Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-22T18:35:26.957Z Has data issue: false hasContentIssue false

8 - Dendritic cells, macrophages and cross-presentation of bacterial antigens: a lesson from Salmonella

from III - Dendritic cells and adaptive immune responses to bacteria

Published online by Cambridge University Press:  12 August 2009

Maria Rescigno
Affiliation:
European Institute of Oncology, Milan
Get access

Summary

INTRODUCTION

Immunity to a bacterial pathogen requires the generation of bacteria-specific T cells with appropriate effector function. Eliciting T cells during infection requires internalization of the bacteria and processing of bacterial proteins to generate peptides for presentation on major histocompatibility complex (MHC) class I (MHC-I) and/or MHC class II (MHC-II) molecules, depending on the pathogen. As not all host cells have the capacity to phagocytose bacteria, and not all bacterial pathogens have the capacity to actively invade non-phagocytic cells, phagocytic antigen presenting cells, macrophages and immature dendritic cells (DCs), are the key players in generating adaptive immunity to bacteria.

Both macrophages and immature dendritic cells can present antigens from the bacteria they internalize on their own MHC-I and MHC-II molecules and thus carry out so-called direct presentation of bacterial antigens (Sundquist et al., 2004; Harding et al., 2003). Direct presentation of bacterial antigens on MHC-II is the expected outcome following phagocytosis of bacteria and is the event necessary to elicit CD4+ T cells. However, both macrophages and DCs can also present antigens from internalized bacteria on MHC-I, molecules most renowned for their presentation of peptides derived from endogenously synthesized proteins (Rock and Goldberg, 1999), and generate CD8+ T cells (Sundquist et al., 2004; Harding et al., 2003).

