Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-22T18:07:39.054Z Has data issue: false hasContentIssue false

6 - Interactions between natural killer and dendritic cells during bacterial infections

from II - Dendritic cells and innate immune responses to bacteria

Published online by Cambridge University Press:  12 August 2009

Maria Rescigno
Affiliation:
European Institute of Oncology, Milan
Get access

Summary

Natural killer (NK) cells represent a distinct lymphoid population characterized by unique phenotypic and functional features. NK cells were originally identified on a functional basis as this denomination was assigned to lymphoid cells capable of lysing tumor cell lines in the absence of prior stimulation in vivo or in vitro. Both their origin and the mechanism(s) mediating their function remained mysterious until recently. Regarding their origin, it has been shown that NK cells derive from a precursor common to T cells and expressing the CD34+CD7+ phenotype. In addition, functional NK cells can be obtained in vitro and in vivo from (CD34+) haematopoietic precursors isolated from several different sources. The cell maturation in vitro has been shown to require appropriate feeder cells and/or IL-15. The molecular mechanisms underlying the ability of NK cells to discriminate between normal and tumor cells, predicted by the “missing self hypothesis”. have been clarified only during the past decade. It has been shown that NK cells recognize MHC-class I molecules through surface receptors delivering inhibitory, rather than activating, signals. Accordingly, NK cells lyse target cells that have lost (or express low amounts of) MHC class I molecules. This event occurs frequently in tumors or in cells infected by some viruses such as certain herpesviruses or adenoviruses. In addition to providing a first line of defence against viruses, NK cells release various cytokines and chemokines.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Trinchieri, G. (1989). Biology of natural killer cells. Adv. Immunol. 7, 176–87Google Scholar
Mingari, M. C., Poggi, A., Biassoni, R., Bellomo, R., Ciccone, E., Pella, N., et al. (1991). In vitro proliferation and cloning of CD3−CD16+ cells from human thymocyte precursors. J. Exp. Med. 174, 21–6CrossRefGoogle ScholarPubMed
Rodewald, H. R., Moingeon, P., Lucich, J. L., Dosiou, C., Lopez, P., and Reinherz, E. L. (1992). A population of early fetal thymocytes expressing FcγRII/III contains precursors of T lymphocytes and natural killer cells. Cell 69, 139–49CrossRefGoogle Scholar
Lanier, L. L., Spits, H., and Phillips, J. H. (1992). The developmental relationship between natural killer cells and T cells. Immunol. Today 13, 392–9CrossRefGoogle ScholarPubMed
Boehm, U., Klamp, T., Groot, M., and Howard, J. C. (1997). Cellular responses to interferon-gamma. Annu. Rev. Immunol. 15, 749–95CrossRefGoogle ScholarPubMed
Mingari, M. C., Vitale, C., Cantoni, C., Bellomo, R., Ponte, M., Schiavetti, F., et al. (1997). Interleukin-15-induced maturation of human natural killer cells from early thymic precursors. Selective expression of CD94/natural killerG2A as the only human leukocyte antigen-class I specific inhibitory receptor. Eur. J. Immunol. 27, 1374–80CrossRefGoogle Scholar
Ljunggren, H. G. and Kärre, K. (1990). In search of the “missing self”. major histocompatibility complex molecules and natural killer cell recognition. Immunol. Today 11, 237–44CrossRefGoogle Scholar
Ferlazzo, G., Pack, M., Thomas, D., Paludan, C., Schmid, D., Strowig, T., Bougras, G., Muller, W. A., Moretta, L., and Munz, C. (2004). Distinct roles of interleukin-12 and interleukin-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proc. Natl Acad. Sci. U S A 101, 16606–11CrossRefGoogle ScholarPubMed
