Skip to main content Accessibility help
×
  • Cited by 13
Publisher:
Cambridge University Press
Online publication date:
March 2019
Print publication year:
2019
Online ISBN:
9781108590518

Book description

This study of Schrödinger equations with power-type nonlinearity provides a great deal of insight into other dispersive partial differential equations and geometric partial differential equations. It presents important proofs, using tools from harmonic analysis, microlocal analysis, functional analysis, and topology. This includes a new proof of Keel–Tao endpoint Strichartz estimates, and a new proof of Bourgain's result for radial, energy-critical NLS. It also provides a detailed presentation of scattering results for energy-critical and mass-critical equations. This book is suitable as the basis for a one-semester course, and serves as a useful introduction to nonlinear Schrödinger equations for those with a background in harmonic analysis, functional analysis, and partial differential equations.

Reviews

‘This book is an excellent introduction to the energy-critical and mass critical problems and is recommended to researchers and graduate students as a guide to advanced methods in nonlinear partial differential equations.’

Tohru Ozawa Source: MathSciNet

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.