Given the capacity of both macrophages and DCs to directly present bacterial antigens on MHC-I and MHC-II, these cells in principle could initiate adaptive immunity during primary infection. However, it is only DCs that have this ability (Banchereau and Steinman, 1998).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avogadri, F., Martinoli, C., Petrovska, L.et al. (2005). Cancer immunotherapy based on killing of Salmonella-infected tumor cells. Cancer Res. 65, 3920–7CrossRefGoogle ScholarPubMed
Banchereau, J. and Steinman, R. M. (1998). Dendritic cells and the control of immunity. Nature 392, 245–52CrossRefGoogle ScholarPubMed
Brumell, J. H. and Grinstein, S. (2004). Salmonella redirects phagosomal maturation. Curr. Opin. Microbiol. 7, 78–84CrossRefGoogle ScholarPubMed
Cheminay, C., Möhlenbrink, A. and Hensel, M. (2005). Intracellular Salmonella inhibit antigen presentation by dendritic cells. J. Immunol. 174, 2892–9CrossRefGoogle ScholarPubMed
Eriksson, S., Chambers, B. J. and Rhen, M. (2003). Nitric oxide produced by murine dendritic cells is cytotoxic for intracellular Salmonella enterica sv. Typhimurium. Scand. J. Immunol. 58, 493–502CrossRefGoogle ScholarPubMed
Fonteneau, J.-F., Larsson, M. and Bhardwaj, N. (2002). Interactions between dead cells and dendritic cells in the induction of antiviral cytotoxic T lymphocytes responses. Curr. Opin. Immunol. 14, 471–7CrossRefGoogle Scholar
Groisman, E. A. (2001). The pleiotropic two-component regulatory system PhoP-PhoQ. J. Bacteriol. 183, 1835–42CrossRefGoogle ScholarPubMed
Guermonprez, P., Saveanu, L., Kleijmeer, M., Davoust, J., Endert, P., and Amigorena, S. (2003). endoplasmic reticulum-phagosome fusion defines an major histocompatibility complex class I cross-presentation compartment in dendritic cells. Nature 425, 397–402CrossRefGoogle Scholar
Guyre, C. A., Barreda, M. E., Swink, S. L. and Fanger, M. W. (2001). Colocalization of FcγRI-targeted antigen with class I major histocompatibility complex: implications for antigen processing. J. Immunol. 166, 2469–78CrossRefGoogle Scholar
Harding, C. V., Ramachandra, L. and Wick, M. J. (2003). Interaction of bacteria with antigen presenting cells: influences on antigen presentation and antibacterial immunity. Curr. Opin. Immunol. 15, 112–19CrossRefGoogle ScholarPubMed
Houde, M., Bertholet, S., Gagnon, E., Brunet, S., Goyette, G., Laplante, A.et al. (2003). Phagosomes are competent organelles for antigen cross-presentation. Nature 425, 402–6CrossRefGoogle ScholarPubMed
Hu, P. Q., Tuma-Warrino, R. J., Bryan, M. A., Mitchell, K. G., Higgins, D. E., Watkins, S. C. and Salter, R. D. (2004). Escherichia coli expressing recombinant antigen and listeriolysin O stimulate class I-restricted CD8+ T cells following uptake by human antigen-presenting cell. J. Immunol. 172, 1595–601CrossRefGoogle Scholar
Janda, J., Schöneberger, P., Skoberne, M., Messerle, M., Rüssmann, H., and Geginat, G. (2004). Cross-presentation of Listeria-derived CD8 T cell epitopes requires unstable bacterial translation products. J. Immunol. 173, 5644–51CrossRefGoogle ScholarPubMed
Johannson, C. and Wick, M. J. (2004). Liver dendritic cells present bacterial antigens and produce cytokines upon Salmonella encounter. J. Immunol. 172, 2496–503CrossRefGoogle Scholar
Jones, B. D., Ghori, N. and Falkow, S. (1994). Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J. Exp. Med. 180, 15–23CrossRefGoogle ScholarPubMed
Kalergis, A. M. and Ravetch, J. V. (2002). Inducing tumor immunity through the selective engagement of activating Fcγ receptors on dendritic cells. J. Exp. Med. 195, 1653–9CrossRefGoogle ScholarPubMed
Kirby, A. C., Yrlid, U. and Wick, M. J. (2002). The innate immune response differs in primary and secondary Salmonella infection. J. Immunol. 169, 4450–9CrossRefGoogle ScholarPubMed
Kirby, A. C., Yrlid, U., Svensson, M. and Wick, M. J. (2001). Differential involvement of dendritic cell subsets during acute Salmonella infection. J. Immunol. 166, 6802–11CrossRefGoogle ScholarPubMed