Martin-Fontecha, A., Thomsen, L. L., Brett, S., Gerard, C., Lipp, M., Lanzavecchia, A., and Sallusto, F. (2004). Induced recruitment of natural killer cells to lymph nodes provides interferon-gamma for T(H)1 priming. Nat. Immunol. 5, 1260–5CrossRefGoogle Scholar
Yokoyama, W. M. and Seaman, W. E. (1993). The Ly49 and natural killerR-P1 gene families encoding lectin-like receptors on natural killer cells: the natural killer gene complex. Annu. Rev. Immunol. 11, 613–35CrossRefGoogle Scholar
Moretta, A., Bottino, C., Vitale, M., et al. (1996). Receptors for human leukocyte antigen-class I-molecules in human natural killer cells. Annu. Rev. Immunol. 14, 619–48CrossRefGoogle Scholar
Lanier, L. L. (1998). natural killer cell receptors. Annu. Rev. Immunol. 16, 359–93CrossRefGoogle Scholar
Long, E. O. (1999). Regulation of immune response through inhibitory receptors. Annu. Rev. Immunol. 17, 875–904CrossRefGoogle Scholar
Lopez-Botet, M., Pérez Villar, M., Carretero, M., et al. (1997). Structure and function of the CD94 C-type lectin receptor complex involved in the recognition of human leukocyte antigen class I molecules. Immunol. Rev. 155, 165–74CrossRefGoogle Scholar
Khakoo, S. I., Rajalingam, R., Shum, B. P., et al. (2000). Rapid evolution of natural killer cell receptor systems demonstrated by comparison of chimpanzees and humans. Immunity 12, 687–98CrossRefGoogle ScholarPubMed
Robertson, M. J. and Ritz, J. (1990). Biology and clinical relevance of human natural killer cells. Blood 76, 2421–38Google ScholarPubMed
Campbell, J. J., Qin, S., Unutmaz, D., Soler, D., Murphy, K. E., Hodge, M. R., Wu, L., and Butcher, E. C. (2001). Unique subpopulations of CD56+ natural killer and natural killer-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire. J. Immunol. 166, 6477–82CrossRefGoogle Scholar
Jacobs, R., Hintzen, G., Kemper, A., Beul, K., Kempf, S., Behrens, G., Sykora, K. W., and Schmidt, R. E. (2001). CD56bright cells differ in their killer Ig-like receptors repertoire and cytotoxic features from CD56dim natural killer cells. Eur. J. Immunol. 31, 3121–73.0.CO;2-4>CrossRefGoogle Scholar
Cooper, M. A., Fehniger, T. A., Turner, S. C., Chen, K. S., Ghaheri, B. A., Ghayur, T., Carson, W. E., and Caligiuri, M. A. (2001). Human natural killer cells: a unique innate immunoregulatory role for the CD56bright subset. Blood 97, 3146–51CrossRefGoogle Scholar
Moretta, A., Bottino, C., Vitale, M., Pende, D., Cantoni, C., Mingari, M. C., Biassoni, R., and Moretta, L. (2001). Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu. Rev. Immunol. 19, 197–223CrossRefGoogle ScholarPubMed
Moretta, L., Bottino, C., Pende, D., Mingari, M. C., Biassoni, R., and Moretta, A. (2002). Human natural killer cells: their origin, receptors and function. Eur. J. Immunol. 32, 1205–113.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Moretta, L., Ferlazzo, G., Mingari, M. C., Melioli, G., and Moretta, A. (2003). Human natural killer cell function and their interactions with dendritic cells. Vaccine 21, Suppl. 2, S38.CrossRefGoogle ScholarPubMed
Bauer, S., Groh, V., Wu, J., Steinle, A., Phillips, J. H., Lanier, L. L., and Spies, T. (1999). Activation of natural killer cells and T cells by natural killerG2D, a receptor for stress- inducible MICA. Science 285, 727–9CrossRefGoogle Scholar
Cosman, D., Mullberg, J., Sutherland, C. L., Chin, W., Armitage, R., Fanslow, W., Kubin, M., and Chalupny, N. J. (2001). ULBPs, novel major histocompatibility complex class I-related molecules, bind to CMV glycoprotein UL16 and stimulate natural killer cytotoxicity through the natural killerG2D receptor. Immunity 14, 123–33CrossRefGoogle Scholar
