Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T22:53:50.835Z Has data issue: false hasContentIssue false

Part III - Applications

Published online by Cambridge University Press:  20 January 2022

Stephan Naji
Affiliation:
New York University
William Rendu
Affiliation:
University of Bordeaux (CNRS)
Lionel Gourichon
Affiliation:
Université de Nice, Sophia Antipolis
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Airvaux, J. (2004). Le site paléolithique de chez-Pinaud à Jonzac, Charente-Maritime. Prehistoire Du Sud-Ouest (Suppl. 8).Google Scholar
Armand, D., Pubert, É., & Soressi, M. (2001). Organisation saisonnière des comportements de prédation des Moustériens de Pech-de-l’Azé I. Premiers résultats. PALEO. Revue d’archéologie préhistorique 13: 1928.Google Scholar
Berger, J., & Cunningham, C. (1991). Bellows, copulations, and sexual selection in bison (Bison bison). Behavioral Ecology 2(1): 16.CrossRefGoogle Scholar
Binford, L. R. (1980). Willow smoke and dogs’ tails: Hunter-gatherer settlement systems and archaeological site formation. American Antiquity 45(1): 420.Google Scholar
Britton, K., Grimes, V., Niven, L., … Richards, M. P. (2011). Strontium isotope evidence for migration in late Pleistocene Rangifer: Implications for Neanderthal hunting strategies at the Middle Palaeolithic site of Jonzac, France. Journal of Human Evolution 61(2): 176–85.CrossRefGoogle ScholarPubMed
Castel, J. C., Discamps, E., Soulier, M.-C., … Turq, A. (2017). Neandertal subsistence strategies during the Quina Mousterian at Roc de Marsal (France). Quaternary International 43, 140–56.Google Scholar
Costamagno, S., Liliane, M., Cédric, B., Bernard, V., & Bruno, M. (2006). Les Pradelles (Marillac-le-Franc, France): A mousterian reindeer hunting camp? Journal of Anthropological Archaeology 25(4): 466–84.Google Scholar
Debénath, A., & Jelinek, A. J. (1998). Nouvelles fouilles à La Quina (Charente): résultats préliminaires. Gallia Prehistoire 40: 2974.Google Scholar
Delagnes, A., & Rendu, W. (2011). Shifts in Neandertal mobility, technology and subsistence strategies in western France. Journal of Archaeological Science 38(8), 1771–83.Google Scholar
Delpech, F. (1996). L’environnement animal des Moustériens Quina du Périgord. Paléo 8: 3146.Google Scholar
Discamps, E. (2014). Ungulate biomass fluctuations endured by Middle and Early Upper Paleolithic societies (SW France, MIS 5-3): The contributions of modern analogs and cave hyena paleodemography. Quaternary International 337: 6479.Google Scholar
Discamps, E., & Faivre, J.-P. (2017). Substantial biases affecting Combe-Grenal faunal record cast doubts on previous models of Neanderthal subsistence and environmental context. Journal of Archaeological Science 81: 128132.Google Scholar
Discamps, E., Jaubert, J., & Bachellerie, F. (2011). Human choices and environmental constraints: Deciphering the variability of large game procurement from Mousterian to Aurignacian times (MIS 5-3) in southwestern France. Quaternary Science Reviews 30(19): 2755–75.CrossRefGoogle Scholar
Discamps, E., & Lemeur, C. (2019). Variabilité des proies chassées et modalités d’exploitation du Cerf au Moustérien: L’apport des collections récentes du Moustier (Dordogne, France, Couches G et H). Paléo, 318–29.Google Scholar
Discamps, E., & Royer, A. (2017). Reconstructing palaeoenvironmental conditions faced by Mousterian hunters during MIS 5 to 3 in southwestern France: A multi-scale approach using data from large and small mammal communities. Quaternary International 433: 6487.Google Scholar
Faivre, J.-P., Discamps, E., Gravina, B., Turq, A., Guadelli, J.-L., & Lenoir, M. (2014). The contribution of lithic production systems to the interpretation of Mousterian industrial variability in south-western France: The example of Combe-Grenal (Dordogne, France). Quaternary International 350: 227–40.Google Scholar
Farizy, C., David, F., & Jaubert, J. (1994). Hommes et Bisons du Paléolithique Moyen à Mauran (Haute-Garonne), CNRS éditions.Google Scholar
Gerbe, M. (2010, December 13). Économie alimentaire et environnement en Quercy au Paléolithique. Étude des assemblages fauniques de la séquence des Fieux (Lot) (PhD thesis). Université Aix-Marseille I.Google Scholar
Geusa, G., Bondioli, L., Capucci, E., … Macchiareli, R. (1999). Dental cementum annulations and age at death estimates. In Bondioli, L. & Macchiarelli, R. (eds.), Osteodental Biology of the People of Portus Romae (Necropolis of Isola Sacra, 2nd–3rd cent. AD), 2, Roma: Museo Naz. “L Pigorini.”Google Scholar
Gravina, B., & Discamps, E. (2015). MTA-B or not to be? Recycled bifaces and shifting hunting strategies at Le Moustier and their implication for the late Middle Palaeolithic in southwestern France. Journal of Human Evolution 84: 8398.Google Scholar
Guadelli, J.-L. (1987). Contribution a l’etude des zoocenoses prehistoriques en Aquitaine (Würm ancien et interstade würmien) (PhD thesis), Universite Bordeaux 1.Google Scholar
Jaubert, J. (2001). Un site moustérien de type Quina dans la vallée du Célé: Pailhès à Espagnac-Sainte-Eulalie. Gallia Préhistoire 43: 1100.Google Scholar
Jaubert, J. (2009). Les archéoséquences du Paléolithique moyen du Sud-Ouest de la France: Quel bilan un quart de siècle après François Bordes? Presented at the François Bordes et la Préhistoire. Colloque International François Bordes, Bordeaux 22–24 avril 2009, Paris: Ed. du CTHS: 235–53.Google Scholar
Jaubert, J., Hublin, J.-J., Mcpherron, S. P., … Thiébaut, C. (2008). Paléolithique moyen récent et Paléolithique supérieur ancien à Jonzac (Charente-Maritime).Google Scholar
Jelinek, A. J., Debénath, A., & Dibble, H. L. (1989). A preliminary report on evidence related to the interpretation of economic and social activities of neandertals at the site of La Quina (Charente), France. In La Subsistance, Eraul: Liège, 99106.Google Scholar
Laquay, G. (1981). Recherches sur les faunes du Würm I en Périgord (PhD thesis), Universite Bordeaux 1.Google Scholar
Lieberman, D. E. (1993). The rise and fall of seasonal mobility among hunter-gatherers: The case of the southern levant [and comments and replies]. Current Anthropology 34(5) 599631.Google Scholar
Lieberman, D. E., Deacon, T. W., & Meadow, R. H. (1990). Computer image enhancement and analysis of cementum increments as applied to teeth of Gazella gazella. Journal of Archaeological Science 17(5): 519–33.Google Scholar
Martin, H. 1909. La faune moustérienne de la Quina, Bulletin de l’Association Française pour l’Avancement des Sciences, 37e session, Clermont-Ferrand, 727–30.Google Scholar
Meignen, L., Bar-Yosef, O., Speth, J. D., & Stiner, M. C. (2006). Changes in settlement patterns during the Near Eastern Middle Paleolithic. In Hovers, E. & Kuhn, S (eds.), Transitions before the Transition: Evolution and Stability in the Middle Paleoithic and Middle Stone Age. New York, Boston: Springer, 149–70.Google Scholar
Mellars, P. A. (2004). Reindeer specialization in the early Upper Palaeolithic: The evidence from south west France. Journal of Archaeological Science 31(5): 613–17.Google Scholar
Morin, E. (2012). Reassessing Paleolithic Subsistence. Cambridge: Cambridge University Press.Google Scholar
Niven, L. (2013). A diachronic evaluation of Neanderthal cervid exploitation and site use at Pech de l’Azé IV, France. In Clark, J. L. and Speth, J. D. (eds.), Zooarchaeology and Modern Human Origins: Human Hunting Behavior during the Later Pleistocene. The Netherlands: Springer, 151–61.Google Scholar
Niven, L., Steele, T. E., Rendu, W., … Hublin, J.-J. (2012). Neandertal mobility and large-game hunting: The exploitation of reindeer during the Quina Mousterian at Chez-Pinaud Jonzac (Charente-Maritime, France). Journal of Human Evolution 63(4): 624–35.Google Scholar
Paletta, A. (2005). L’évolution des comportements de subsistance des hommes du Moustérien au Solutréen dans la région Poitou-Charentes (France) (PhD thesis), Muséum national d’histoire naturelle, Paris.Google Scholar
Peck, T. R. (2004). Bison Ethology and Native Settlement Patterns during the Old Women’s Phase on the Northwestern Plains. Oxford: Archaeopress.Google Scholar
Pike-Tay, A. (1991). Red Deer Hunting in the Upper Paleolithic of Southwest France: A Study in Seasonality. Oxford: Tempus Reparatum.Google Scholar
Pike-Tay, A. (1995). Variability and synchrony of seasonal indicators in dental cementum microstructure of the Kaminuriak caribou population. Archaeofauna 4: 273–84.Google Scholar
Rendu, W. (2010). Hunting behavior and Neanderthal adaptability in the Late Pleistocene site of Pech-de-l’Azé I. Journal of Archaeological Science 37(8): 17981810.Google Scholar
Rendu, W., & Armand, D. (2009). Saisonnalité de prédation du Bison du gisement moustérien de la Quina (Gardes-le-Pontaroux, Charente), niveau 6c. Apport à la compréhension des comportements de subsistance. Bulletin de La Société Préhistorique Française 106(4): 679–90.Google Scholar
Rendu, W., Armand, D., Pubert, E., & Soressi, M. (2009). Approche taphonomique en cémentochronologie: Réexamen du niveau 4 du Pech-de-l’Azé I (Carsac, Dordogne, France). Paléo 21: 223–36.Google Scholar
Rendu, W., Beauval, C., Crevecoeur, I., … Maureille, B. (2014). Evidence supporting an intentional Neandertal burial at La Chapelle-aux-Saints. Proceedings of the National Academy of Sciences 111(1): 81.Google Scholar
Rendu, W., Bourguignon, L., Costamagno, S., … Park, S.-J. (2011). Mousterian hunting camps: Interdisciplinary approach and methodological considerations. P@lethnologie (3): 6376.Google Scholar
Rendu, W., Costamagno, S., Meignen, L., & Soulier, M.-C. (2012). Monospecific faunal spectra in Mousterian contexts: Implications for social behavior. Quaternary International 247: 50–8.Google Scholar
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods 9(7): 671–75.Google Scholar
Stutz, A. J. (2002). Polarizing microscopy identification of chemical diagenesis in archaeological cementum. Journal of Archaeological Science 29(11): 1327–47.Google Scholar
Thiébaut, C., Claud, É., Deschamps, M., … Colonge, D. (2010). Diversité des productions lithiques du Paléolithique moyen récent (OIS 4-OIS 3): Enquête sur le rôle des facteurs environnementaux, fonctionnels et culturels.Google Scholar
Turq, A., Guadelli, J.-L., & Quintard, A. (1999). A propos de deux sites d’habitat moustérien de type Quina à exploitation du bison: l’exemple du Mas-Viel et de Sous-les-Vignes. In Brugal, J.P., Enloe, F. D & Jaubert, J. G. (eds.), Le Bison: Gibier et Moyen de Subsistance des Hommes du Paléolithique aux Paléoindiens des Grandes Plaines, Edition APDCA,Antibes, 143–58.Google Scholar

