Mouse cellular cementum is highly dependent on growth hormone status. Journal of Dental Research 83(1): 35–9.Google Scholar
Solheim, T. 1990. Dental cementum apposition as an indicator of age. Scandinavian Journal of Dental Research 98(6): 510–19.Google Scholar
Sponholz, von H., Kühne, W., and Hämmerling, H.-U.. 1986. Anatomisch-histologische untersuchungen zur zementapposition unter besonderer berücksichtigung funktioneller reize. Zahn-Mund und Kieferheilkunde mit Zentralblatt 74(6): 563–6.Google Scholar
Sreeja, R., Minal, C., Madhuri, T., Swati, P., and Vijay, W.. 2009. A scanning electron microscopic study of the patterns of external root resorption under different conditions. Journal of Applied Oral Science 17(5): 481–6.Google Scholar
Štamfelj, I., Vidmar, G., Cvetko, E., and Gašperšič, D.. 2008. Cementum thickness in multirooted human molars: A histometric study by light microscopy. Annals of Anatomy 190(2): 129–39.Google Scholar
Suter, V. G. A., Reichart, P. A., Bosshardt, D. D., and Bornstein, M. M.. 2011. A typical hard tissue formation around multiple teeth. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 111(2): 138–45.Google Scholar
Villmoare, B., Kuykendall, K., Rae, T. C., and Brimacombe, C. S.. 2013. Continuous dental eruption identifies Sts 5 as the developmentally oldest fossil hominin and informs the taxonomy of Australopithecus africanus. Journal of Human Evolution 65(6): 798805.Google Scholar
Whittaker, D. K., Griffiths, S., Robson, A., Roger-Davies, P., Thomas, G., and Molleson, T.. 1990. Continuing tooth eruption and alveolar crest height in an eighteenth-century population from Spitalfields, East London. Archives of Oral Biology 35(2): 81–5.Google Scholar
Zander, H. A., and Hürzeler, B.. 1958. Continuous cementum apposition. Journal of Dental Research 37(6): 1035–44.Google Scholar
Zhou, J., Zhao, Y. F., Xia, C. Y., and Jiang, L.. 2012. Periodontitis with hypercementosis: Report of a case and discussion of possible aetiologic factors. Australian Dental Journal 57(4): 511–14.Google Scholar

References

Almer, J., & Stock, S. R. (2007). Micromechanical response of mineral and collagen phases in bone. Journal of Structural Biology, 157, 365–70.Google Scholar
Colard, T., Bertrand, B., Naji, S., Delannoy, Y., & Bécart, A. (2015). Toward the adoption of cementochronology in forensic context. International Journal of Legal Medicine, 129, 18.Google Scholar
Colard, T., Falgayrac, G., Bertrand, B., … Penel, G. (2016). New insights on the composition and the structure of the acellular extrinsic fiber cementum by Raman analysis. PLOS One, 11(12): e0167316.Google Scholar
Cool, S. M., Forwood, M. R., Campbell, P., & Bennett, M. B. (2002). Comparisons between bone and cementum compositions and the possible basis for their layered appearances. Bone, 30(2): 386–92.Google Scholar
Cullity, B. D., & Stock, S. R. (2001). Elements of X-Ray Diffraction, 3rd ed. Upper Saddle River, NJ: Pearson.Google Scholar
Dean, C., Le Cabec, A., Spiers, K., Zhang, Y., & Garrevoet, J. (2018). Incremental distribution of strontium and zinc in great ape and fossil hominin cementum using synchrotron X-ray fluorescence mapping. Journal of the Royal Society, Interface, 15(138): 20170626.Google Scholar
Lieberman, D. E. (1994). The biological basis for seasonal increments in dental cementum and their application to archaeological research. Journal of Archaeological Science, 21, 525–39.Google Scholar