Fehniger, T. A., Cooper, M. A., Nuovo, G. J., Cella, M., Facchetti, F., Colonna, M., and Caligiuri, M. A. (2003). CD56bright natural killer cells are present in human lymph nodes and are activated by T cell-derived interleukin-2: a potential new link between adaptive and innate immunity. Blood 101, 3052–7CrossRefGoogle Scholar
Ferlazzo, G., Lin, S. L., Goodman, K., Thomas, D., Morandi, B., Muller, W. A., Moretta, A., and Münz, C. (2004). The abundant natural killer cells in human lymphoid tissues require activation to become cytolytic. J. Immunol. 172, 1455–62CrossRefGoogle ScholarPubMed
Westermann, J. and Pabst, R. (1992). Distribution of lymphocyte subsets and natural killer cells in the human body. Clin. Investig. 70, 539–44CrossRefGoogle ScholarPubMed
Trepel, F. (1974). Number and distribution of lymphocytes in man. A critical analysis. Klin. Wochenschr. 52, 511–15CrossRefGoogle Scholar
Gerosa, F., Baldani-Guerra, B., Nisii, C., Marchesini, V., Carra, G., and Trinchieri, G. (2002). Reciprocal activating interaction between natural killer cells and dendritic cells. J. Exp. Med. 195, 327–33CrossRefGoogle ScholarPubMed
Gerosa, F., Gobbi, A., Zorzi, P., Burg, S., Briere, F., Carra, G., and Trinchieri, G. (2005). The reciprocal interaction of natural killer cells with plasmacytoid or myeloid dendritic cells profoundly affects innate resistance functions. J. Immunol. 174, 727–34CrossRefGoogle ScholarPubMed
Piccioli, D., Sbrana, S., Melandri, E., and Valiante, N. M. (2002). Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J. Exp. Med. 195, 335–41CrossRefGoogle ScholarPubMed
Fernandez, N. C., Lozier, A., Flament, C., Ricciardi-Castagnoli, P., Bellet, D., Suter, M., Perricaudet, M., Tursz, T., Maraskovsky, E., and Zitvogel, L. (1999). Dendritic cells directly trigger natural killer cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nat. Med. 5, 405–11CrossRefGoogle ScholarPubMed
Ferlazzo, G., Tsang, M. L., Moretta, L., Melioli, G., Steinman, R. M., and Munz, C. (2002). Human dendritic cells activate resting natural killer (natural killer) cells and are recognized via the natural killerp30 receptor by activated natural killer cells. J. Exp. Med. 195, 343–51CrossRefGoogle Scholar
Andrews, D. M., Scalzo, A. A., Yokoyama, W. M., Smyth, M. J., and Degli-Esposti, M. A. (2003). Functional interactions between dendritic cells and natural killer cells during viral infection. Nat. Immunol. 4, 175–81CrossRefGoogle ScholarPubMed
Dalod, M., Hamilton, T., Salomon, R., Salazar-Mather, T. P., Henry, S. C., Hamilton, J. D., and Biron, C. A. (2003). Dendritic cell responses to early murine cytomegalovirus infection: subset functional specialization and differential regulation by interferon alpha/beta. J. Exp. Med. 197, 885–98CrossRefGoogle ScholarPubMed
Orange, J. S. and Biron, C. A. (1996). An absolute and restricted requirement for interleukin-12 in natural killer cell interferon-γ production and antiviral defense. Studies of natural killer and T cell responses in contrasting viral infections. J. Immunol. 156, 1138–42Google Scholar
Nguyen, K. B., Salazar-Mather, T. P., Dalod, M. Y., Deusen, J. B., Wei, X. Q., Liew, F. Y., Caligiuri, M. A., Durbin, J. E., and Biron, C. A. (2002). Coordinated and distinct roles for interferon-alpha beta, interleukin-12, and interleukin-15 regulation of natural killer cell responses to viral infection. J. Immunol. 169, 4279–87CrossRefGoogle ScholarPubMed