References

Begon, Michael, Townsend, Colin R., and Harper, John L.. 2006. Ecology: From Individuals to Ecosystems, 4th ed. Malden, MA: Blackwell Publishing.Google Scholar
Binder, Wendy, and Van Valkenburgh, Blair. 2000. “Development of Bite Strength and Feeding Behaviour in Juvenile Spotted Hyenas (Crocuta crocuta).” Journal of Zoology 252: 273–83.Google Scholar
Binford, Lewis. R. 1981. Bones: Ancient Men and Modern Myths. Studies in Archaeology. Orlando, FL: Academic Press.Google Scholar
Brace, S. et al. 2012. Serial Population Extinctions in a Small Mammal Indicate Late Pleistocene Ecosystem Instability. Proceedings of the National Academy of Sciences 109 (50): 20532–6.Google Scholar
Breuil, Henri. 1912. “Les Subdivisions Du Paléolithique Supérieur et Leur Signification.” In Bulletin de l’Académie Royale Des Sciences, Des Lettres et Des Beaux-Arts En Belgique, Albert Kundig, XIVe session: 165238. Genève, Switzerland.Google Scholar
Charles, Ruth, Hedges, Robert E. M., and Jadin, Ivan. 2003. “Aurignacian Point, Butchery Remains and Radiocarbon Accelerator Dates from the Trou Magrite at Pont-à-Lesse (Commune of Dinant, Province of Namur, Belgium).Anthropologica et Praehistorica 114: 8184.Google Scholar
Cordy, Jean-Marie. 1995. “Étude de Restes Microfauniques Provenant du Trou Magrite.” In Le Trou Magrite. Fouilles 1991–1992. Résurrection d’un Site Classique En Wallonie, Otte, Marcel and Straus, Lawrence G. (eds.). Liège: Eural 69: 159–66.Google Scholar
Daujeard, Camille, Vettese, D., Britton, K., Béarez, P., Boulbes, N., Crégut-Bonnoure, E., Desclaux, E. et al. 2019. “Neanderthal Selective Hunting of Reindeer? The Case Study of Abri du Maras (South-Eastern France).Archaeological and Anthropological Sciences 11 (3): 9851011.Google Scholar
Daujeard, Camille, Abrams, Grégory, Germonpré, Mietje, Le Pape, Jeanne-Marie, Wampach, Alicia, Di Modica, Kevin, and Moncel, Marie-Hélène. 2016. “Neanderthal and Animal Karstic Occupations from Southern Belgium and South-Eastern France: Regional or Common Features?Quaternary International 411 (August): 179–97.Google Scholar
Delagnes, Anne, and Rendu, William. 2011. “Shifts in Neandertal Mobility, Technology and Subsistence Strategies in Western France.Journal of Archaeological Science 38 (8): 1771–83.Google Scholar
Dewez, M. 1985. “L’art Mobilier Paléolithique du Trou Magrite Dans son Contexte Stratigraphique.Bulletin de la Société Royale Belge d’Anthropologie et de Préhistoire 96: 117–33.Google Scholar
Di, Modica, Kévin. 2009. “Le Trou Magrite à Walzin.” In Paléolithique Moyen En Wallonie. La Collection Louis Eloy, Modica, Kévin Di and Jungels, Cécile (eds.). Belgium: Édition du Service du Patrimoine Culture, 145–58.Google Scholar
Di, Modica, Kévin 2010. “Les Productions Lithiques du Paléolithique Moyen de Belgique: Variabilité des Systèmes d’Acquisition et des Technologies en Réponse à Une Mosaïque d’Environnements Contrastés.” (dissertation), Université de Liège.Google Scholar
Dinnis, Rob. 2009. “Understanding the British Aurignacian.” (unpublished dissertation), University of Sheffield.Google Scholar
Dinnis, Rob. 2015. “A Survey of Northwestern European Aurignacian Sites and Some Comments Regarding Their Potential Chrono-Cultural Significance.” In No Stone Unturned: Papers in Honour of Roger Jacobi, Ashton, N. & Harris, C. (eds.). London: Lithics Studies Society Occasional Paper 9, 5976.Google Scholar
Dinnis, Rob, and Flas, Damien. 2016. “Trou Du Renard and the Belgian Aurignacian.Proceedings of the Prehistoric Society 82 (December): 125.CrossRefGoogle Scholar
Discamps, Emmanuel. 2014. “Ungulate Biomass Fluctuations Endured by Middle and Early Upper Paleolithic Societies (SW France, MIS 5-3): The Contributions of Modern Analogs and Cave Hyena Paleodemography.Quaternary International 337 (July): 6479.Google Scholar
Dupont, Édouard. 1867. “Découverte d’Objets Gravés et Sculptés Dans Le Trou Magrite à Pont-à-Lesse.” Bulletin de l‘Académie Royale Des Sciences, Des Lettres et Des Beaux-Arts En Belgique XXIV (36): 129–32.Google Scholar
Enloe, James G. 2003. “Acquisition and Processing of Reindeer in the Paris Basin.” In Mode de Vie Au Magdalénien: Apports de l’Archéozoologie/Zooarchaeological Insights into Magdalenian Lifeways, Costamagno, Sandrine and Laroulandie, Véronique (eds.). Oxford: BAR International, 2331.Google Scholar
Flas, Damien. 2008. La Transition Du Paléolithique Moyen au Supérieur Dans la Plaine Septentrionale de l’Europe. Belgium: Anthropologica et Praehistoricae, 119.Google Scholar
Fourvel, Jean-Baptiste. 2013. “Hyenidés Modernes et Fossiles d’Europe et d’Afrique: Taphonomie Comparée de Leurs Assemblages Osseux.” Unpublished PhD thesis, Toulouse University.Google Scholar
Gautier, Achilles. 1995. “The Faunal Remains of Trou Magrite.” In Le Trou Magrite. Fouilles 1991–1992. Résurrection d’un Site Classique En Wallonie, Otte, Marcel and Straus, Lawrence G. (eds.). Liège: Eural, 137–58.Google Scholar
Gautier, Achilles, Cordy, Jean-Marie, Straus, Lawrence G., and Otte, Marcel. 1997. “Taphonomic, Chronostratigraphic, Paleoenvironmental and Anthropogenic Implications of the Upper Pleistocene Faunas from Le Trou Magrite, Belgium.Anthropozoologia 25–26: 343–54.Google Scholar
Gautier, Achilles, and de Heinzelin, Jean, eds. 1980. La Caverne Marie-Jeanne (Hastière-Lavaux, Belgique), vol. 177. Bruxelles: Mémoires de l’Institut royal des Sciences naturelles de Belgique.Google Scholar
Germonpré, Mietje, and Sablin, Mikhail. 2001. “The Cave Bear (Ursus Spelaeus) from Goyet, Belgium. The Bear Den in Chamber B (Bone Horizon 4).Bulletin de l’Institut Royal Des Sciences Naturelles de Belgique, Série Sciences de la Terre, 71: 209–33.Google Scholar
Gourichon, Lionel. 2004. “Faune et saisonnalité: L’organisation temporelle des activités de subsistance dans l’Epipaléolithique et le Néolithique précéramique du Levant nord (Syrie).” PhD thesis, Université Lumière Lyon 2.Google Scholar
Groenen, Marc, and Marée, Bruno. 2000. “La Grotte-Abri du Tiène des Maulins: Premier Bilan.Notae Praeistoricae 20: 6172.Google Scholar
Grue, H., and Jensen, B.. 1979. “Review of the Formation of Incremental Lines in Tooth Cementum of Terrestrial Mammals.Danish Review of Game Biology 11 (3): 148.Google Scholar
Jaarsveld, A. S. van, Henschel, J. R, and Skinner, J. D.. 1987. “Improved Age Estimation in Spotted Hyaenas (Crocuta Crocuta).Journal of Zoology 213 (4): 758–62.Google Scholar
Jimenez, Elodie-Laure. 2017. “Modalités d’Occupation du Territoire et Relations Humains-Grands Carnivores durant le Pléistocène Supérieur: Approche Archéozoologique, Taphonomique et Paléoécologique du Bassin Mosan Belge dans son Contexte Nord-Ouest Européen.” PhD thesis, Brussels, Université Libre de Bruxelles.Google Scholar
Kitagawa, Keiko, Krönneck, Petra, Conard, Nicholas J., and Münzel, Susanne C.. 2012. “Exploring Cave Use and Exploitation among Cave Bears, Carnivores and Hominins in the Swabian Jura, Southwestern Germany.” Journal of Taphonomy 10 (3–4): 439–61.Google Scholar
Martin, Hélène. 1994. “Nouveaux Milieux, Nouveaux Chasseurs: Une Approche des Comportements au Post-Glaciaire à Travers l’Etude des Saisons de Capture du Gibier.” PhD thesis, Université Toulouse 2.Google Scholar
Medill, Sarah, Derocher, Andrew E., Stirling, Ian, Lunn, Nick, and Moses, Richard A.. 2009. “Estimating Cementum Annuli Width in Polar Bears: Identifying Sources of Variation and Error.Journal of Mammalogy 90 (5): 1256–64.Google Scholar
Niven, Laura, and Martin, Hélène. 2018. “Zooarcheological Analysis of the Assemblage from the 2000–2003 Excavations.” In The Middle Paleolithic Site of Pech de l‘Azé IV, Dibble, Harold L., McPherron, Shannon J. P., Goldberg, Paul, and Sandgathe (eds.), Dennis M.. Cham, Switzerland: Springer International Publishing, 95116.Google Scholar
Niven, Laura, Steele, Teresa E., Rendu, William, Mallye, Jean-Baptiste, McPherron, Shannon P., Soressi, Marie, Jaubert, Jacques, and Hublin, Jean-Jacques. 2012. “Neandertal Mobility and Large-Game Hunting: The Exploitation of Reindeer during the Quina Mousterian at Chez-Pinaud Jonzac (Charente-Maritime, France).Journal of Human Evolution 63 (4): 624–35.Google Scholar
Fišáková, Miriam N. 2013. “Seasonality of Gravettian Sites in the Middle Danube Region and Adjoining Areas of Central Europe.Quaternary International 294 (April): 120–34.Google Scholar
Fišáková, Miriam N 2014. “Seasonality of Use of Za Hájovnou Cave by Bears and Lions.Acta Musei Nationalis Pragae, B, 70 (1–2): 103–6.Google Scholar
Otte, Marcel. 1979. Le Paléolithique Supérieur Ancien En Belgique. Bruxelles: Musées Royaux d’Art et d’Histoire. Monographies d’Archéologie Nationale 5.Google Scholar
Otte, Marcel, and Straus, Lawrence G.. 1995. Le Trou Magrite, Fouilles 1991–1992. Résurrection d’un Site Classique En Wallonie. Eraul: Liège.Google Scholar
Pike-Tay, Anne. 1991. “L’Analyse du Cément Dentaire Chez les Cerfs: L’Application en Préhistoire.Paléo 3 (1): 149–66.Google Scholar
Posth, Cosimo, Renaud, Gabriel, Mittnik, Alissa, Drucker, Dorothée G, Rougier, Hélène, Cupillard, Christophe, Valentin, Frédérique et al. 2016. “Pleistocene Mitochondrial Genomes Suggest a Single Major Dispersal of Non-Africans and a Late Glacial Population Turnover in Europe.Current Biology 26 (6): 827–33.Google Scholar
Rendu, William, Costamagno, Sandrine, Meignen, Liliane, and Soulier, Marie-Cécile. 2012. “Monospecific Faunal Spectra in Mousterian Contexts: Implications for Social Behavior.Quaternary International 247 (January): 5058.Google Scholar
Rougier, Hélène, Crevecoeur, Isabelle, Beauval, Cédric, Posth, Cosimo, Flas, Damien, Wißing, Christoph, Furtwängler, Anja et al. 2016. “Neandertal Cannibalism and Neandertal Bones Used as Tools in Northern Europe.Scientific Reports 6 (1).Google Scholar
Semal, Patrick, Rougier, Hélène, Crevecoeur, Isabelle, Jungels, Cécile, Flas, Damien, Hauzeur, Anne, Maureille, Bruno et al. 2009. “New Data on the Late Neandertals: Direct Dating of the Belgian Spy Fossils.American Journal of Physical Anthropology 138 (4): 421–28.Google Scholar
Smolderen, Alison. 2016. “Cinquante Nuances de Noir. Problèmes de Diagnostic En Archéologie Du Feu: Études de Cas Du Bassin Mosan Belge Au MIS 3.” PhD thesis, Université Libre de Bruxelles.Google Scholar
Sonnevilles-Bordes, Denise de. 1961. “Le Paléolithique Supérieur En Belgique.L’Anthropologie 65: 421–43.Google Scholar
Soulier, Marie-Cécile, and Mallye, Jean-Baptiste. 2012. “Hominid Subsistence Strategies in the South-West of France: A New Look at the Early Upper Palaeolithic Faunal Material from Roc-de-Combe (Lot, France).Quaternary International 252 (February): 99108.Google Scholar
Stutz, Aaron Jonas. 2002. “Polarizing Microscopy Identification of Chemical Diagenesis in Archaeological Cementum.Journal of Archaeological Science 29 (11): 1327–47.Google Scholar
Stutz, Aaron Jonas, Lieberman, Daniel E., and Spiess, A. E.. 1995. “Toward a Reconstruction of Subsistence Economy in the Upper Pleistocene Mosan Basin: Cementum Increment Evidence.” In Le Trou Magrite, Fouilles 1991–1992. Liège: Eraul, 167–87.Google Scholar
Toussaint, Michel, Olejniczak, Anthony J., El Zaatari, Sireen, Cattelain, Pierre, Flas, Damien, Letourneux, Claire, and Pirson, Stéphane. 2010. “The Neandertal Lower Right Deciduous Second Molar from Trou de l’Abîme at Couvin, Belgium.Journal of Human Evolution 58 (1): 5667.Google Scholar
Toussaint, Michel, and Pirson, Stéphane. 2006. “Neandertal Studies in Belgium: 2000–2005.Periodicum Biologorum 108 (3): 15.Google Scholar
*Ulrix-Closset, M. 1975. Le Paléolithique Moyen Dans Le Bassin Mosan En Belgique. Wetteren, Belguim: Universa.Google Scholar
Van Valkenburgh, Blair. 2009. “Costs of Carnivory: Tooth Fracture in Pleistocene and Recent Carnivorans.Biological Journal of the Linnean Society 96: 6881.Google Scholar

