Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T14:53:03.770Z Has data issue: false hasContentIssue false

2 - Trigonometry

from PART TWO - FOUNDATIONS

Published online by Cambridge University Press:  05 October 2012

Thomas Hales
Affiliation:
University of Pittsburgh
Get access

Summary

Summary. This part of this book, which is the first of the four foundational chapters, presents a systematic development of trigonometry, volume, hypermap, and fan. There is a separate chapter on each of these topics. The purpose of the this material is to build a bridge between the foundations of mathematics, as presented in formal theorem proving systems such as HOL Light, and the solution to the packing problem.

In this chapter, trigonometry is developed analytically. Basic trigonometric functions are defined by their power series representations, and calculus of a single real variable is used to develop the basic properties of these functions. Basic vector geometry is presented.

Background Knowledge

formal proof

We repeat that our purpose is to give a blueprint of the formal proof of Kepler's conjecture that no packing of congruent balls in three-dimensional Euclidean space has density greater than the familiar cannonball packing. The blueprint of a formal proof is not the same as a formal proof, which is a fleeting pattern of bits in a computer. The book describes to the reader how to construct the computer code that produces and then reliably reproduces that pattern of bits.

A more traditional book might take as its starting point the imagined mathematical background of a typical reader. The blueprint of a formal proof starts instead with the current mathematical background of a formal proof assistant. I surveyed the knowledge base of my formal proof assistant and compared it with what is needed in the construction of our formal proof. It turns out that the proof assistant already has an adequate background in real analysis, basic topology, and plane trigonometry, including the trigonometric addition laws, and formulas for derivatives.

Type
Chapter
Information
Dense Sphere Packings
A Blueprint for Formal Proofs
, pp. 25 - 60
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Trigonometry
  • Thomas Hales, University of Pittsburgh
  • Book: Dense Sphere Packings
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139193894.003
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Trigonometry
  • Thomas Hales, University of Pittsburgh
  • Book: Dense Sphere Packings
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139193894.003
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Trigonometry
  • Thomas Hales, University of Pittsburgh
  • Book: Dense Sphere Packings
  • Online publication: 05 October 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139193894.003
Available formats
×