Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-06T02:45:25.784Z Has data issue: false hasContentIssue false

Gravitational instabilities in protoplanetary disks

Published online by Cambridge University Press:  22 October 2009

Richard H. Durisen
Affiliation:
Department of Astronomy, Indiana University, 727 E. 3rd Street, Bloomington, IN 47405-7105, USA
Mario Livio
Affiliation:
Space Telescope Science Institute, Baltimore
Kailash Sahu
Affiliation:
Space Telescope Science Institute, Baltimore
Jeff Valenti
Affiliation:
Space Telescope Science Institute, Baltimore
Get access

Summary

In a protoplanetary disk that is sufficiently cold and massive, gravitational instabilities (GIs) will lead to the development of dense spiral waves on a dynamic time scale. For sufficiently short cooling times, comparable to about half a rotation period, an unstable disk will fragment into dense clumps that could be the precursors of gas giant protoplanets. At moderate cooling rates, the strong spiral waves which permeate the disk do not fragment, but nevertheless generate significant mass and angular momentum transport. I will review recent research on GIs with an emphasis on several critical questions: Do GIs cause planets to form? How fast do they transport mass? When do they occur? How do they affect the solids in the disk? The physical processes that are central to answering these questions are radiative and possibly convective cooling, irradiation of the disk, and gas-solid interactions. I conclude that, while it is unlikely that gas giant planets are formed directly by disk instability, GIs may substantially accelerate both planetesimal formation and core accretion.

Type
Chapter
Information
A Decade of Extrasolar Planets around Normal Stars
Proceedings of the Space Telescope Science Institute Symposium, held in Baltimore, Maryland May 2–5, 2005
, pp. 153 - 177
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×