References

Afsharpaiman, S., Saburi, A., & Waters, K. A. (2013). Respiratory difficulties and breathing disorders in achondroplasia. Paediatric Respiratory Reviews 14(4), 250–5.Google Scholar
Allanson, J. E., & Hall, J. G. (1986). Obstetric and gynecologic problems in women with chondrodystrophies. Obstetrics and Gynecology 67(1), 74–8.Google Scholar
Arriaza, B., Allison, M., & Gerszten, E. (1988). Maternal mortality in pre-Columbian Indians of Arica, Chile. American Journal of Physical Anthropology 77(1), 3541.Google Scholar
Berdon, W. E., Grossman, H., & Baker, D. H. (1965). Dyschondrostéose (Léri-Weill Syndrome): Congenital short forearms, Madelung-type wrist deformities, and moderate dwarfism. Radiology 85(4), 677–80.Google Scholar
Bertrand, B., Schug, G. R., Polet, C., Naji, S., & Colard, T. (2016). Age-at-death estimation of pathological individuals: A complementary approach using teeth cementum annulations. International Journal of Paleopathology 15, 120–7.Google Scholar
Blakely, R. L. (1971). Comparison of the mortality profiles of Archaic, Middle Woodland, and Middle Mississippian skeletal populations. American Journal of Physical Anthropology 34(1), 4353.Google Scholar
Bland, J. D., & Emery, J. L. (1982). Unexpected death of children with achondroplasia after the perinatal period. Developmental Medicine & Child Neurology 24(5), 489–92.Google Scholar
Bocquet-Appel, J.-P., & Masset, C. (1982). Farewell to paleodemography. Journal of Human Evolution 11(4), 321–33.Google Scholar
Boldsen, J. L., Milner, G. R., Konigsberg, L. W., & Wood, J. W. (2002). Transition analysis: A new method for estimating age from skeletons. Cambridge Studies in Biological and Evolutionary Anthropology, 73106.CrossRefGoogle Scholar
Boutin, A. T. (2008). Embodying life and death: Osteobiographical narratives from Alalakh. Ph.D. thesis, University of Pennsylvania, United States.Google Scholar
Burton Jones, N. (2016). Demography and Evolutionary Ecology of the Hadza Hunter-Gatherers. Cambridge: Cambridge University Press.Google Scholar
Cesana, D., Benedictow, O. J., & Bianucci, R. (2017). The origin and early spread of the Black Death in Italy: First evidence of plague victims from 14th-century Liguria (northern Italy). Anthropological Science 125(1), 1524.Google Scholar
Charles, D. K., Leigh, S. R., & Buikstra, J. E. (1988). The Archaic and Woodland Cemeteries at the Elizabeth Site in the Lower Illinois Valley, Kampsville, IL: Center for American Archeology.Google Scholar
Chetty, S. P., Shaffer, B. L., & Norton, M. E. (2011). Management of pregnancy in women with genetic disorders, part 1: Disorders of the connective tissue, muscle, vascular, and skeletal systems. Obstetrical & Gynecological Survey 66(11), 699709.Google Scholar
Cohen, M. M. (1998). Achondroplasia, hypochondroplasia and thanatophoric dysplasia: Clinically related skeletal dysplasias that are also related at the molecular level. International Journal of Oral and Maxillofacial Surgery 27(6), 451–5.Google Scholar
Colard, T., Bertrand, B., Naji, S., Delannoy, Y., & Bécart, A. (2015). Toward the adoption of cementochronology in forensic context. International Journal of Legal Medicine 129, 18.Google Scholar
Cormier, A. A., & Buikstra, J. E. (2016). A case study of skeletal dysplasia inheritance and maternal/fetal health from a Middle Woodland context at the Elizabeth Site (11PK512), Illinois. 85th Annual Meeting of the American Association of Physical Anthropologists, San Francisco, CA.Google Scholar
Cormier, A. A., & Buikstra, J. E. (2017). Impairment, disability, and identity in the Middle Woodland Period: Life at the juncture of achondroplasia, pregnancy, and infection. In Byrnes, J. & Muller, J. (eds.), Bioarchaeology of Impairment and Disability: Theoretical, Ethnohistorical, and Methodological Perspectives. Cham, Switzerland: Springer International Publishing, 225–48.Google Scholar
Cormier, A. A., Buikstra, J. E., & Osterholtz, A. (2017). Overlapping genetic pathways in the skeletal dysplasias of a Middle Woodland individual: A case study. International Journal of Paleopathology 18, 98107.Google Scholar
Cormier-Daire, V., Belin, V., Cusin, V., … Munnich, A. (1999). SHOX gene mutations and deletions in dyschondrosteosis or Leri-Weill syndrome. Acta Pædiatrica 88, 5559.Google Scholar
Cruz, C. B., & Codinha, S. (2010). Death of mother and child due to dystocia in 19th century Portugal. International Journal of Osteoarchaeology 20(4), 491–6.Google Scholar
DeWitte, S. N., & Stojanowski, C. M. (2015). The osteological paradox 20 years later: Past perspectives, future directions. Journal of Archaeological Research 23(4), 397450.Google Scholar
Filer, J. (1995). Disease. Egyptian Bookshelf. London: British Museum.Google Scholar
Finch, C. E. (2007). The Biology of Human Longevity: Inflammation, Nutrition, and Aging in the Evolution of Lifespans. Cambridge, MA: Elsevier.Google Scholar
Finkenstaedt, E. (1984). Age at first pregnancy among females at the Indian Knoll Oh-2 Site. Transactions of the Kentucky Academy of Science 45, 51–4.Google Scholar
Ghumman, S., Goel, N., Rajaram, S., Singh, K. C., Kansal, B., & Dewan, P. (2005). Pregnancy in an achondroplastic dwarf: A case report. Journal of the Indian Medical Association 103(10), 536–8.Google Scholar
Haavikko, K. (1970). The formation and the alveolar and clinical eruption of the permanent teeth. An orthopantographic study. Proceedings of the Finnish Dental Society 66, 101–70.Google Scholar
Halcrow, S. E., & Tayles, N. (2008). The bioarchaeological investigation of childhood and social age: Problems and prospects. Journal of Archaeological Method and Theory 15(2), 190215.Google Scholar
Hamosh, A. (2013). OMIM Entry – # 127300 – Leri-Weill Dyschondrosteosis; LWD. www.omim.org/entry/127300 (January 14, 2015).Google Scholar
Hecht, J. T., Francomano, C. A., Horton, W. A., & Annegers, J. F. (1987). Mortality in achondroplasia. American Journal of Human Genetics 41(3), 454.Google Scholar
Hecht, J. T., Horton, W. A., Reid, C. S., Pyeritz, R. E., & Chakraborty, R. (1989). Growth of the foramen magnum in achondroplasia. American Journal of Medical Genetics 32(4), 528–35.Google Scholar
Henderson, J. E., Naski, M. C., Aarts, M. M., … Ornitz, D. M. (2000). Expression of FGFR3 with the G380R: Achondroplasia mutation inhibits proliferation and maturation of CFK2 chondrocytic cells. Journal of Bone and Mineral Research 15(1), 155–65.Google Scholar
Hillson, S. (2005). Teeth. Cambridge: Cambridge University Press.Google Scholar
Hoppa, R., & Saunders, S. (1998). The MAD legacy: How meaningful is mean age-at-death in skeletal samples. Human Evolution 13(1), 114.Google Scholar
Howell, N. (2017). Demography of the Dobe !Kung. London: Routledge.Google Scholar
Hunter, A. G., Bankier, A., Rogers, J. G., Sillence, D., & Scott, C. I. (1998). Medical complications of achondroplasia: A multicentre patient review. Journal of Medical Genetics 35(9), 705–12.Google Scholar
Jelínek, J. (1992). Two early neolithic female burials with foetal remains. Anthropologie (1962–) 30(2), 165–8.Google Scholar
Keiper Jr, G. L., Koch, B., & Crone, K. R. (1999). Achondroplasia and cervicomedullary compression: Prospective evaluation and surgical treatment. Pediatric Neurosurgery 31(2), 7883.Google Scholar
King, J., Buikstra, J., & Charles, D. (2011). Time and archaeological traditions in the Lower Illinois Valley. American Antiquity 76(3), 500–28.Google Scholar
Knudson, K. J., & Stojanowski, C. M. (2008). New directions in bioarchaeology: Recent contributions to the study of human social identities. Journal of Archaeological Research 16(4), 397432.Google Scholar
Knüsel, C. J., Batt, C. M., Cook, G., … Wilson, A. S. (2010). The identity of the St Bees Lady, Cumbria: An osteobiographical approach. Medieval Archaeology 54(1), 271311.Google Scholar
Lattanzi, D. R., & Harger, J. H. (1982). Achondroplasia and pregnancy. The Journal of Reproductive Medicine 27(6), 363–6.Google Scholar
Leri, A., & Weill, J. (1929). Une affection congénitale et symétrique du développement osseux: la dyschondrostéose. Bulletins et Mémoires de la Société Médicale des Hôpitaux de Paris, 1491–4.Google Scholar
Lieverse, A. R., Bazaliiskii, V. I., & Weber, A. W. (2015). Death by twins: A remarkable case of dystocic childbirth in Early Neolithic Siberia. Antiquity 89(343), 2338.Google Scholar
Liversidge, H. M., Herdeg, B., & Rösing, F. W. (1998). Dental age estimation of non-adults. A review of methods and principles. In Priv-Doz, K. W. A, Rösing, F. W., & Teschler-Nicola, M (eds.), Dental Anthropology. Vienna: Springer, 419–42.Google Scholar
Lovejoy, C. O. (1985). Dental wear in the Libben population: Its functional pattern and role in the determination of adult skeletal age at death. American Journal of Physical Anthropology 68(1), 4756.Google Scholar
Lucy, S. (2005). The archaeology of age. In García, M. D.-A., Lucy, S., Babic´, S., & Edwards, D. (eds.), The Archaeology of Identity: Approaches to Gender, Age, Status, Ethnicity and Religion. London: Routledge, 4366.Google Scholar
Mackie, E. J., Ahmed, Y. A., Tatarczuch, L., Chen, K.-S., & Mirams, M. (2008). Endochondral ossification: How cartilage is converted into bone in the developing skeleton. The International Journal of Biochemistry & Cell Biology 40(1), 4662.Google Scholar
Maharaj, D. (2010). Assessing cephalopelvic disproportion: Back to the basics. Obstetrical & Gynecological Survey 65(6), 387–95.Google Scholar
Malgosa, A., Alesan, A., Safont, S., Ballbé, M., & Ayala, M. M. (2004). A dystocic childbirth in the Spanish Bronze Age. International Journal of Osteoarchaeology 14(2), 98103.Google Scholar
