Published online by Cambridge University Press: 22 October 2009
The core accretion—gas capture model is generally accepted as the standard formation model for gas giant planets. It proposes that a solid core grows via the accretion of planetesimals, and then captures a massive envelope from the solar nebula gas. Simulations have been successful in explaining many features of giant planets. This chapter will present an overview of the historical and scientific developments of the model, a description of the computer code based on the core accretion hypothesis with a summary of results of recent computer simulations, and the effect the observational achievement of finding extrasolar planets has had on the core accretion—gas capture model.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.