Lin, J.-S., Yang, C.-W., Wang, D.-W. and Wu-Hsieh, B. A. (2005). Dendritic cells cross-present exogenous fungal antigens to stimulate a protective CD8 T cell response in infection byHistoplasma capsulatum. J. Immunol. 174, 6282–91CrossRefGoogle Scholar
Machy, P., Serre, K. and Leserman, L. (2000). Class I-restricted presentation of exogenous antigen acquired by Fcγ receptor-mediated endocytosis is regulated in dendritic cells. Eur. J. Immunol. 30, 848–573.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Macpherson, A. J. and Uhr, T. (2004). Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303, 1662–5CrossRefGoogle ScholarPubMed
Mariott, I., Hammond, T. G., Thomas, E. K. and Rost, K. L. (1999). Salmonella efficiently enter and survive within cultured CD11c+ dendritic cells initiating cytokine expression. Eur. J. Immunol. 29, 1107–153.0.CO;2-0>CrossRefGoogle Scholar
Mastroeni, P. (2002). Immunity to systemic Salmonella infections. Curr. Molec. Med. 2, 393–406CrossRefGoogle ScholarPubMed
McSorley, S. J., Asch, S., Costalonga, M., Reinhardt, R. L. and Jenkins, C. (2002). Tracking Salmonella-specific CD4 T cells in vivo reveals a local mucosal response to a disseminated infection. Immunity 16, 365–77CrossRefGoogle ScholarPubMed
Monack, D. M., Navarre, W. W. and Falkow, S. (2001). Salmonella-induced macrophage death: the role of caspase-1 in death and inflammation. Microb. Infect. 3, 1201–12CrossRefGoogle ScholarPubMed
Monack, D. M., Bouley, D. M. and Falkow, S. (2004). Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by interferonγ neutralization. J. Exp. Med. 199, 231–41CrossRefGoogle Scholar
Niedergang, F., Sirard, J.-C., Tallichet Blanc, C. and Kraehenbuhl, J.-P. (2000). Entry and survival of Salmonella typhimurium in dendritic cells and presentation of recombinant antigens do not require macrophage-specific virulence factors. Proc. Natl Acad. Sci. U S A 97, 14650–5CrossRefGoogle Scholar
Niess, J. H., Brand, S., Gu, X., Landsman, L., Jung, S., McCormick, B. A.et al. (2005). CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307, 254–8CrossRefGoogle ScholarPubMed
Ohl, M. E. and Miller, S. I. (2001). Salmonella: A model for bacterial pathogenesis. Annu. Rev. Med. 52, 259–74CrossRefGoogle ScholarPubMed
Petrovska, L., Aspinall, R. J., Barber, L., Clare, S., Simmons, C. P., Stratford, R.et al. (2004). Salmonella enterica serovar Typhimurium interaction with dendritic cells: impact of the sifA gene. Cellular Microbiol. 6, 1071–84CrossRefGoogle ScholarPubMed
Regnault, A., Lankar, D., Lacabanne, V., Rodriguez, A., Théry, C., Rescigno, M.et al. (1999). Fcγ receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J. Exp. Med. 189, 371–80CrossRefGoogle ScholarPubMed
Rescigno, M., Urbano, M., Valzasina, B., Francolini, M., Rotta, G., Bonasio, R.et al. (2001). Dendritic cells express tight junction proteins and penetrate gut epithelia monolayers to sample bacteria. Nature Immunol. 2, 361–7CrossRefGoogle Scholar
Richter-Dahlfors, A., Buchan, A. M. J. and Finlay, B. B. (1997). Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J. Exp. Med. 186, 569–80CrossRefGoogle ScholarPubMed
Rock, K. L. and Goldberg, A. L. (1999). Degradation of cell proteins and the generation of major histocompatibility complex class I-presented peptides. Annu. Rev. Immunol. 17, 739–79CrossRefGoogle Scholar
Salcedo, S. P., Noursadeghi, M., Cohen, J. and Holden, D. W. (2001). Intracellular replication of Salmonella typhimurium strains in specific subsets of splenic macrophages in vivo. Cell. Microbiol. 3, 587–97CrossRefGoogle ScholarPubMed
Schaible, U. E., Winau, F., Sieling, P. A., Fischer, K., Collins, H. L., Hagens, K.et al. (2003). Apoptosis facilitates antigen presentation to T lymphocytes through major histocompatibility complex-I and CD1 in tuberculosis. Nature Med. 9, 1039–46CrossRefGoogle Scholar
Sheppard, M., Webb, C., Heath, F., Mallos, V., Emilianus, R., Maskell, D., and Mastroeni, P. (2003). Dynamics of bacterial growth and distribution within the liver during Salmonella infection. Cellular Microbiol. 5, 593–600CrossRefGoogle ScholarPubMed