Naji, S., Colard, T., Blondiaux, J., Bertrand, B., d’Incau, E., & Bocquet-Appel, J.-P. (2016). Cementochronology, to cut or not to cut? International Journal of Paleopathology, 15, 113–19.Google Scholar
Oliviera, C., Bergqvist, L., & Line, S. (2001). A comparative analysis of the structure of the dentinoenamel junction in mammals. Journal of Oral Science, 43, 277–81.Google Scholar
Pike-Tay, A. (1995). Variability and synchrony of seasonal indicators in dental cementum microstructure of the Kaminuriak caribou population. Archaeofauna, 4: 273–84.Google Scholar
Rendu, W. (2010). Hunting behavior and Neanderthal adaptability in the Late Pleistocene site of Pech-de-l’Azé I. Journal of Archaeological Science, 37(8): 17981810.Google Scholar
Renz, H., Schaefer, V., Duschner, H., & Radlanski, R. J. (1997). Incremental lines in root cementum of human teeth: An approach to their ultrastructural nature by microscopy. Advances in Dental Research, 11(4): 472–7.Google Scholar
Schindelin, J., Arganda-Carreras, I., Frise, E., … Cardona, A. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7): 676–82.Google Scholar
Smith, K. G., Strother, K. A., Rose, J. C., & Savelle, J. M. (1994). Chemical ultrastructure of cementum growth-layers of teeth of black bears. Journal of Mammalogy, 75(2): 406.Google Scholar
Stock, S. R. (2015). The mineral–collagen interface in bone. Calcified Tissue International, 97(3): 262–80.Google Scholar
Stock, S. R., Finney, L. A., Telser, A., Maxey, E., Vogt, S., & Okasinski, J. S. (2017). Cementum structure in Beluga whale teeth. Acta Biomaterialia, 48, 289–99.Google Scholar
Stock, S. R., Veis, A., Telser, A., & Cai, Z. (2011). Near tubule and intertubular bovine dentin mapped at the 250 nm level. Journal of Structural Biology, 176(2): 203–11.Google Scholar
Stock, S. R., Vieira, A. E. M., Delbem, A. C. B., Cannon, M. L., Xiao, X., & Carlo, F. D. (2008). Synchrotron microcomputed tomography of the mature bovine dentinoenamel junction. Journal of Structural Biology, 161(2): 162–71.Google Scholar
Whittaker, D. K. (1978). The enamel–dentine junction of human and Macaca irus teeth: A light and electron microscopic study. Journal of Anatomy, 125(Pt 2): 323–35.Google Scholar
Yamamoto, T., Hasegawa, T., Yamamoto, T., Hongo, H., & Amizuka, N. (2016). Histology of human cementum: Its structure, function, and development. Japanese Dental Science Review, 52(3): 6374.Google Scholar

References

Anné, Jennifer, Edwards, Nicholas P., Wogelius, Roy A., Tumarkin-Deratzian, Allison R., Sellers, William I., van Veelen, Arjen, Bergmann, Uwe, et al. 2014. “Synchrotron Imaging Reveals Bone Healing and Remodeling Strategies in Extinct and Extant Vertebrates.” Journal of the Royal Society Interface 11 (96).Google Scholar
Ashiotis, Giannis, Deschildre, Aurore, Nawaz, Zubair, Wright, Jonathan P., Karkoulis, Dimitrios, et al. 2015. “The Fast Azimuthal Integration.” Journal of Applied Crystallography, 48: 510–19.Google Scholar
Austin, Christine, Smith, Tanya M., Bradman, Asa, Hinde, Katie, Joannes-Boyau, Renaud, Bishop, David, Hare, Dominic J., Doble, Philip, Eskenazi, Brenda, and Arora, Manish. 2013. “Barium Distributions in Teeth Reveal Early Life Dietary Transitions in Primates.” Nature 498 (7453): 216–19.Google Scholar
Beard, Brian L., and Johnson, Clark M.. 2000. “Strontium Isotope Composition of Skeletal Material Can Determine the Birth Place and Geographic Mobility of Humans and Animals.” Journal of Forensic Science 45 (5): 1049–61.Google Scholar