Mayes, A. T., & Barber, S. B. (2008). Osteobiography of a high-status burial from the lower Río Verde Valley of Oaxaca, Mexico. International Journal of Osteoarchaeology 18(6), 573–88.Google Scholar
Meskell, L. (2001). Archaeologies of identity. In Hodder, I. (ed.), Archaeological Theory Today, Cambridge: Polity, 187213.Google Scholar
Miller, H. A. (1937). Dental abnormalities in a patient with achondroplasia. International Journal of Orthodontia and Oral Surgery 23(3), 296–9.Google Scholar
Milner, G. R., & Boldsen, J. L. (2012). Transition analysis: A validation study with known-age modern American skeletons. American Journal of Physical Anthropology 148(1), 98110.Google Scholar
Munns, C., & Glass, I. (2008). SHOX-related haploinsufficiency disorders. In Pagon, R. A., Adam, M. P., Ardinger, H. H., … Stephens, K. (eds.), GeneReviews(®) [Internet], Seattle: University of Washington.Google Scholar
Naji, S., Colard, T., Blondiaux, J., Bertrand, B., d’Incau, E., & Bocquet-Appel, J.-P. (2016). Cementochronology, to cut or not to cut? International Journal of Paleopathology 15, 113–19.Google Scholar
Nava, A., Coppa, A., Coppola, D., … Bondioli, L. (2017). Virtual histological assessment of the prenatal life history and age at death of the Upper Paleolithic fetus from Ostuni (Italy). Scientific Reports 7(1), 9427.Google Scholar
Oberklaid, F., Danks, D. M., Jensen, F., Stace, L., & Rosshandler, S. (1979). Achondroplasia and hypochondroplasia. Comments on frequency, mutation rate, and radiological features in skull and spine. Journal of Medical Genetics 16(2), 140–6.Google Scholar
Onodera, K., Sakata, H., Niikuni, N., Nonaka, T., Kobayashi, K., & Nakazima, I. (2005). Survey of the present status of sleep-disordered breathing in children with achondroplasia: Part I. A questionnaire survey. International Journal of Pediatric Otorhinolaryngology 69(4), 457–61.Google Scholar
Owsley, D. W., & Bradtmiller, B. (1983). Mortality of pregnant females in Arikara villages: Osteological evidence. American Journal of Physical Anthropology 61(3), 331–6.Google Scholar
Pàlfi, G., Dutour, O., Borreani, M., Brun, J.-P., & Berato, J. (1992). Pre-Columbian congenital syphilis from the late antiquity in France. International Journal of Osteoarchaeology 2(3), 245–61.Google Scholar
Pauli, R. M., Horton, V. K., Glinski, L. P., & Reiser, C. A. (1995). Prospective assessment of risks for cervicomedullary-junction compression in infants with achondroplasia. American Journal of Human Genetics 56(3), 732–44.Google Scholar
Pauli, R. M., Scott, C. I., Wassman, E. R., … Lebovitz, R. (1984). Apnea and sudden unexpected death in infants with achondroplasia. The Journal of Pediatrics 104(3), 342–8.Google Scholar
Rascón Pérez, J., Cambra Moo, Ó., & González Martín, A. (2007). A multidisciplinary approach reveals an extraordinary double inhumation in the osteoarchaeological record. Journal of Taphonomy 5(2), 91101.Google Scholar
Renschler, E. S. (2007). An osteobiography of an African diasporic skeletal sample: Integrating skeletal and historical information. Ph.D. thesis, University of Pennsylvania, United States.Google Scholar
Robb, J. (2002). Time and biography. In Hamilakis, Y., Pluciennik, M., & Tarlow, S. (eds.), Thinking through the Body. New York: Springer, 153–71.Google Scholar
Roopnarinesingh, S. S., Naraynsingh, V., & Woo, J. (1983). Achondroplasia and pregnancy. West Indian Medical Journal 32(2), 112–13.Google Scholar
Ross, J. L., Bellus, G., Scott, C. I., Abboudi, J., Grigelioniene, G., & Zinn, A. R. (2003). Mesomelic and rhizomelic short stature: The phenotype of combined Leri-Weill dyschondrosteosis and achondroplasia or hypochondroplasia. American Journal of Medical Genetics Part A 116A(1), 6165.Google Scholar
Saul, F. P., & Saul, J. M. (1989). Osteobiography: A Maya example. In Iscan, M. Y. & Kennedy, K. A. R. (eds.), Reconstruction of Life from the Skeleton. New York: Liss, 287302.Google Scholar
Sayer, D., & Dickinson, S. D. (2013). Reconsidering obstetric death and female fertility in Anglo-Saxon England. World Archaeology 45(2), 285–97.Google Scholar
Sgheiza, V., Cox, M., & Hart, K. (2016). A comparison of two Late Woodland features: Helton 20-36 and Carter 2-15. Presented at the 81st annual meeting of the Society for American Archaeology. Orlando, FL.Google Scholar
Sharma, R., & Kumar, A. (2014). Achondroplasia and pregnancy. Journal of Evolution of Medical and Dental Sciences 3(16), 4237–41.Google Scholar
Sherry, J. S., & Aponte, S. (2015, August 26). Achondroplasia: Oral health concerns associated with genetic disorder commonly referred to as dwarfism. Registered Dental Hygienist. www.rdhmag.com/career-profession/students/article/16405429/achondroplasia-oral-health-concerns-associated-with-genetic-disorder-commonly-referred-to-as-dwarfismGoogle Scholar
Shimony, N., Ben-Sira, L., Sivan, Y., Constantini, S., & Roth, J. (2015). Surgical treatment for cervicomedullary compression among infants with achondroplasia. Child’s Nervous System 31(5), 743–50.Google Scholar
Simmons, K., Hashmi, S. S., Scheuerle, A., Canfield, M., & Hecht, J. T. (2014). Mortality in babies with achondroplasia: Revisited. Birth Defects Research Part A: Clinical and Molecular Teratology 100(4), 247–9.Google Scholar
Sisk, E. A., Heatley, D. G., Borowski, B. J., Leverson, G. E., & Pauli, R. M. (1999). Obstructive sleep apnea in children with achondroplasia: Surgical and anesthetic considerations. Otolaryngology–Head and Neck Surgery 120(2), 248–54.Google Scholar
Sofaer, J. R. (2006). The Body as Material Culture: A Theoretical Osteoarchaeology. Cambridge: Cambridge University Press.Google Scholar
Stodder, A. L. W., & Palkovich, A. M. (2012). Bioarchaeology of Individuals. Gainsville, FL: University Press of Florida.Google Scholar
Stokes, D. C., Phillips, J. A., Leonard, C. O., … Brown, D. L. (1983). Respiratory complications of achondroplasia. The Journal of Pediatrics 102(4), 534–41.Google Scholar
Tague, R. G. (1994). Maternal mortality or prolonged growth: Age at death and pelvic size in three prehistoric Amerindian populations. American Journal of Physical Anthropology 95(1), 2740.Google Scholar
Tenconi, R., Khirani, S., Amaddeo, A., … Fauroux, B. (2017). Sleep-disordered breathing and its management in children with achondroplasia. American Journal of Medical Genetics Part A 173(4), 868–78.Google Scholar
Unger, S., Bonafé, L., & Gouze, E. (2017). Current care and investigational therapies in achondroplasia. Current Osteoporosis Reports 15(2), 5360.Google Scholar
Waller, D. K., Correa, A., Vo, T. M., … Hecht, J. T. (2008). The population-based prevalence of achondroplasia and thanatophoric dysplasia in selected regions of the US. American Journal of Medical Genetics Part A 146A(18), 2385–9.Google Scholar
Waters, K. A., Everett, F., Sillence, D. O., Fagan, E. R., & Sullivan, C. E. (1995). Treatment of obstructive sleep apnea in achondroplasia: Evaluation of sleep, breathing, and somatosensory-evoked potentials. American Journal of Medical Genetics 59(4), 460–6.Google Scholar
Wedel, V. L. (2007). Determination of season at death using dental cementum increment analysis*†. Journal of Forensic Sciences 52(6), 1334–7.Google Scholar
Weiss, K. (1973). Demographic models for archaeology. Memoirs of the Society for American Archaeology. Washington, D.C.: Society for American Archaeology, 27.Google Scholar
White, C., Longstaffe, F., Pendergast, D., & Maxwell, J. (2009). Cultural embodiment and the enigmatic identity of the lovers from Lamani. In Knudson, K. J. & Stojanowski, C. M. (eds.), Bioarchaeology and Identity in the Americas. Gainesville, FL: University Press of Florida, 155–76.Google Scholar
White, K. K., Bompadre, V., Goldberg, M. J., … Savarirayan, R. (2016). Best practices in the evaluation and treatment of foramen magnum stenosis in achondroplasia during infancy. American Journal of Medical Genetics Part A 170(1), 4251.Google Scholar
Willis, A., & Oxenham, M. F. (2013). A case of maternal and perinatal death in Neolithic Southern Vietnam, c. 2100–1050 BCE. International Journal of Osteoarchaeology 23(6), 676–84.Google Scholar
Wilson, J. J. (2014). Paradox and promise: Research on the role of recent advances in paleodemography and paleoepidemiology to the study of “health” in Precolumbian societies. American Journal of Physical Anthropology 155(2), 268–80.Google Scholar
Wittwer-Backofen, U., Gampe, J., & Vaupel, J. W. (2004). Tooth cementum annulation for age estimation: Results from a large known-age validation study. American Journal of Physical Anthropology 123(2), 119–29.Google Scholar
Wood, J. W., Milner, G. R., Harpending, H. C., … et al. (1992). The osteological paradox: Problems of inferring prehistoric health from skeletal samples [and comments and reply]. Current Anthropology 33(4), 343–70.Google Scholar
Wright, L. E., & Yoder, C. J. (2003). Recent progress in bioarchaeology: Approaches to the osteological paradox. Journal of Archaeological Research 11(1), 4370.Google Scholar
Wynn, J., King, T. M., Gambello, M. J., Waller, D. K., & Hecht, J. T. (2007). Mortality in achondroplasia study: A 42-year follow-up. American Journal of Medical Genetics Part A 143(21), 2502–11.Google Scholar
Wynne-Davies, R., Walsh, W. K., & Gormley, J. (1981). Achondroplasia and hypochondroplasia. Clinical variation and spinal stenosis. The Journal of Bone and Joint Surgery 63B(4), 508–15.Google Scholar
Zvelebil, M., & Weber, A. W. (2013). Human bioarchaeology: Group identity and individual life histories – Introduction. Journal of Anthropological Archaeology 32(3), 275–9.Google Scholar