Skoberne, M., Schenk, S., Hof, H. and Geginat, G. (2002). Cross-presentation of Listeria monocytogenes-derived CD4 T cell epitopes. J. Immunol. 169, 1410–18CrossRefGoogle ScholarPubMed
Song, R. and Harding, C. V. (1996). Roles of proteasomes, transporter for antigen presentation (transporter associated with antigen processing), and β2-microglobulin in the processing of bacterial or particulate antigens via an alternate class I major histocompatibility complex processing pathway. J. Immunol. 156, 4182–90Google Scholar
Sundquist, M. and Wick, M. J. (2005). Tnuclear factor-α-dependent and-independent maturation of dendritic cells and recruited CD11cintCD11b+ cells during oral Salmonella infection. J. Immunol. 175, 3287–98CrossRefGoogle Scholar
Sundquist, M., Rydström, A. and Wick, M. J. (2004). Immunity to Salmonella from a dendritic point of view. Cell. Microbiol. 6, 1–11CrossRefGoogle ScholarPubMed
Svensson, M. and Wick, M. J. (1999). Classical major histocompatibility complex-I presentation of a bacterial fusion protein by bone marrow-derived dendritic cells. Eur. J. Immunol. 29, 180–83.0.CO;2-W>CrossRefGoogle Scholar
Svensson, M., Stockinger, B. and Wick, M. J. (1997). Bone marrow-derived dendritic cells can process bacteria for major histocompatibility complex-I and major histocompatibility complex-II presentation to T cells. J. Immunol. 158, 4229–36Google Scholar
Svensson, M., Johansson, C. and Wick, M. J. (2000). Salmonella enterica serovar Typhimurium-induced maturation of bone marrow-derived dendritic cells. Infect. Immun. 68, 6311–20CrossRefGoogle ScholarPubMed
Svensson, M., Johannson, C. and Wick, M. J. (2001). Salmonella typhimurium-induced cytokine production and surface molecule expression by murine macrophages. Microb. Pathog. 31, 91–102CrossRefGoogle ScholarPubMed
Tobar, J. A., González, P. A. and Kalergis, A. M. (2004). Salmonella escape from antigen presentation can be overcome by targeting bacteria to Fcγ receptors on dendritic cells. J. Immunol. 173, 4058–65CrossRefGoogle Scholar
Tvinnereim, A. R., Hamilton, S. E. and Harty, J. T. (2004). Neutrophil involvement in cross-priming CD8+ T cell responses to bacterial antigens. J. Immunol. 173, 1994–2002CrossRefGoogle ScholarPubMed
Velden, A. W. M., Velassquez, M. and Starnbach, M. N. (2003). Salmonella rapidly kill dendritic cells via a caspase-1-dependent mechanism. J. Immunol. 171, 6742–9CrossRefGoogle Scholar
Waterman, S. R. and Holden, D. W. (2003). Functions and effectors of the Salmonella pathogenicity island 2 type III secretion system. Cellular Microbiol. 5, 501–11CrossRefGoogle ScholarPubMed
Wick, M. J. and Pfeifer, J. D. (1996). major histocompatibility complex-I presentation of chicken ovalbumin(257–264) from exogenous sources: protein context influences the degree of transporter associated with antigen processing-independent presentation. Eur. J. Immunol. 26, 2790–9CrossRefGoogle Scholar
Wick, M. J. and Ljunggren, H.-G. (1999). Processing of bacterial antigens for peptide presentation on major histocompatibility complex class I molecules. Immunol. Rev. 172, 153–62CrossRefGoogle Scholar
Winau, F., Kaufmann, S. H. E. and Schaible, U. E. (2004). Apoptosis paves the detour path for CD8 T cell activation against intracellular bacteria. Cellular Microbiol. 6, 599–607CrossRefGoogle ScholarPubMed
Yrlid, U. and Wick, M. J. (2000). Salmonella-induced apoptosis of infected macrophages results in presentation of a bacteria-encoded antigen after uptake by bystander dendritic cells. J. Exp. Med. 191, 613–23CrossRefGoogle ScholarPubMed
Yrlid, U. and Wick, M. J. (2002). Antigen presentation capacity and cytokine production by murine splenic dendritic cell subsets upon Salmonella encounter. J. Immunol. 169, 108–16CrossRefGoogle ScholarPubMed
Yrlid, U., Svensson, M., Kirby, A. C. and Wick, M. J. (2001). Antigen-presenting cells and anti-Salmonella immunity. Microb. Infect. 3, 1239–48CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×