Berkovitz, Barry K. B., Holland, Graham R., and Moxham, Bernard J., eds. 2018. Oral Anatomy, Histology, and Embryology, 3rd ed. Mosby: New York, Edinburgh.Google Scholar
Boesenberg, Ulrike, Ryan, Christopher G., Kirkham, Robin, Siddons, D. Peter, Alfeld, Matthias, Garrevoet, Jan, Nunez, Teresa, Claussen, Thorsten, Kracht, Thorsten, and Falkenberg, Gerald. 2016. “Fast X-Ray Microfluorescence Imaging with Submicrometer-Resolution Integrating a Maia Detector at Beamline P06 at PETRA III.” Journal of Synchrotron Radiation 23 (6): 1550–60.Google Scholar
Bowen, H. J. M., and Dymond, J. A.. 1955. “Strontium and Barium in Plants and Soils.” Proceedings of the Royal Society of London B: Biological Sciences 144 (916): 355–68.Google Scholar
Britton, Kate, Grimes, Vaughan, Niven, Laura, Steele, Teresa E., McPherron, Shannon, Soressi, Marie, Kelly, Tegan E., Jaubert, Jacques, Hublin, Jean-Jacques, and Richards, Michael P.. 2011. “Strontium Isotope Evidence for Migration in Late Pleistocene Rangifer: Implications for Neanderthal Hunting Strategies at the Middle Palaeolithic Site of Jonzac, France.” Journal of Human Evolution 61 (2): 176–85.Google Scholar
Coy, Pamela L., and Garshelis, David L.. 1992. “Reconstructing Reproductive Histories of Black Bears from the Incremental Layering in Dental Cementum.” Canadian Journal of Zoology 70 (11): 2150–60.Google Scholar
Dean, M. Christopher. 2010. “Retrieving Chronological Age from Dental Remains of Early Fossil Hominins to Reconstruct Human Growth in the Past.” Philosophical Transactions of the Royal Society B: Biological Sciences 365 (1556): 3397410.Google Scholar
Dean, M. Christopher 2012. “Daily Rates of Dentine Formation and Root Extension Rates in Paranthropus Boisei, KNM-ER 1817, from Koobi Fora, Kenya.” In African Genesis. Perspectives on Hominin Evolution. Reynolds, Sally C. and Gallagher, Andrew, eds. Cambridge, UK: Cambridge University Press, pp. 268–79.Google Scholar
Dean, M. Christopher, and Cole, T. J. 2013. “Human Life History Evolution Explains Dissociation between the Timing of Tooth Eruption and Peak Rates of Root Growth.” PLoS One 8 (1): e54534.Google Scholar
Dean, M. Christopher, Jones, Martin E., and Pilley, J. Richard. 1992. “The Natural History of Tooth Wear, Continuous Eruption and Periodontal Disease in Wild Shot Great Apes.Journal of Human Evolution, 22: 2339.Google Scholar
Dean, M. Christopher, Le Cabec, Adeline, Spiers, Kathryn, Zhang, Yi, and Garrevoet, Jan. 2018. “Incremental Distribution of Strontium and Zinc in Great Ape and Fossil Hominin Cementum Using Synchrotron X-Ray Fluorescence Mapping.” Journal of the Royal Society Interface 15 (138): 20170626.Google Scholar
Dean, M. Christopher, Spiers, Kathryn, Garrevoet, Jan, and Le Cabec, Adeline. 2019. “Synchrotron X-Ray Fluorescence Mapping of Ca, Sr and Zn at the Neonatal Line in Human Deciduous Teeth Reflects Changing Perinatal Physiology.Archives of Oral Biology. Amsterdam: Elsevier, pp. 90102.Google Scholar
Dedhiya, Mahendra G., Young, Fudah, and Higuchi, William I.. 1973. “Mechanism for the Retardation of the Acid Dissolution Rate of Hydroxyapatite by Strontium.” Journal of Dental Research 52 (5): 1097109.Google Scholar
Dik, Joris, Janssens, Koen, Van Der Snickt, Geert, van der Loeff, Luuk, Rickers, Karen, and Cotte, Marine. 2008. “Visualization of a Lost Painting by Vincent van Gogh Using Synchrotron Radiation–Based X-Ray Fluorescence Elemental Mapping.” Analytical Chemistry 80 (16): 6436–42.Google Scholar