References

Abreu, S. F. (1929). Sambaquis de Imbituba e Laguna (Santa Catharina). Revista da Sociedade de Geografia do Rio de Janeiro 1, 850.Google Scholar
Alvim, M. E. M. C. & Gomes, J. C. O. (1989). Análise e interpretaçãodascondiçõespatológicas – Órbitacrivosa, osteoporosepuntiforme e hiperostoseesponjosa – emcrânioshumanosprovenientes de sítioarqueológico Sambaqui de Cabeçuda, Laguna, SC, Brasil. São Paulo. Revista de Pré-História 7, 127–43.Google Scholar
Alvim, M. E. M. C., Vieira, N., & Cheuiche, L. N. (1975). Os construtores dos sambaquis de Cabeçuda, SC e de Piaçaguera, SP:EstudoMorfológicoComparativo. Rio de Janeiro. Arquivos de Anatomia e Antropologia 1, 393406.Google Scholar
Bellwood, P. (2005). First Farmers: The Origins of Agricultural Societies. Oxford: Blackwell.Google Scholar
Bentley, G. R., Goldberg, T., & Jasienska, G. (1993). The fertility of agricultural and nonagricultural traditional societies. Population Studies (47), 269–81.Google Scholar
Binford, L. R., & Chasko, W. J. (1976). Nunamiut demographic history. In Demographic Anthropology: Quantitative Approaches. Albuquerque: University of New Mexico Press, 63143.Google Scholar
Blondiaux, J., Bocquet-Appel, J.-P., Souza, S. M. de, & Naji, S. (2009). First demographic profile of South American fisherman-horticulturists estimated from TCA technique. Implications for Paleopathology, vol. S48. Presented at the American Association of Physical Anthropology, Chicago, IL, 106–7.Google Scholar
Blondiaux, J., Naji, S., Bocquet-Appel, J.-P., Colard, T., de Broucker, A., & de Seréville-Niel, C. (2016). The leprosarium of Saint-Thomas d’Aizier: The cementochronological proof of the medieval decline of Hansen disease in Europe? International Journal of Paleopathology 15, 140–51.Google Scholar
Blurton Jones, N. (2016). Demography and Evolutionary Ecology of Hadza Hunter-Gatherers. Cambridge: Cambridge University Press.Google Scholar
Bocquet, J.-P., & Masset, C. (1977). Estimateurs en paléodémographie. L’Homme 17(4), 6590.Google Scholar
Bocquet-Appel, J.-P. (2002). Paleoanthropological traces of a neolithic demographic transition. Current Anthropology 43(4), 637–50.Google Scholar
Bocquet-Appel, J.-P. (2005). La paléodémographie. In Dutour, O., Hublin, J.-J., & Vandermeersch, B. (eds.), Editions du Comité des Travaux Historiques et Scientifiques. Objets Et Methodes En Paleoanthropologie. Paris, 271313.Google Scholar
Bocquet-Appel, J.-P. (2008a). Explaining the Neolithic demographic transition. In Bocquet-Appel, J.-P. & Bar-Yosef, O. (eds.), The Neolithic Demographic Transition and its Consequences. Dordrecht: Springer Netherlands, 3555.Google Scholar
Bocquet-Appel, J.-P. (2008b). Recent Advances in Paleodemography. Data, Techniques, Patterns. Dordrecht/London: Springer Verlag.Google Scholar
Bocquet-Appel, J.-P., & Bacro, J.-N. (2008). Estimation of an age distribution with its confidence intervals using an iterative Bayesian procedure and a bootstrap sampling approach. In Bocquet-Appel, J.-P. (ed.), Recent Advances in Palaeodemography. The Netherlands: Springer, 6382.Google Scholar
Bocquet-Appel, J.-P., & Masset, C. (1982). Farewell to paleodemography. Journal of Human Evolution 11, 321–33.Google Scholar
Bocquet-Appel, J.-P., & Masset, C. (1996). Paleodemography: Expectancy and false hope. American Journal of Physical Anthropology 99, 571–83.Google Scholar
Bocquet-Appel, J.-P., & Naji, S. (2006). Testing the hypothesis of a worldwide Neolithic demographic transition corroboration from American cemeteries (with comments). Current Anthropology 47(2), 341–65.Google Scholar
Brainard, J. (1986). Differential mortality in Turkana agriculturalists and pastoralists. American Journal of Physical Anthropology 70(4), 525–36.Google Scholar
Campbell, K. L., & Wood, J. W. (1988). Fertility in traditional societies: Social and biological determinants. In Diggory, P., Potts, M., & Teper, S. (eds.), Natural Human Fertility: Social and Biological Determinants. London: MacMillan, 3669.Google Scholar
Caussinus, H., & Courgeau, D. (2013). A new method for estimating age-at-death structure. In Handbook of Palaeodemography. Cambridge, MA: Springer International Publishing, 255286.Google Scholar
Childe, V. G. (1925). The Dawn of European Civilization. New York: Alfred A. Knopf.Google Scholar
Colonese, A. C., Collins, M., Lucquin, A., … Craig, O. E. (2014). Long-term resilience of Late Holocene coastal subsistence system in Southeastern South America. PLoS ONE 9(4), e93854.Google Scholar
De Blasis, P., Fish, S. K., Gaspar, M. D., & Fish, P. R. (1998). Some references for the discussion of complexity among the Sambaqui mound builders from the southern shores of Brazil. Revista de Arqueología Americana (15), 75105.Google Scholar
Early, J. D., & Headland, T. N. (1998). Population Dynamics of a Philippine Rain Forest People: The San Ildefonso Agta. Gainesville: University Press of Florida.Google Scholar
Ederly, T. (2014). Sambaqui de Cabeçuda: de Monte de Lixo a Monumento de Vida e Morte. Monografia de Conclusão de Curso (LicenciaturaemHistória). Rio de Janeiro: Universidade do Grande Rio.Google Scholar
Ellanna, L. (1990). Demographic change, sedentism, and western contact: An inland Dena’ina Athabaskan case study. In Meehan, B. & White, N. (eds.), Hunter-Gatherer Demography Past and Present, Oceania Monograph, vol. 19. Sydney: University of Sydney, 101–16.Google Scholar
Faria, L. de C. (1959). Le problème des sambáquis du Brésil: Récents excavations du gisement de Cabeçuda (Laguna, Santa Catarina). In Proceedings of the 30th International Congress of Americanists. Cambridge: Royal Anthropological Institute.Google Scholar
Figuti, L. (1989). Estudo dos vestígiosfaunísticos do Sambaqui Cosipa-3, Cubatão, SP. São Paulo. Revista de Pré-História 7, 112–26.Google Scholar
Frankenberg, S., & Konigsberg, L. W. (2006). A brief history of paleodemography from Hooton to Hazard Analysis. In Buikstra, J. E. & Beck, L. A. (eds.), Bioarchaeology. The Contextual Analysis of Human Remains. Boston: Academic Press, 262–80.Google Scholar
Gage, T. B., & Dyke, B. (1986). Parameterizing abridged mortality tables: The Siler three-component hazard model. Human Biology (58), 275–91.Google Scholar
Gage, T. B., & Leslie, P. (1989). Demography and human population biology: Problems and progress. In Little, M. & Haas, J. D. (eds.), Human Biology: A Transdisciplinary Science. Oxford: Oxford University Press, 1544.Google Scholar
Gaspar, M. D., Deblasis, P., Fish, S. K., & Fish, P. R. (2008). Sambaqui (Shell Mound) societies of coastal Brazil. In Silverman, H. & Isbell, W. (eds.), Handbook of South American Archaeology. New York: Springer Science & Business Media, 319–35.Google Scholar
Gomes, A. (1990). Demographic implications of villagisation among the Semang of Malaysia. In Meehan, B. & White, N. (eds.), Hunter-Gatherer Demography Past and Present, Oceania Monograph, vol. 19. Sydney: University of Sydney, 126–48.Google Scholar
Gurven, M., & Kaplan, H. (2007). Longevity among hunter-gatherers: A cross-cultural examination. Population and Development Review 33(2), 321–65.Google Scholar
Harpending, H., & Wandsnider, L. (1982). Population structures of Ghanzi and Ngamiland!Kung. In Crawford, M. H. & Mielke, J. H. (eds.), Current Developments in Anthropological Genetics: Ecology and Population Structure. Boston, MA: Springer US, 2950.Google Scholar
Hassan, F. (1980). The growth and regulation of human populations in prehistoric times. In Cohen, M. N., Malprass, R. S., & Klein, H. G. (eds.), Biosocial Mechanisms of Population Regulation. New Haven: Yale University Press, 305–20.Google Scholar
Hewlett, B. S. (1991). Demography and childcare in pre-industrial societies. Journal of Anthropological Research 47(1), 137.Google Scholar
Hill, K., Hurtado, A. M., & Walker, R. S. (2007). High adult mortality among Hiwi hunter-gatherers: Implications for human evolution. Journal of Human Evolution 52(4), 443–54.Google Scholar
Hitchcock, R. (1982). Patterns of sedentism among the Basarwa of eastern Botswana. In Leacock, E. & Lee, R. B. (eds.), Politics and History in Band Society. New York: Cambridge University Press, 223–67.Google Scholar
Howell, N. (1979). Demography of the Dobe !Kung. New York: Academic Press.Google Scholar
Howell, N. (1982). Village composition implied by paleodemographic life table: The Libben site. American Journal of Physical Anthropology 59, 263–9.Google Scholar
Hurtado, A. M., & Hill, K. (1996). Ache Life History: The Ecology and Demography of a Foraging People. New York: Aldine Transaction.Google Scholar
Jorge, A. C. F. Viana. (2016). Análise de microvestígiosvegetaisemcálculosdentárioshumanos do Sambaqui de Cabeçuda. Dissertação de Mestrado, Escola Nacional de SaúdePública, Fiocruz.Google Scholar
Kelly, R. L. (2013). The Lifeways of Hunter-Gatherers: The Foraging Spectrum. Cambridge; New York: Cambridge University Press.Google Scholar
Kemkes-Grottenthaler, A. (2002). Aging through the ages: Historical perspectives on age indicator methods. In Hoppa, R. D. & Vaupel, J. W. (eds.), Paleodemography: Age Distributions from Skeletal Samples. Cambridge: Cambridge University Press, 4872.Google Scholar
Klökler, D. (2014). Adornos em concha doSítio Cabeçuda: revisitaàsamostras de Castro Faria. São Paulo. Revista de Arqueologia 27(2), 150–69.Google Scholar
Kneip, A., Farias, D., & De Blasis, P. (2018). Longaduração e territorialidade da ocupaçãosambaquieira na laguna de Santa Marta, Santa Catarina. Revista de Arqueologia 31(1), 2551.Google Scholar
Konigsberg, L., & Herrmann, N. P. (2006). The osteological evidence for human longevity in the recent past. In Hawkes, K. & Paine, R. R. (eds.), The Evolution of Human Life History. Santa Fe: School of American Research Press, 267306.Google Scholar
Lanteri, L. (2016). Recrutement, paléodémographie et cémentochronologie. Application à un contexte d’inhumation paroissial d’Ancien Régime: Notre-Dame du Bourg à Digne-les-Bains . PhD thesis, Aix-Marseille.Google Scholar
Lessa, A., & Medeiros, J. C. de. (2011). Reflexõespreliminares sobre a questão da violênciaempopulaçõesconstrutoras de sambaqui: Análisedos sítiosArapuã (RJ) e Cabeçuda (SC). São Paulo. Revista Do Museu de Arqueologia e Etnologia 11, 7793.Google Scholar
Liversidge, H. M. (2015). Tooth eruption and timing. In Irish, J. D. & Scott, G. R. (eds.), A Companion to Dental Anthropology. Oxford: John Wiley & Sons, Inc., 159–71.Google Scholar
Naji, S. (2010). Analyse spatio-temporelle des données bioarchéologiques de la population médiévale de l’église Saint-Laurent de Grenoble, Isère: IVe–XVe siècle. Thèse de Doctorat. Paris: EHESS.Google Scholar
Naji, S., Bertrand, B., & Colard, T. (2016). Archaeological application of three age-at-death estimation techniques to the Medieval site of La Granède, France: Cementochronology, new life tables and Caussinus-Courgeau bayesian procedure. American Journal of Physical Anthropology S.62, 238.Google Scholar
Orzack, S. H., Stubblefield, J. W., Akmaev, V. R., … Zuckerman, J. E. (2015). The human sex ratio from conception to birth. Proceedings of the National Academy of Sciences of the United States of America 112(16), E2102E2111.Google Scholar
Pennington, R. (2001). Hunter-gatherer demography. In Panter-Brick, C., Layton, R., & Rowley-Conwy, P. (eds.), Hunter-Gatherers: An Interdisciplinary Perspective. Cambridge: Cambridge University Press, 170204.Google Scholar
Rodrigues-Carvalho, C., Lessa, A., & Souza, S. M. de. (2009). Bioarchaeology of the Sambaqui groups: Skeletal morphology, physical stress and trauma. BAR International (S2026), 1520.Google Scholar
Rodrigues-Carvalho, C., Scheel-Ybert, R., Gaspar, M. D., … Borges, D. S. (2011). Cabeçuda II: Um conjunto de amoladores-polidoresevidenciadosem Laguna, Santa Catarina. São Paulo. Revista Do Museu de Arqueologia 21, 389–93.Google Scholar
Roth, E. A. (1981). Sedentism and changing fertility patterns in a Northern Athapaskan isolate. Journal of Human Evolution (10), 413–25.Google Scholar
Roth, E. A., & Ray, A. K. (1985). Demographic patterns of sedentary and nomadic Juang of Orissa. Human Biology 57(3), 319–25.Google Scholar
Scheel-Ybert, R., Rodrigues-Carvalho, C., DeBlasis, P., Gaspar, M. D., & Klökler, D. (2020). Mudanças e permanências no Sambaqui de Cabeçuda (Laguna, SC): Dasescavações de Castro Faria àsquestõesatuais. Revista de Arqueologia 33(1), 169–97.Google Scholar
Séguy, I., & Buchet, L. (2013). Handbook of Palaeodemography, vol. 2, Cham: Springer International Publishing.Google Scholar
Sellen, D. W., & Mace, R. (1997). Fertility and mode of subsistence: A phylogenetic analysis. Current Anthropology 38(5), 878–89.Google Scholar
Souza, S. M. de. (1991). Aplicação de funções discriminantes na estimativa de sexoemossoshumanospre-históricos. Dissertação de Mestrado. Rio de Janeiro: UniversidadeFederal do Rio de Janeiro.Google Scholar
Souza, S. M. (1995). Estresse, Doença e Adaptabilidade. EstudoComparativo de Dois Grupos Pré-históricosemPerspectivaBiocultural. (Tese de Doutorado), Escola Nacional de SaúdePública, Fiocruz.Google Scholar
Souza, S. M. (1999). Anemia e adaptabilidadeemum grupo costeiro pré-histórico: UmaHipótesePatocenótica. In Tenório, M. C. (ed.), Pré-história da Terra Brasilis, Rio de Janeiro:Editora UFRJ, 171–88.Google Scholar
Souza, S. M. (2014a). Bioarchaeology in Brazil. In O’Donnabhain, B. & Lozada, M. C. (eds.), Archaeological Human Remains: Global Perspectives. Cham: Springer International Publishing, 5363.Google Scholar
Souza, S. M. (2014b). Sambaqui people, the Shell Mound Builders of Brazil. A challenge for paleodemographers. In Roksandic, M., de Souza, S. M., Eggers, S., & Burchell, M. (eds.), The Cultural Dynamics of Shell-Matrix Sites. Albuquerque, NM: University of New Mexico Press, 163–71.Google Scholar
Stutz, A. J. (2002). Polarizing microscopy identification of Chemical Diagenesis in archaeological cementum. Journal of Archaeological Science 29(11), 1327–47.Google Scholar
Wesolowski, V., Souza, S. M. de, Reinhard, K. J., & Ceccantini, G. (2010). Evaluating microfossil content of dental calculus from Brazilian sambaquis. Journal of Archaeological Science 37(6), 1326–38.Google Scholar
Wood, J. W. (1994). Dynamics of Human Reproduction, Biology: Biology, Biometry, Demography. Hawthorne/New York: Aldine de Gruyter.Google Scholar
Wood, J. W., Holman, D. J., Weiss, K. M., Buchanan, A. V., & LeFor, B. (1992). Hazards models for human population biology. American Journal of Physical Anthropology 35 (supplement 15), 4387.Google Scholar