Granucci, F., Vizzardelli, C., Pavelka, N., Feau, S., Persico, M., Virzi, E., Rescigno, M., Moro, G., and Ricciardi-Castagnoli, P. (2001). Inducible interleukin-2 production by dendritic cells revealed by global gene expression analysis. Nat. Immunol. 2, 882–8CrossRefGoogle ScholarPubMed
Granucci, F., Feau, S., Angeli, V., Trottein, F., and Ricciardi-Castagnoli, P. (2003). Early interleukin-2 production by mouse dendritic cells is the result of microbial-induced priming. J. Immunol. 170, 5075–81CrossRefGoogle ScholarPubMed
Nishioka, Y., Nishimura, N., Suzuki, Y., and Sone, S. (2001). Human monocyte-derived and CD83+ blood dendritic cells enhance natural killer cell-mediated cytotoxicity. Eur. J. Immunol. 31, 2633–413.0.CO;2-2>CrossRefGoogle Scholar
Yu, Y., Hagihara, M., Ando, K., Gansuvd, B., Matsuzawa, H., Tsuchiya, T., Ueda, Y., Inoue, H., Hotta, T., and Kato, S. (2001). Enhancement of human cord blood CD34+ cell-derived natural killer cell cytotoxicity by dendritic cells. J. Immunol. 166, 1590–1600CrossRefGoogle ScholarPubMed
Ferlazzo, G., Morandi, B., D'Agostino, A., Meazza, R., Melioli, G., Moretta, A., and Moretta, L. (2003). The interaction between natural killer cells and dendritic cells in bacterial infections results in rapid induction of natural killer cell activation and in the lysis of uninfected dendritic cells. Eur. J. Immunol. 33, 306–13CrossRefGoogle ScholarPubMed
Munz, C., Dao, T., Ferlazzo, G., Cos, M. A., Goodman, K., and Young, J. W. (2005). Mature myeloid dendritic cell subsets have distinct roles for activation and viability of circulating human natural killer cells. Blood 105, 266–73CrossRefGoogle ScholarPubMed
Siegal, F. P., Kadowaki, N., Shodell, M., Fitzgerald-Bocarsly, P. A., Shah, K., Ho, S., Antonenko, S., and Liu, Y. J. (1999). The nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835–7CrossRefGoogle ScholarPubMed
Bandyopadhyay, S., Perussia, B., Trinchieri, G., Miller, D. S., and Starr, S. E. (1986). Requirement for human leukocyte antigen-DR+ accessory cells in natural killing of cytomegalovirus-infected fibroblasts. J. Exp. Med. 164, 180–95CrossRefGoogle ScholarPubMed
Dalod, M., Salazar-Mather, T. P., Malmgaard, L., Lewis, C., Asselin-Paturel, C., Briere, F., Trinchieri, G., and Biron, C. A. (2002). Interferon α/β and interleukin 12 responses to viral infections: pathways regulating dendritic cell cytokine expression in vivo. J. Exp. Med. 195, 517–28CrossRefGoogle ScholarPubMed
Feldman, M., Howell, D., and Fitzgerald-Bocarsly, P. (1992). Interferon-α-dependent and -independent participation of accessory cells in natural killer cell-mediated lysis of HSV-1-infected fibroblasts. J. Leukoc. Biol. 52, 473–82CrossRefGoogle ScholarPubMed
Diebold, S. S., Montoya, M., Unger, H., Alexopoulou, L., Roy, P., Haswell, L. E., Al-Shamkhani, A., Flavell, R., Borrow, P., and Sousa, C. Reis e (2003). Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature 424, 324–8CrossRefGoogle ScholarPubMed
Granucci, F., Zanoni, I., Pavelka, N., Dommelen, S. L., Andoniou, C. E., Belardelli, F., Esposti, M. A. Degli, and Ricciardi-Castagnoli, P. (2004). A contribution of mouse dendritic cell-derived interleukin-2 for natural killer cell activation. J. Exp. Med. 200, 287–95CrossRefGoogle Scholar
Jinushi, M., Takehara, T., Kanto, T., Tatsumi, T., Groh, V., Spies, T., Miyagi, T., Suzuki, T., Sasaki, Y., and Hayashi, N. (2003). Critical role of major histocompatibility complex class I-related chain A and B expression on interferon-α-stimulated dendritic cells in natural killer cell activation: impairment in chronic hepatitis C virus infection. J. Immunol. 170, 1249–56CrossRefGoogle Scholar