Featherstone, J. D. B., and Nelson, D. G. A.. 1980. “The Effect of Fluoride, Zinc, Strontium, Magnesium, and Iron on the Crystal–Structural Disorder in Synthetic Carbonated Apatites.” Australian Journal of Chemistry 33 (11): 2363–8.Google Scholar
Gomez, S., Rizzo, R., Pozzi-Mucelli, M., Bonucci, E., and Vittur, F.. 1999. “Zinc Mapping in Bone Tissues by Histochemistry and Synchrotron Radiation–Induced X-Ray Emission: Correlation with the Distribution of Alkaline Phosphatase.” Bone 25 (1): 33–8.Google Scholar
Humphrey, Louise T. 2014. “Isotopic and Trace Element Evidence of Dietary Transitions in Early Life.” Annals of Human Biology 41 (4): 348–57.Google Scholar
Humphrey, Louise T., Dean, M. Christopher, Jeffries, Teresa E., and Penn, Malcolm. 2008. “Unlocking Evidence of Early Diet from Tooth Enamel.” Proceedings of the National Academy of Sciences 105 (19): 6834–9.Google Scholar
Humphrey, Louise T., Jeffries, Teresa E., and Dean, M. Christopher. 2008. “Micro Spatial Distributions of Lead and Zinc in Human Deciduous Tooth Enamel.” In Technique and Application in Dental Anthropology. Irish, Joel D. and Nelson, Greg. C., eds. Studies in Biological Anthropology. Cambridge, UK: Cambridge University Press, pp. 87110.Google Scholar
Immel, Alexander, Le Cabec, Adeline, Bonazzi, Marion, Herbig, Alexander, Temming, Heiko, Schuenemann, Verena J., Bos, Kirsten I., et al. 2016. “Effect of X-Ray Irradiation on Ancient DNA in Sub-Fossil Bones – Guidelines for Safe X-Ray Imaging.” Scientific Reports 6 (September): 32969.Google Scholar
Jaouen, Klervia, Beasley, Melanie, Schoeninger, Margaret, Hublin, Jean-Jacques, and Richards, Michael P.. 2016. “Zinc Isotope Ratios of Bones and Teeth as New Dietary Indicators: Results from a Modern Food Web (Koobi Fora, Kenya).” Scientific Reports 6: 26281.Google Scholar
Jaouen, Klervia, Colleter, Rozenn, Pietrzak, Anita, Pons, Marie-Laure, Clavel, Benoît, Telmon, Norbert, Crubézy, Éric, Hublin, Jean-Jacques, and Richards, Michael P.. 2018. “Tracing Intensive Fish and Meat Consumption Using Zn Isotope Ratios: Evidence from a Historical Breton Population (Rennes, France).” Scientific Reports 8 (1): 5077.Google Scholar
Joannes-Boyau, Renaud, Adams, Justin W., Austin, Christine, Arora, Manish, Moffat, Ian, Herries, Andy I. R., Tonge, Matthew P., Benazzi, Stefano, Evans, Alistair R., and Kullmer, Ottmar. 2019. “Elemental Signatures of Australopithecus Africanus Teeth Reveal Seasonal Dietary Stress.” Nature 572 (7767): 112–15.Google Scholar
Kaifu, Yousuke. 2000. “Tooth Wear and Compensatory Modification of the Anterior Dentoalveolar Complex in Humans.” American Journal of Physical Anthropology 111: 369–92.Google Scholar
Kay, Richard F., and Cant, John G. H.. 1988. “Age Assessment Using Cementum Annulus Counts and Tooth Wear in a Free-Ranging Population of Macaca Mulatta.” American Journal of Primatology 15 (1): 115.Google Scholar
Le Cabec, Adeline, Dean, M. Christopher, and Begun, David R.. 2017. “Dental Development and Age at Death of the Holotype of Anapithecus hernyaki (RUD 9) Using Synchrotron Virtual Histology.” Journal of Human Evolution 108: 161–75.Google Scholar
Martin, Ronald R., Naftel, Steven J., Nelson, Andrew J., Feilen, Andrea B., and Narvaez, Alfredo. 2004. “Synchrotron X-Ray Fluorescence and Trace Metals in the Cementum Rings of Human Teeth.” Journal of Environmental Monitoring 6 (10): 783–6.Google Scholar