References

Aggarwal, P., Saxena, S., and Bansal, P. 2008. Incremental lines in root cementum of human teeth: An approach to their role in age estimation using polarizing microscopy. Indian Journal of Dental Research 19: 326–30.Google Scholar
AlQahtani, S. J., Hector, M. P., and Liversidge, H. M. 2010. Brief communication: The London atlas of human tooth development and eruption. American Journal of Physical Anthropology 142: 481–90.Google Scholar
Ariès, P. 1977a. Essais sur L’Histoire de la Mort en Occident du Moyen Âge à Nos Jours. Paris: Editions du Seuil.Google Scholar
Ariès, P. 1977b. L’Homme devant la mort. Tome I. Paris: Editions du Seuil.Google Scholar
Bertrand, R. 1994. Les Provençaux et leurs morts – Recherches sur les pratiques funéraires, les lieux de sépultures et le culte du souvenir des morts dans le Sud-Est de la France depuis la fin du XVIIe siècle. Unpublished doctoral dissertation, vol. 5. Paris: Université de Paris I.Google Scholar
Blondiaux, J., Naji, S., Bocquet-Appel, J.-P., Colard, T., de Broucker, A., and de Seréville- Niel, C. 2016. The leprosarium of Saint-Thomas d’Aizier: The cementochronological proof of the medieval decline of Hansen disease in Europe? International Journal of Palaeopathology 15: 140–51.Google Scholar
Bocquet, J.-P., and Masset, C. 1977. Estimateurs en paléodémographie. L’Homme 17:6590.Google Scholar
Bocquet-Appel, J.-P. 2008. Recent Advances in Palaeodemography. Data, Techniques, Patterns. The Netherlands: Springer.Google Scholar
Boldsen, J., Milner, G., Konisberg, L. W., and Wood, J. W. 2002. Transition analysis: A new method for estimating age from skeletons. In Paleodemography. Age Distributions from Skeletal Samples. Hoppa, R. D. and Vaupel, J. W. (eds.). Cambridge: Cambridge University Press, 73106.Google Scholar
Bondioli, L., and Macchiarelli, R., eds. 1999. Osteodontal Biology of the People of Portua Romae (Necropolis of Isola Sacra, 2nd–3rd cent AD) II. Digital Archives of Human Palaeobiology. Milan: E-LISA Sas.Google Scholar
Buchet, L., and Séguy, I. 2013. Handbook of Palaeodemography. Cham, Switzerland: Springer.Google Scholar
Buchet, L., Caussinus, H., Courgeau, D., and Séguy, I. 2017. Atouts d’une procédure récente d’inférence bayésienne pour l’étude de l’impact des crises démographiques. Application à trois sites médiévaux bas-normands. Bulletins et Mémoires de la Société d’Anthropologie de Paris 29: 7084.Google Scholar
Buckberry, J. 2015. The (mis)use of adult age estimates in osteology. Annals of Human Biology 42(4): 323–31.Google Scholar
Caussinus, H., and Courgeau, D. 2010. Estimer l’âge sans le mesurer en paléodémographie. Population 65: 117–45.Google Scholar
Chazel, J.-C., Valcarcel, J., Tramini, P., Pelissier, B., and Mafart, B. 2005. Coronal and apical lesions, environmental factors: Study in a modern and an archeological population. Clinical Oral Investigations 9: 197202.Google Scholar
Colard, T., Bertrand, B., Naji, S., Delannoy, Y., and Bécart, A. 2018. Toward the adoption of cementochronology in forensic context. International Journal of Legal Medicine 132(4): 1117–24.Google Scholar
Condon, K., Charles, D. K., Cheverud, J. M., and Buikstra, J. E. 1986. Cementum annulation and age determination in Homo sapiens. II. Estimates and accuracy. American Journal of Physical Anthropology 71: 321–30.Google Scholar
D’Incau, E. 2012. Hypercémentose: définition, classification et fréquence. Apport des résultats à la lignée néandertalienne. Unpublished doctoral dissertation. France: Université Bordeaux I.Google Scholar
Démians d’Archimbaud, G., Pelletier, J.-P., and Flavigny, F. 2010. Notre-Dame du Bourg à Digne. Digne: Agence pour le Développement et la Valorisation du Patrimoine et Ville de Digne-les-Bains.Google Scholar
Dias, P. E. M., Beaini, T. L., and Melani, R. F. H. 2010. Age estimation from dental cementum incremental lines and periodontal disease. Journal of Forensic Odontostomatology 28: 1321.Google Scholar
Henry, L. 1984. Démographie. Analyse et Modèles. Paris: Édition de l’INED.Google Scholar
Hillson, S. (2000) Dental cement. In Dental Anthropology. Hillson, S. (ed.). Cambridge: Cambridge University Press, 198206.Google Scholar
Hoppa, R. D., and Vaupel, J. W., 2002. Palaeodemography: Age Distributions from Skeletal Samples. Cambridge: Cambridge University Press.Google Scholar
Hurme, V. O. 1949. Ranges of normalcy in the eruption of permanent teeth. Journal of Dentistry for Children 16: 1115.Google Scholar
Lanteri, L. 2016. Recrutement, paléodémographie et cémentochronologie. Application à un contexte d’inhumation paroissial d’Ancien Régime: Notre-Dame du Bourg à Digne (04, France). Unpublished doctoral dissertation. Marseille: Aix-Marseille Université.Google Scholar
Lanteri, L., Bizot, B., Saliba-Serre, B., Gaudart, J., Signoli, M., and Schmitt, A. 2018. Cementochronology: A solution to assess mortality profiles from individual age-at-death estimates. Journal of Archaeological Science: Reports 20: 576–87.Google Scholar
Liversidge, H. M., and Molleson, T. 2004. Variation in crown and root formation and eruption of human deciduous teeth. American Journal of Physical Anthropology 123(2): 172–80.Google Scholar
Milner, G. R., and Boldsen, J .L. 2012. Transition analysis estimates do not perform as well as experience-based assessments, indicating the existing procedure is too narrowly focused on commonly used pelvic and cranial structures. American Journal of Physical Anthropology 148(1): 98110.Google Scholar
Moorrees, C. F. A, Fanning, E. A, and Hunt, E. E. (1963) Age variation of formation stages for ten permanent teeth. Journal of Dental Research 42(6): 14901502.Google Scholar
Moorrees, C. F. A, Fanning, E. A, and Hunt, E. E. (1963) Formation and resorption of three deciduous teeth in children. American Journal of Physical Anthropology 21(2): 205–13.Google Scholar
Perrin, M., Ardagna, Y., Richier, A., and Schmitt, A. 2019 Paléopathologie dentaire et époque contemporaine: Le cimetière des Crottes à Marseille, 1784–1905. Bulletins et Mémoires de la Société d’Anthropologie de Paris 31(3–4): 153–70.Google Scholar
Robbins Schug, G., Brandt, E. T., and Lukacs, J. R. 2012. Cementum annulations, age estimation, and demographic dynamics in mid-Holocene foragers of North India. Journal of Human Biology 63: 94109.Google Scholar
Roksandic, M., Vlack, D., Schillaci, M. A., and Voicu, D., 2009. Technical note: Applicability of tooth cementum annulation to an archaeological population. American Journal of Physical Anthropology 140: 583–88.Google Scholar
Séguy, I., and Buchet, L. 2013. Handbook of Palaedemography, vol 2. INED Population Studies. Cham: Springer International Publishing.Google Scholar
Séguy, I., Buchet, L., Belaigues-Rossard, M., Couvert, N., and Perraut, C. 2006. Des tables- types de mortalité pour les populations pré-industrielles. In La Paléodémographie. Mémoire d’os, Mémoire d’Hommes. Buchet, L., Dauphin, C., and Séguy, I. (eds.). Sophia Antipolis: Editions APDCA, 30321.Google Scholar
Soladay Shryock, H., Siegel, J. S. et. al. 1973. Age composition. In The Methods and Materials of Demography, 2nd ed., vol. 1. Soladay Shryock, H. and Siegel, J. S. (eds.). Washington DC: US Government Printing Office, 201–51.Google Scholar
Wittwer-Backofen, U. 2012. Age estimation using tooth cementum annulation. In Forensic Microscopy for Skeletal Tissues: Methods and Protocols. Methods in Molecular Biology, vol. 915. Bell, L. S. (ed.). New York: Humana Press, Springer, 129–43.Google Scholar
Wittwer-Backofen, U., and Buba, H. 2002. Age estimation by tooth cementum annulation: Perspectives of a new validation study. In Paleodemography. Age Distributions from Skeletal Samples. Hopa, R. and Vaupel, J. (eds.). Cambridge: Cambridge University Press, 107–28.Google Scholar
Wittwer-Backofen, U., Gampe, J., and Vaupel, J. W. 2004. Tooth cementum annulation for age estimation: Results from a large known-age validation study. American Journal of Physical Anthropology 123: 119–29.Google Scholar