Jinushi, M., Takehara, T., Tatsumi, T., Kanto, T., Groh, V., Spies, T., Suzuki, T., Miyagi, T., and Hayashi, N. (2003). Autocrine/paracrine interleukin-15 that is required for type I interferon-mediated dendritic cell expression of major histocompatibility complex class I-related chain A and B is impaired in hepatitis C virus infection. J. Immunol. 171, 5423–9CrossRefGoogle Scholar
Inaba, K., Inaba, M., Naito, M., and Steinman, R. M. (1993). Dendritic cell progenitors phagocytose particulates, including bacillus Calmette-Guerin organisms, and sensitize mice to mycobacterial antigens in vivo. J. Exp. Med. 178, 479–88CrossRefGoogle ScholarPubMed
Demangel, C., Bean, A. G., Martin, E., Feng, C. G., Kamath, A. T., Britton, and W. J. (1999). Protection against aerosol Mycobacterium tuberculosis infection using Mycobacterium bovis Bacillus Calmette Guerin-infected dendritic cells. Eur. J. Immunol. 29, 1972–93.0.CO;2-1>CrossRefGoogle ScholarPubMed
Cooper, M. A., Fehniger, and M. A T. A.. Caligiuri, (2001). The biology of human natural killer-cell subsets. Trends Immunol. 22, 633–40CrossRefGoogle ScholarPubMed
Mattei, F., Schiavoni, G., Belardelli, F., Tough, and D. F. (2001). interleukin-15 is expressed by dendritic cells in response to type I interferon, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation. J. Immunol. 167, 1179–87CrossRefGoogle ScholarPubMed
Wilson, J. L., Heffler, L. C., Charo, J., Scheynius, A., Bejarano, M. T., and Ljunggren, H. G. (1999). Targeting of human dendritic cells by autologous natural killer cells. J. Immunol. 163, 6365–70Google Scholar
Ferlazzo, G., Semino, C., and Melioli, G. (2001). human leukocyte antigen class I molecule expression is up-regulated during maturation of dendritic cells, protecting them from natural killer cell-mediated lysis. Immunol. Lett. 76, 37–41CrossRefGoogle ScholarPubMed
Moretta, A. (2002). Natural killer and dendritic cells: rendezvous in abused tissues. Nat. Rev. Immunol. 2, 1–8CrossRefGoogle ScholarPubMed
Buentke, E., Heffler, L. C., Wilson, J. L., Wallin, R. P., Lofman, C., Chambers, B. J., Ljunggren, H. G., and Scheynius, A. (2002). Natural killer and dendritic cell contact in lesional atopic dermatitis skin-Malassezia-influenced cell interaction. J. Invest. Dermatol. 119, 850–7CrossRefGoogle ScholarPubMed
Bazan, J. F., Bacon, K. B., Hardiman, G., Wang, W., Soo, K., Rossi, D., Greaves, D. R., Zlotnik, A., and Schall, T. J. (1997). A new class of membrane-bound chemokine with a CX3C motif. Nature 385, 640–4CrossRefGoogle ScholarPubMed
Hoffmann, E., Dittrich-Breiholz, O., Holtmann, H., and Kracht, M. (2002). Multiple control of interleukin-8 gene expression. J. Leukoc. Biol. 72, 847–55Google ScholarPubMed
Nishimura, M., Umehara, H., Nakayama, T., Yoneda, O., Hieshima, K., Kakizaki, M., Dohmae, N., Yoshie, O., and Imai, T. (2002). Dual functions of fractalkine/CX3C ligand 1 in trafficking of perforin+/granzyme B+ cytotoxic effector lymphocytes that are defined by CX3CR1 expression. J. Immunol. 168, 6173–80CrossRefGoogle ScholarPubMed
Dowdell, K. C., Cua, D. J., Kirkman, E., and Stohlman, S. A. (2003). natural killer cells regulate CD4 responses prior to antigen encounter. J. Immunol. 171, 234–9CrossRefGoogle ScholarPubMed
Coudert, J. D., Coureau, C., and Guery, J. C. (2002). Preventing natural killer cell activation by donor dendritic cells enhances allospecific CD4 T cell priming and promotes Th type 2 responses to transplantation antigens. J. Immunol. 169, 2979–87CrossRefGoogle ScholarPubMed
Ferlazzo, G. and Munz, C. (2004). natural killer cell compartments and their activation by dendritic cells. J. Immunol. 172, 1333–9CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×