Martin, Ronald R., Naftel, Steven J., Nelson, Andrew J., and Sapp, William D. III. 2007. “Comparison of the Distributions of Bromine, Lead, and Zinc in Tooth and Bone from an Ancient Peruvian Burial Site by X-Ray Fluorescence.” Canadian Journal of Chemistry 85 (10): 831–6.Google Scholar
Moonga, Baljit S., and Dempster, David W.. 1995. “Zinc Is a Potent Inhibitor of Osteoclastic Bone Resorption in Vitro.” Journal of Bone and Mineral Research 10 (3): 453–7.Google Scholar
Müller, Wolfgang, Nava, Alessia, Evans, David, Rossi, Paola F., Alt, Kurt W., and Bondioli, Luca. 2019. “Enamel Mineralization and Compositional Time Resolution in Human Teeth Evaluated via Histologically Defined LA-ICPMS Profiles.” Geochimica et Cosmochimica Acta 255 (June): 105–26.Google Scholar
Richards, M. P., Pacher, M., Stiller, M., Quilès, J., Hofreiter, M., Constantin, S., Zilhão, J., and Trinkaus, E.. 2008. “Isotopic Evidence for Omnivory among European Cave Bears: Late Pleistocene Ursus Spelaeus from the Peştera Cu Oase, Romania.” Proceedings of the National Academy of Sciences 105 (2): 600.Google Scholar
Sánchez-Quevedo, M. C., Crespo, P. V., García, J. M., and Campos, A.. 1992. “X-Ray Histochemistry of Zinc in Dental Tissues.” European Archives of Biology 103 (1): 47–9.Google Scholar
Smith, Tanya M., Austin, Christine, Green, Daniel R., Joannes-Boyau, Renaud, Bailey, Shara, Dumitriu, Dani, Fallon, Stewart, et al. 2018. “Wintertime Stress, Nursing, and Lead Exposure in Neanderthal Children.” Science Advances 4 (10): eaau9483.Google Scholar
Smith, Tanya M., Austin, Christine, Hinde, Katie, Vogel, Erin R., and Arora, Manish. 2017. “Cyclical Nursing Patterns in Wild Orangutans.” Science Advances 3 (5).Google Scholar
Stock, S. R., Deymier-Black, A. C., Veis, A., Telser, A., Lux, E., and Cai, Z.. 2014. “Bovine and Equine Peritubular and Intertubular Dentin.” Biomineralization 10 (9): 3969–77.Google Scholar
Stock, S. R., Finney, L. A., Telser, A., Maxey, E., Vogt, S., and Okasinski, J. S.. 2017. “Cementum Structure in Beluga Whale Teeth.” Acta Biomaterialia 48 (January): 289–99.Google Scholar
Stutz, Aaron Jonas. 2002. “Polarizing Microscopy Identification of Chemical Diagenesis in Archaeological Cementum.” Journal of Archaeological Science 29 (11): 1327–47.Google Scholar
Trueman, Clive N., and Tuross, Noreen. 2002. “Trace Elements in Recent and Fossil Bone Apatite.” Reviews in Mineralogy and Geochemistry 48 (1): 489521.Google Scholar
Villmoare, B., Kuykendall, K., Rae, T. C., and Brimacombe, C. S.. 2013. “Continuous Dental Eruption Identifies Sts 5 as the Developmentally Oldest Fossil Hominin and Informs the Taxonomy of Australopithecus Africanus.” Journal of Human Evolution 65 (6): 798805.Google Scholar
Weidmann, S.M., Weatherell, J. A, and Hamm, S. M. 1967. “Variations of Human Enamel Density in Sections of Human Teeth.” Arch Oral Biol 12: 8597.Google Scholar
X-Ray Data Booklet. 2009. Lawrence Berkeley National Laboratory, University of California. http://xdb.lbl.govGoogle Scholar

References

Blondiaux, J., Gabart, N., Alduc-Le Bagousse, A., Niel, C., & Tyler, E. (2006). Relevance of Cement Annulations to Paleopathology. Paleopathology Newsletter, 135, 413.Google Scholar
Boggess, K. A. (2008). Maternal Oral Health in Pregnancy. Obstetrics and Gynecology, 111(4), 976–86.Google Scholar
Bromage, T. G., Juwayeyi, Y. M., Smolyar, I., … Chisi, J. (2011). Signposts Ahead: Hard Tissue Signals on Rue Armand de Ricqlès. Comptes Rendus Palevol, 10(5–6), 499507.Google Scholar