References

Al Qahtani, S. J., Hector, M. P., and Liversidge, H. M.. 2010. Brief Communications: The London Atlas of Human Tooth Development and Eruption. American Journal of Physical Anthropology 142(3): 481–90.Google Scholar
Arlot, S., and Celisse, A.. 2010. A Survey of Cross-Validation Procedures for Model Selection. Statistics Survey 4: 4079.Google Scholar
Bikai, P., and Perry, M.. 2001. Petra North Ridge Tombs 1 and 2: Preliminary Report. Bulletin of the American Schools of Oriental Research 324: 5978.Google Scholar
Bocquet-Appel, J.-P., and Masset, C.. 1982. Farewell to Paleodemography. Journal of Human Evolution 11(4): 321–33.Google Scholar
Bocquet-Appel, J., and Masset, C.. 1985. Matters of Moment. Journal of Human Evolution 14: 107–11.Google Scholar
Bocquet-Appel, J., and Masset, C.. 1996. Paleodemography: Expectancy and False Hope. American Journal of Physical Anthropology 99(4): 571–83.Google Scholar
Boldsen, J., Milner, G., Konigsberg, L., and Wood, J.. 2002. Transition Analysis: A New Method for Estimating Age from Skeletons. In Paleodemography: Age Distributions from Skeletal Samples. Hoppa, R. and Vaupel, J. (eds.). Cambridge: Cambridge University Press, 73106.Google Scholar
Buikstra, J., and Ubelaker, D., eds. 1994. Standards for Data Collection from Human Skeletal Remains: Proceedings of a Seminar at the Field Museum of Natural History. Arkansas: Arkansas Archeological Survey.Google Scholar
Canipe, C. 2014. Exploring Quality of Life at Petra Through Paleopathology. MA thesis, East Carolina University, Greenville.Google Scholar
Caswell, H. 2010. Life Table Response Experiment Analysis of the Stochastic Growth Rate. Journal of Ecology 98: 324–33.CrossRefGoogle Scholar
Chamberlain, A. T. 2006. Demography in Archaeology. Cambridge: Cambridge University Press.Google Scholar
Charles, D., Condon, K., Cheverud, J., and Buikstra, J.. 1986. Cementum Annulation and Age Determination in Homo Sapiens. I. Tooth Variability and Observer Error. American Journal of Physical Anthropology 71: 311–20.CrossRefGoogle ScholarPubMed
DeWitte, S. 2014. Differential Survival among Individuals with Active and Healed Periosteal New Bone Formation. International Journal of Paleopathology 7: 3844.Google Scholar
Durand, C. 2007. The Nabataeans and Oriental Trade: Roads and Commodities (Fourth Century BC to First Century AD). In Studies in the History and Archaeology of Jordan. al-Khraysheh, F (ed.). Amman: Department of Antiquities of Jordan, 405–11.Google Scholar
Gage, T. 1988. Mathematical Hazard Models of Mortality: An Alternative to Model Life Tables. American Journal of Physical Anthropology 76(4): 429–41.Google Scholar
Gompertz, B. 1825. On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies. Philosophical Transactions of the Royal Society of London 115: 513–83.Google Scholar
Gowland, R. L., and Chamberlain, A. T.. 2005. Detecting Plague: Palaeodemographic Characterisation of a Catastrophic Death Assemblage. Antiquity 79: 146–57.Google Scholar
Hoppa, R., and Vaupel, J.. 2002. The Rostock Manifesto for Paleodemography: The Way from Stage to Age. In Paleodemography: Age Distributions from Skeletal Samples. Hoppa, R. and Vaupel, J. (eds.). Cambridge: Cambridge University Press, 18.Google Scholar
Kolb, B. 2007 Nabatatean Private Architecture. The World of the Nabataeans. Politis, K. D. (ed.). Stuttgart: Franz Steiner Verlag, 145–72.Google Scholar
Makeham, W. 1860. On the Law of Mortality. Journal of the Institute of Actuaries 13: 325–58.Google Scholar
McElreath, R. 2018. Statistical Rethinking: A Bayesian Course with Examples in R and Stan. Boca Raton: CRC Press.Google Scholar
Naji, S., Colard, T., Blondiaux, J., Betrand, B., d’Incau, E., and Bocquet-Appel, J.-P.. 2016. Cementochronology, to Cut or Not to Cut? International Journal of Paleopathology 140: 17.Google Scholar
Nehmé, L. 2003. The Petra Survey Project. In Petra Rediscovered. Markoe, G. (ed.). London: Thames & Hudson, 145–63.Google Scholar
Nehmé, L. 2013. The Installation of Social Groups in Petra. In Men on the Rocks: The Formation of Nabataean Petra. Mouton, M. and Schmid, S. G. (eds.). Berlin: Logos Verlag GmbH, 113–28.Google Scholar
Parker, T., and Perry, M.. 2013. Petra North Ridge Project: The 2012 Season. Annual of the Department of Antiquities of Jordan 57: 399407Google Scholar
Parker, T., and Perry, M. 2017. Petra North Ridge Project: The 2017 Season. Annual of the Department of Antiquities of Jordan 58: 287302.Google Scholar
Perry, M. 2017. Sensing the Dead: Mortuary Ritual and Tomb Visitation at Nabataean Petra. Syria 94: 99106.Google Scholar
Perry, M., and Walker, J.. 2018. The Nabataean Way of Death on Petra’s North Ridge. In Death and Burial in the Near East from Roman to Islamic Times. Eger, C. and Mackensen, M (eds.). Wiesbaden: Reichert Verlag, 121–38.Google Scholar
Perry, M., and Lieurance, A.. 2020. The Nabataean Urban Experiment and Dental Disease and Childhood Stress. In The Bioarchaeology of Urbanization: The Biological, Demographic, and Social Consequences of Living in Cities. Betsinger, T. and DeWitte, S. (eds.). Cham: Springer International Publishing.Google Scholar
Sattenspiel, L., and Harpending, H.. 1983. Stable Populations and Skeletal Age. American Antiquity 48(3): 489–98.Google Scholar
Schmid, S. G. 2000. Petra ez-Zantur II. Ergebnisse der Schweizerisch-Liechtensteinischen Ausgrabungen, Teil I: Die Feinkeramik der Nabatäer: Typologie, Chronologie und kulturhistorische Hintergründe. Mainz: Philipp von Zabern.Google Scholar
Tholbecq, L. 2007. Nabataean Monumental Architecture. In The World of the Nabataeans. Politis, K.D. (ed.). Stuttgart: Franz Steiner Verlag, 103–43.Google Scholar
Tholbecq, L. 2016. Wadi Sabra Archaeological Project. American Journal of Archaeology 120(4): 666–7.Google Scholar
Wadeson, L. 2012. The Funerary Landscape of Petra: Results from a New Study. In The Nabataeans in Focus: Current Archaeological Research at Petra. Nehme, L. and Wadeson, L. (eds.). Oxford: Archaeopress, 99125.Google Scholar
Wadeson, L. 2013. Petra: Behind the Monumental Facades. Current World Archaeology 57(1): 1824.Google Scholar
Wittwer-Backofen, U., Gampe, J., and Vaupel, J.. 2004. Tooth Cementum Annulation for Age Estimation: Results from a Large Known-Age Validation Study. American Journal of Physical Anthropology 123: 119–29.Google Scholar
Wood, Carolann. 2004. An Investigation of the Prevalence of Rickets among Subadults from the Roman Necropolis of Isola Sacra (1st to 3rd centuries AD), Italy. PhD dissertation, McMaster University, Hamilton.Google Scholar
Wood, J., Holman, D., O’Connor, K., and Ferrell, R.. 2002. Mortality Models of Paleodemography. In Paleodemography: Age Distributions from Skeletal Samples. New York: Cambridge University Press, 129–70.Google Scholar
Wood, J., Milner, G. R., Harpending, H .C., and Weiss, K. M.. 1992. The Osteological Paradox. Current Anthropology 33(4): 343–70.Google Scholar
Yaussy, S. L., DeWitte, S. N., and Redfern, R. C.. 2016. Frailty and Famine: Patterns of Mortality and Physiological Stress among Victims of Famine in Medieval London. American Journal of Physical Anthropology 160: 272–83.CrossRefGoogle ScholarPubMed

References

Adler, P. (1967). Die chronologie der gebissentwicklung. In Harndt, E. and Weyers, H. (eds.), Zahn, Mund-und Kieferheilkunde im Kindesalter. Berlin: Die Quintessenz, 3874.Google Scholar
Bertrand, B., Cunha, E., Bécart, A., Gosset, D., and Hédouin, V. (2019). Age at death estimation by cementochronology: Too precise to be true or too precise to be accurate? Am J Phys Anthropol 169: 464–81.Google Scholar
Bocquet-Appel, J.-P., ed. (2008). Recent Advances in Palaeodemography. The Netherlands: Springer.Google Scholar
Bocquet-Appel, J.-P., and Masset, C. eds. (1982). Farewell to paleodemography. J Hum Evol 11: 321–33.Google Scholar
Brather, S. (2016). Lauchheim im frühen Mittelalter: Das DFG-Projekt und seine Perspektiven. In Koch, U., Prien, R., and Drauschke, J. (eds.), Reihengräber des Frühen Mittelalters. Remshalden: Bernhard Albert Greiner, 4754.Google Scholar
Buikstra, J. (2022). A brief history of cemental annuli research, with emphasis upon anthropological applications. In Naji, S., Gourichon, L., & Rendu, W., eds., Cementum in Anthropology: Back to the Root. Cambridge: Cambridge University Press, ch. 1.Google Scholar
Chamberlain, A. (2006). Demography in Archaeology. Cambridge: Cambridge University Press.Google Scholar
Charles, D. K., Condon, K., Cheverud, J. M., and Buikstra, J. E. (1986). Cementum annulation and age determination in Homo Sapiens. I. Tooth variability and observer error. Am J Phys Anthropol 71: 311–20.CrossRefGoogle ScholarPubMed
Großkopf, B. (1990). Individualaltersbestimmung mit Hilfe von Zuwachsringen im Zement bodengelagerter menschlicher Zähne. Zeitschrift für Rechtsmedizin 103: 251–9.Google Scholar
Großkopf, B., and McGlynn, G. (2011). Age diagnosis based on incremental lines in dental cementum: A critical reflection. Anthropologischer Anzeiger 68: 275–89.Google Scholar
Härke, H. (2014). Grave goods in early medieval burials: Messages and meaning. Mortality, 19(1): 4160.Google Scholar
Hoppa, R. D., and Vaupel, J. W. (2002). The Rostock manifesto for paleodemography: the way from stage to age. In Hoppa, R. D. and Vaupel, J. W. (eds.). Paleodemography. Age distributions from skeletal samples. Cambridge Studies in Biological and Evolutionary Anthropology 31. Cambridge: Cambridge University Press, 18.Google Scholar
Jankauskas, R., Barakauskas, S., and Bojarun, R. (2001). Incremental lines of dental cementum in biological age estimation. Homo 52/1: 5971.Google Scholar
Kargerer, P., and Grupe, G. (2001). Age-at-death diagnosis and determination of life-history parameters by incremental lines in human dental cementum as an identification aid. Forensi+c Sci Int 118: 7582.Google Scholar
Kemkes-Grottenthaler, A. (2002). Aging through the ages: Historical perspectives on age indicator methods. In Hoppa, R. D. and Vaupel, J. W. (eds.), Paleodemography: Age Distributions from Skeletal Samples. Cambridge: Cambridge University Press, 4872.Google Scholar
Kvaal, S. I., and Solheim, T. (1995). A non-destructive dental method for age estimation. J For Odontostomatol 12: 611.Google Scholar
Lanteri, L., Bizot, B., Saliba-Serre, B., Gaudart, J., Signoli, M., and Schmitt, A. (2018). Cementochronology: A solution to assess mortality profiles from individual age-at-death estimates. J Archaeol Sci: Reports 20: 576–87.Google Scholar
Luy, M., and Wittwer-Backofen, U. (2006). Das Halley-Band für paläodemographische Mortalitätsanalysen. Zeitschrift für Bevölkerungswissenschaften 30: 219–44.Google Scholar
Mani-Caplazi, G., Hotz, G., Wittwer-Backofen, U., and Vach, W. (2019). Measuring incremental line width and appearance in the tooth cementum of recent and archaeological human teeth to identify irregularities: First insight using a standard protocol. Int J Paleopathology 27: 2437.Google Scholar
Meinl, A., Huber, C. D., Tangl, S., Gruber, G. M., Teschler-Nicola, M., and Watzek, G. (2008). Comparison of the validity of three dental methods for the estimation of age at death. Forensic Sci. Int. 178: 96105.Google Scholar
Nagaoka, T., and Hirata, K. (2007). Reconstruction of paleodemographic characteristics from skeletal age at death distributions: Perspectives from Hitotsubashi, Japan. Am J Phys Anthropol 134: 301–11.Google Scholar
Ferembach, D., Schwidetzky, I., and Stloukal, M. (1980). Recommendations for age and sex diagnosis of skeletons. J Hum Evol 9: 517–49.Google Scholar
Renz, H., and Radlanski, R. J. (2006). Incremental lines in root cementum of human teeth: A reliable age marker? Homo 57: 2950.Google Scholar
Robbins Schug, G., Brandt, E. T., and Lukacs, J. R. (2012). Cementum annulations, age estimation, and demographic dynamics in Mid-Holocene foragers of north India. Homo 63: 94109.Google Scholar
Steckel, R. H., Larsen, C. S., Roberts, C. A., and Baten, J., eds. (2018). The Backbone of Europe: Health, Diet, Work, and Violence over Two Millennia. Cambridge: Cambridge University Press.Google Scholar
Stein, T. J., and Corcoran, J. F. (1994). Paradicular cementum deposition as a criterion for age in human beings. Oral Surg. Oral Med. Oral Path 77: 266–70.Google Scholar
Storey, R. (2007). An elusive paleodemography? A comparison of two methods for estimating the adult age distribution of deaths at late Classic Copan, Honduras. Am J Phys Anthropol 132: 40–7.Google Scholar
Stork, I. (2010). Friedhof und Dorf: der exemplarische Fall Lauchheim. In A. Gut (ed.), Die Alamannen auf der Ostalb: Frühe Siedler im Raum zwischen Lauchheim und Niederstotzingen. Esslingen: Landesamt für Denkmalpflege, 92105.Google Scholar
Wahl, J., Wittwer-Backofen, U., and Kunter, M. (1997). Zwischen masse und klasse: Alamannen im blickfeld der anthropologie. In Alamannen, Die (ed.), Archäologisches Landesmuseum Baden-Württemberg. Stuttgart: Theiss, 337–48.Google Scholar
Wittwer-Backofen, U. (2012). Age estimation using tooth cementum annulation. In Bell, L (ed.), Forensic Microscopy for Skeletal Tissues. Methods in Molecular Biology (915). New York: Humana Press, 129–44.Google Scholar
Wittwer-Backofen, U., Buckberry, J., Czarnetzki, A., Doppler, S., Grupe, G., Hotz, G., Kemkes, A., Larsen, C. S., Prince, D., Wahl, J., Fabig, A., and Weise, S. (2008). Basics in paleodemography: A comparison of age indicators applied to the early medieval skeletal sample of Lauchheim. Am J Phys Anthropol 137: 384–96.Google Scholar
Wittwer-Backofen, U., Gampe, J., and Vaupel, J. W. (2004). Tooth cementum annulation for age estimation: Results from a large known-age validation study. Am J Phys Anthropol 123: 119–29.Google Scholar