Bucher, H. C., Guyatt, G. H., Cook, R. J., Hatala, R., Cook, D. J., Lang, J. D., & Hunt, D. (1996). Effect of Calcium Supplementation on Pregnancy-Induced Hypertension and Preeclampsia: A Meta-Analysis of Randomized Controlled Trials. JAMA 275(14), 1113–17.Google Scholar
Caplazi, G. (2004). Eine Untersuchung über die Auswirkungen von Tuberkulose auf Anlagerungsfrequenz und Beschaffenheit der Zementringe des Menschlichen Zahnes. Bulletin Der Schweizerischen Gesellschaft Für Anthropologie, 3583.Google Scholar
Cerrito, P., Bailey, S. E., Hu, B., &Bromage, T.G. (2020). Parturitions, Menopause and Other Physiological Stressors Are Recorded in Dental Cementum Microstructure. Sci Rep. 2020, 10(1),5381.Google Scholar
Chappard, C., Bensalah, S., Olivier, C., Gouttenoire, P.J., Marchadier, A., Benhamou, C., & Peyrin, F. (2013). 3D Characterization of Pores in the Cortical Bone of Human Femur in the Elderly at Different Locations as Determined by Synchrotron Micro-Computed Tomography Images. Osteoporos, 147(24), 1023–33.Google Scholar
Coy, P. L., & Garshelis, D. L. (1992). Reconstructing Reproductive Histories of Black Bears from the Incremental Layering in Dental Cementum. Canadian Journal of Zoology, 70(11), 2150–60.Google Scholar
Dean, C. (2006). Tooth Microstructure Tracks the Pace of Human Life-History Evolution. Proceedings of the Royal Society B: Biological Sciences, 273(1603), 27992808.Google Scholar
Dean, C., Le Cabec, A., Spiers, K., Zhang, Y., & Garrevoet, J. (2018). Incremental Distribution of Strontium and Zinc in Great Ape and Fossil Hominin Cementum Using Synchrotron X-Ray Fluorescence Mapping. Journal of the Royal Society, Interface, 15(138). http://doi.org/10.1098/rsif.2017.0626Google Scholar
DeWitte, S. N., & Stojanowski, C. M. (2015). The Osteological Paradox 20 Years Later: Past Perspectives, Future Directions. Journal of Archaeological Research, 23(4), 397450.Google Scholar
Dodds, M. W. J., Johnson, D., & Yeh, C.-K. (2005). Health Benefits of Saliva: A Review. J Dent 33, 223–33.Google Scholar
Edinborough, M., Fearn, S., Pilgrim, M., … Edinborough, K. (2019). Life History Parameters in Acellular Extrinsic Fiber Cementum Microstructure. BioRxiv, 528760.Google Scholar
Farr, J. N., & Almeida, M. (2018). The Spectrum of Fundamental Basic Science Discoveries Contributing to Organismal Aging. Journal of Bone and Mineral Research, 33(9), 1568–84.Google Scholar
Foster, B. L., Ao, M., Willoughby, C., … Somerman, M. J. (2015). Mineralization Defects in Cementum and Craniofacial Bone from Loss of Bone Sialoprotein. Bone, 78, 150–64.Google Scholar
Foster, B. L., Nagatomo, K. J., Nociti, F. H., Fong, H., Dunn, D., Tran, A. B., Wang, W., Narisawa, S., Millán, J. L., & Somerman, M. J. (2012). Central Role of Pyrophosphate in Acellular Cementum Formation, PLoS ONE 7(6).Google Scholar
Horvath, S., & Raj, K. (2018). DNA Methylation-Based Biomarkers and the Epigenetic Clock Theory of Ageing. Nature Reviews Genetics, 19(6), 371–84.Google Scholar
Hugoson, A. (1971). Gingivitis in Pregnant Women. A Longitudinal Clinical Study. Odontol Revy, 22(1), 6584.Google Scholar
Johnson, F. B., Sinclair, D. A., & Guarente, L. (1999). Molecular Biology of Aging. Cell, 96(2), 291302.Google Scholar
Kagerer, P., & Grupe, G. (2001). Age-at-Death Diagnosis and Determination of Life-History Parameters by Incremental Lines in Human Dental Cementum as an Identification Aid. Forensic Science International, 118(1), 7582.Google Scholar
Kinnby, B., Matsson, L. & Astedt, B. (1996). Aggravation of Gingival Inflammatory Symptoms during Pregnancy Associated with the Concentration of Plasminogen Activator Inhibitor Type 2 (PAI-2) in Gingival Fluid. Journal of Periodontal Research, 31, 271–7.Google Scholar
Klevezal, G. A. (1996). Recording Structures of Mammals: Determination of Age and Reconstruction of Life History. Rotterdam: A. A. Balkema Series.Google Scholar
Klevezal, G. A., & Stewart, B. S. (1994). Patterns and Calibration of Layering in Tooth Cementum of Female Northern Elephant Seals, Mirounga angustirostris. Journal of Mammalogy, 75(2), 483–7.Google Scholar
Kolb, M. (1978). The Formation of Lines in the Cementum of Premolar Teeth in Foxes. Journal of Zoology, 185, 259–63.Google Scholar
Kuenzie, M., & Wittwer-Backofen, U. (2008). Stress Markers in Tooth Cementum Caused by Pregnancy. American Journal of Physical Anthropology, 46, 135.Google Scholar
Kvam, T. (1984). Age Determination in European Lynx Lynx l. lynx by Incremental Lines in Tooth Cementum. Acta Zool Fenn, 171, 221–3.Google Scholar
Larrue, A., Rattner, A., Peter, Z. A., et al. (2011). Synchrotron Radiation Micro-CT at the Micrometer Scale for the Analysis of the Three-Dimensional Morphology of Microcracks in Human Trabecular Bone. PLoS ONE, 6(7), e21297.Google Scholar
Le Cabec, A., Tang, N. K., Rubio, V. R., & Hillson, S. (2018). Nondestructive Adult Age at Death Estimation: Visualizing Cementum Annulations in a Known Age Historical Human Assemblage Using Synchrotron X-Ray Microtomography. American Journal of Physical Anthropology. http://doi.org/10.1002/ajpa.23702Google Scholar
Legler, D. W., & Menaker, L. (1980). Definition, Etiology, Epidemiology and Clinical Implication of Dental Caries. In Menaker, L., ed. The Biological Basis of Dental Caries. New York: Harper and Row, 217.Google Scholar
Lenander-Lumikari, M., & Loimaranta, V. (2000). Saliva and Dental Caries. Advances in Dental Research, 14(1), 40–7.Google Scholar
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The Hallmarks of Aging. Cell, 153(6), 11941217.Google Scholar
Lukacs, J. R., & Largaespada, L. L. (2006). Explainnig Sex Differences in dental Caries Prevalence: Saliva, Hormones and “Life-History” Etiologies. American Journal of Human Biology, 18, 540–55.Google Scholar
Mani-Caplazi, G., Hotz, G., Wittwer-Backofen, U., & Vach, W. (2019). Measuring Incremental Line Width and Appearance in the Tooth Cementum of Recent and Archaeological Human Teeth to Identify Irregularities: First Insights Using a Standardized Protocol. International Journal of Paleopathology, 27, 2437.Google Scholar
Mani-Caplazi, G., Schulz, G., Deyhle, H., Hotz, G., Vach, W., Wittwer-Backofen, U., & Müller, B. (2017). Imaging of the Human Tooth Cementum Ultrastructure of Archeological Teeth, Using Hard X-Ray Microtomography to Determine Age-at-Death and Stress Periods. 10391:103911C-10391-98. http://dx.doi.org/10.1117/12.2276148Google Scholar
Marsh, P. D. (1999). Microbiologic Aspects of Dental Plaque and Dental Caries. Dent Clin North Am, 43, 599615.Google Scholar
Medill, S., Derocher, A. E., Stirling, I., & Lunn, N. (2010). Reconstructing the Reproductive History of Female Polar Bears Using Cementum Patterns of Premolar Teeth. Polar Biology, 33(1), 115–24.Google Scholar
Medill, S., Derocher, A. E., Stirling, I., Lunn, N., & Moses, R. A. (2009). Estimating Cementum Annuli Width in Polar Bears: Identifying Sources of Variation and Error. Journal of Mammalogy, 90(5), 1256–64.Google Scholar
Mitteldorf, J. (2016). An Epigenetic Clock Controls Aging. Biogerontology, 17(1), 257–65.Google Scholar