References

Azaz, B., Michaeli, Y., & Nitzan, D. (1977). Aging of tissues of the roots of nonfunctional human teeth (impacted canines). Oral Surgery, Oral Medicine, and Oral Pathology 43(4), 572–78.Google Scholar
Azaz, B., Ulmansky, M., Moshev, R., & Sela, J. (1974). Correlation between age and thickness of cementum in impacted teeth. Oral Surgery, Oral Medicine, Oral Pathology 38(5), 691–94.Google Scholar
Bertrand, B., Colard, T., Ramos Magalhaes, J., Cunha, E., & Hedouin, V. (2017). Computerized cementochronology taking the 16-bit between the teeth. American Journal of Physical Anthropology S64, 120.Google Scholar
Bertrand, B., Cunha, E., Bécart, A., Gosset, D., & Hédouin, V. (2019). Age at death estimation by cementochronology: Too precise to be true or too precise to be accurate? American Journal of Physical Anthropology 169(3), 464–81.Google Scholar
Bocquet-Appel, J.-P., & Bacro, J.-N. (2008). Estimation of an age distribution with its confidence intervals using an iterative bayesian procedure and a bootstrap sampling approach. In Bocquet-Appel, J.-P. (ed.), Recent Advances in Palaeodemography. The Netherlands: Springer, 6382.Google Scholar
Bocquet-Appel, J.-P., & Masset, C. (1982). Farewell to paleodemography. Journal of Human Evolution 11, 321–33.Google Scholar
Bogin, B. (2012). Chapter 11 – The evolution of human growth. In Human Growth and Development, 2nd ed. Boston: Academic Press, 287324.CrossRefGoogle Scholar
Boldsen, J. L., Milner, G. R., Konigsberg, L. W., & Wood, J. W. (2002). Transition analysis: A new method for estimating age from skeletons. In R. D. Hoppa & J. W. Vaupel (eds.), Paleodemography: age distributions from skeletal samples. Cambridge: Cambridge University Press, 73106.Google Scholar
Buikstra, J. E., & Ubelaker, D. H. (1994). Standards for Data Collection from Human Skeletal Remains: Proceedings of a Seminar at the Field Museum of Natural History, Organized by Jonathan Haas. Haas, J., Buikstra, J. E., Ubelaker, D. H., & Aftandilian, D. (eds.). Fayetteville: Arkansas Archeological Survey.Google Scholar
Burke, A. (1993). Applied skeletochronology: The horse as human prey during the Pleniglacial in Southwestern France. In Clarke, G. A. (ed.), Archaeological Papers of the American Anthropological Association 4, 145–50.Google Scholar
Caussinus, H., Buchet, L., Courgeau, D., & Séguy, I. (2017). Un problème clé de la paléodémographie: Comment estimer l’âge au décès? Journal de la Société Française de Statistique 158(2), 4371.Google Scholar
Caussinus, H., & Courgeau, D. (2013). A new method for estimating age-at-death structure. In Handbook of Palaeodemography. New York: Springer International Publishing, 255–86.Google Scholar
Cerrito, P., Bailey, S. E., Hu, B., & Bromage, T. G. (2020). Parturitions, menopause and other physiological stressors are recorded in dental cementum microstructure. Scientific Reports 10(1), 5381.Google Scholar
Chariot, P., & Caussinus, H. (2015). Age estimation in undocumented migrant adolescents: Medical response to judicial authorities. La Presse Médicale 44(1), 99100.Google Scholar
Colard, T., Bertrand, B., Naji, S., Delannoy, Y., & Bécart, A. 2015. Toward the adoption of cementochronology in forensic context. International Journal of Legal Medicine 129: 18.Google Scholar
Edinborough, M., Pilgrim, M., Fearn, S., … Edinborough, K. (2020). Mineralisation within human tooth cementum identified by secondary ion mass spectrometry. Journal of Analytical Atomic Spectrometry 35(6), 11991206.Google Scholar
Farr, J. N., & Almeida, M. (2018). The spectrum of fundamental basic science discoveries contributing to organismal aging. Journal of Bone and Mineral Research 33(9), 1568–84.Google Scholar
Gage, T. B. (1990). Variation and classification of human age patterns of mortality: Analysis using competing hazards models. Human Biology 62(5), 589617.Google Scholar
Gordon, B. C. (1988). Of Men and Reindeer Herds in French Magdalenian Prehistory. Oxford: BAR Publishing.Google Scholar
Grue, H., & Jensen, B. (1979). Review of the formation of incremental lines in tooth cementum of terrestrial mammals. Danish Review of Game Biology 11, 148.Google Scholar
Hannum, G., Guinney, J., Zhao, L., … Zhang, K. (2013). Genome-wide methylation profiles reveal quantitative views of human aging rates. Molecular Cell 49(2), 359–67.Google Scholar
Helm, B., & Lincoln, G. A. (2017). Circannual rhythms anticipate the Earth’s annual periodicity. In Kumar, V. (ed.), Biological Timekeeping: Clocks, Rhythms and Behaviour. New Delhi: Springer India, 545–69.Google Scholar
Hoppa, R. D., & Vaupel, J. W. (2002). The Rostock Manifesto for paleodemography: The way from stage to age. In Hoppa, R. D. & Vaupel, J. W. (eds.), Paleodemography: Age Distributions from Skeletal Samples. Cambridge: Cambridge University Press, 18.Google Scholar
Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology 14(10), 120.Google Scholar
Horvath, S., & Raj, K. (2018). DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nature Reviews Genetics 19(6), 371–84.CrossRefGoogle ScholarPubMed
Jylhävä, J., Pedersen, N. L., & Hägg, S. (2017). Biological age predictors. EBioMedicine, 21, 2936.Google Scholar
Kemkes-Grottenthaler, A. (2002). Aging through the ages: Historical perspectives on age indicator methods. In Hoppa, R. D. & Vaupel, J. W. (eds.), Paleodemography: Age Distributions from Skeletal Samples. Cambridge: Cambridge University Press, 4872.Google Scholar
Klevezal’, G. A. (1996). Recording Structures of Mammals: Determination of Age and Reconstruction of Life History. Rotterdam: A. A. Balkema Series.Google Scholar
Klevezal’, G. A., & Kleinenberg, S. E. (1967). Age Determination of Mammals from Annual Layers in Teeth and Bones. S.S.S.R: Akademiya Nauk.Google Scholar
Köhler, M., Marín-Moratalla, N., Jordana, X., & Aanes, R. (2012). Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology. Nature 487(7407), 358–61.Google Scholar
Konigsberg, L. W. (2015). Multivariate cumulative probit for age estimation using ordinal categorical data. Annals of Human Biology 42(4), 368–78.Google Scholar
Konigsberg, L. W., Frankenberg, S. R., & Liversidge, H. M. (2016). Optimal trait scoring for age estimation. American Journal of Physical Anthropology 159(4), 557–76.Google Scholar
Lee, H. Y., Lee, S. D., & Shin, K.-J. (2016). Forensic DNA methylation profiling from evidence material for investigative leads. BMB Reports, 49(7), 359–69.Google Scholar
Lehallier, B., Gate, D., Schaum, N., … Wyss-Coray, T. (2019). Undulating changes in human plasma proteome profiles across the lifespan. Nature Medicine 25(12), 1843–50.Google Scholar
Lieberman, D. E. (1993). Variability in hunter-gatherer seasonal mobility in the Southern Levant: From the Mousterian to the Natufian. Archaeological Papers of the American Anthropological Association 4, 207–19.Google Scholar
Lieberman, D. E. (1994). The biological basis for seasonal increments in dental cementum and their application to archaeological research. Journal of Archaeological Science 21, 525–39.Google Scholar
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell 153(6), 11941217.Google Scholar
Mani-Caplazi, G., Hotz, G., Wittwer-Backofen, U., & Vach, W. (2019). Measuring incremental line width and appearance in the tooth cementum of recent and archaeological human teeth to identify irregularities: First insights using a standardized protocol. International Journal of Paleopathology 27, 2437.Google Scholar
Mani-Caplazi, G., Schulz, G., Deyhle, H., … Müller, B. (2017). Imaging of the human tooth cementum ultrastructure of archeological teeth, using hard x-ray microtomography to determine age-at-death and stress periods. Conference paper. https://doi.org/10.1117/12.2276148Google Scholar
Matson, G. M., & Kerr, K. D. (1998). A method for dating tetracycline biomarkers in black bear cementum. Ursus 10, 455–8.Google Scholar
Matson, G., Van Daele, L., Goodwin, E., Aumiller, L., Reynolds, H., & Hristienko, H. (1993). A Laboratory Manual for Cementum Age Determination of Alaska Brown Bear PM1 Teeth. Milltown, Montana: Alaska Deptartment of Fish and Game, and Matson’s Laboratory.Google Scholar
Milner, G. R., & Boldsen, J. L. (2012). Transition analysis: A validation study with known-age modern American skeletons. American Journal of Physical Anthropology 148(1), 98110.CrossRefGoogle ScholarPubMed
Naji, S., Colard, T., Blondiaux, J., Bertrand, B., d’Incau, E., & Bocquet-Appel, J.-P. (2016). Cementochronology, to cut or not to cut? International Journal of Paleopathology 15, 113–9.Google Scholar
Newham, E. (2018). Exploring the use of tomography for the quantification of cementum growth patterns across the mammal phylogeny. Ph.D. dissertation, University of Southampton, Southampton.Google Scholar
Newham, E., Gill, P. G., Brewer, P., … Corfe, I. J. (2020). Reptile-like physiology in Early Jurassic stem-mammals. Nature Communications 11(1), 5121.Google Scholar
Nitzan, D. W., Michaeli, Y., Weinreb, M., & Azaz, B. (1986). The effect of aging on tooth morphology: A study on impacted teeth. Oral Surgery, Oral Medicine, Oral Pathology 61(1), 5460.Google Scholar
Padian, K., de Boef Miara, M., Larsson, H. C. E., Wilson, L., & Bromage, T. (2013). Research applications and integration. In Padian, K. & Lamm, E.-T. (eds.), Bone Histology of Fossil Tetrapods. Oakland: University of California Press, 265–85.Google Scholar
Pike-Tay, A. (1991). Red Deer Hunting in the Upper Paleolithic of Southwest France: A Study in Seasonality. Oxford: Tempus Reparatum.Google Scholar
Rai, B. (2009). Effect of nutrition on coronal displacement of cementum in impacted teeth. Annals of Human Biology 36(4), 431–6.Google Scholar
Sahara, N. (2014). Development of coronal cementum in hypsodont horse cheek teeth: Coronal cementogenesis in horse cheek teeth. The Anatomical Record 297(4), 716–30.Google Scholar
Sánchez-Hernández, C., Gourichon, L., Pubert, E., Rendu, W., Montes, R., & Rivals, F. (2019). Combined dental wear and cementum analyses in ungulates reveal the seasonality of Neanderthal occupations in Covalejos Cave (Northern Iberia). Scientific Reports 9(1), 14335.Google Scholar
Séguy, I., Caussinus, H., Courgeau, D., & Buchet, L. (2013). Estimating the age structure of a buried adult population: A new statistical approach applied to archaeological digs in France. American Journal of Physical Anthropology 150(2), 170–83.Google Scholar
Temple, D. H. (2018). Bioarchaeological evidence for adaptive plasticity and constraint: Exploring life-history trade-offs in the human past. Evolutionary Anthropology: Issues, News, and Reviews. https://doi.org/10.1002/evan.21754Google Scholar
Usher, B. M. (2002). Reference samples: The first step in linking biology and age in the human skeleton. In Hoppa, R. D. & Vaupel, J. W. (eds.), Paleodemography: Age Distributions from Skeletal Samples. Cambridge: Cambridge University Press, 2947.Google Scholar
Wedel, V. L. (2007). Determination of season at death using dental cementum increment analysis. Journal of Forensic Sciences 52(6), 1334–7.Google Scholar
Wedel, V. L., & Wescott, D. J. (2016). Using dental cementum increment analysis to estimate age and season of death in African Americans from an historical cemetery in Missouri. International Journal of Paleopathology 15, 134–9.Google Scholar
Wittwer-Backofen, U. (2012). Age estimation using tooth cementum annulation. In Bell, L. S. (ed.), Forensic Microscopy for Skeletal Tissues, vol. 915. Totowa, NJ: Humana Press, 129–43.Google Scholar
Wittwer-Backofen, U., & Buba, H. (2002). Age estimation by tooth cementum annulation: Perspective of a new validation study. In Hoppa, R. D. & Vaupel, J. W. (eds.), Paleodemography, Age Distributions from Skeletal Samples. Cambridge: Cambridge University Press, 107–28.Google Scholar
Wittwer-Backofen, U., Gampe, J., & Vaupel, J. W. (2004). Tooth cementum annulation for age estimation: Results from a large known-age validation study. American Journal of Physical Anthropology 123(2), 119–29.Google Scholar
Woodward, H. N., Padian, K., & Andrew, L. H. (2013). Skeletochronology. In K. Padian & E.-T. Lamm (eds.), Bone Histology of Fossil Tetrapods: Advancing Methods, Analysis, and Interpretation. Berkeley: University of California Press, 195215.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×