Muhler, J. C., & Shafer, W. G. (1955). Experimental Dental Caries. VII. The Effect of Various Androgens and Estrogens on Dental Caries in the Rat. Journal of Dental Research, 34(5), 661–5.Google Scholar
Nguyen, L., Pilfold, N. W., Derocher, A. E., Stirling, I., Bohart, A. M., & Richardson, E. (2017). Ringed Seal (Pusa hispida) Tooth Annuli as an Index of Reproduction in the Beaufort Sea. Ecological Indicators, 77, 286–92.Google Scholar
Percival, R. S., Challacombe, S. J., & Marsh, P. D. (1994). Flow Rates of Resting Whole and Stimulated Parotid Saliva in Relation to Age and Gender. J Dent Res, 73, 1416–20.Google Scholar
Persson, R. E., Persson, G. R., Kiyak, H. A., & Powell, L. V. (1998). Oral Health and Medical Status in Dentate Low-Income Older Persons. Special Care in Dentistry: Official Publication of the American Association of Hospital Dentists, the Academy of Dentistry for the Handicapped, and the American Society for Geriatric Dentistry, 18(2), 70–7.Google Scholar
Pratt, I. V., Belev, G., Zhu, N., et al. (2015). In Vivo Imaging of Rat Cortical Bone Porosity by Synchrotron Phase Contrast Micro Computed Tomography. Phys Med Biol, 60, 211–32.Google Scholar
Ristova, M., Talevska, M., & Stojanovska, Z. (2018). Accurate Age Estimations from Dental Cementum and a Childbirth Indicator – A Pilot Study. Journal of Forensic Science & Criminology, 6, 112.Google Scholar
Silk, H., Douglass, A. B., Douglass, J. M., & Silk, L. (2008). Oral Health during Pregnancy. American Family Physician, 77(8), 1139–44.Google Scholar
Smith, T. M., Austin, C., Hinde, K., Vogel, E. R., & Arora, M. (2017). Cyclical Nursing Patterns in Wild Orangutans. Science Advances, 3(5), e1601517.Google Scholar
Stewart, R. E. A., Stewart, B. E., Stirling, I., & Street, E. (1996). Counts of Growth Layer Groups in Cementum and Dentine in Ringed Seals (phoca Hispida). Marine Mammal Science, 12(3), 383401.Google Scholar
Stock, S. R., Finney, L. A., Telser, A., Maxey, E., Vogt, S., & Okasinski, J. S. (2017). Cementum Structure in Beluga Whale Teeth. Acta Biomaterialia, 48, 289–99.Google Scholar
Surarit, R., Krishnamra, N., & Seriwatanachai, D. (2016). Prolactin Receptor and Osteogenic Induction of Prolactin in Human Periodontal Ligament Fibroblasts. Cell Biology International, 40(4), 419–27.Google Scholar
Tang, N., Le Cabec, A., & Antoine, D. (2015). Dentine and Cementum Structure and Properties. In A Companion to Dental Anthropology, Irish, J. D. & Scott, G. R., eds., Hoboken, NJ: John Wiley & Sons, Inc., 204–22.Google Scholar
von Biela, V. R., Testa, J. W., Gill, V. A., & Burns, J. M. (2008). Evaluating Cementum to Determine Past Reproduction in Northern Sea Otters. Journal of Wildlife Management, 72(3), 618–24.Google Scholar
Wittmann, T. A., Izzo, C., Doubleday, Z. A., McKenzie, J., Delean, S., & Gillanders, B. M. (2016). Reconstructing Climate–Growth Relations from the Teeth of a Marine Mammal. Marine Biology, 163(4), 71.Google Scholar
Wood, J. W., Milner, G. R., Harpending, H. C., & Weiss, K. M. (1992). The Osteological Paradox: Problems of Inferring Prehistoric Health from Skeletal Samples. Current Anthropology, 33(4), 343–70.Google Scholar
Zazzo, A., Balasse, M., & Patterson, W. P. (2006). The Reconstruction of Mammal Individual History: Refining High-Resolution Isotope Record in Bovine Tooth Dentine. Journal of Archaeological Science, 33(8), 1177–87.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×