Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T22:15:14.175Z Has data issue: false hasContentIssue false

5 - Diagnosability and Cryptic Nodes in Angiosperms

A Case Study from Ipomoea

Published online by Cambridge University Press:  01 September 2022

Alexandre K. Monro
Affiliation:
Royal Botanic Gardens, Kew
Simon J. Mayo
Affiliation:
Royal Botanic Gardens, Kew
Get access

Summary

Three important properties associated with a classification of any group of organisms are diagnosability, monophyly and resolution. In this chapter we explore the interrelationships between these three properties in the context of cryptic taxa, here defined as a clade with no obvious diagnostic morphological support. We present the view that the number of nodes on a phylogenetic tree of all flowering plants that have morphological diagnostic support is less than five percent; as such, cryptic nodes are much more common than non-cryptic nodes. Because of this, we suggest that the phrase ‘cryptic nodes’ is a preferable description as opposed to cryptic taxa because taxa in the sense of traditional classifications are generally diagnostic. By reference to a global taxonomic study of the genus Ipomoea, we discuss the role of diagnosability at various scales including major infrageneric clade, genus and species. We demonstrate that the level of diagnosability for Ipomoea is relatively low, therefore making cryptic nodes the rule and not the exception. We provide several examples of such cryptic nodes, detail how we discovered them and place them in a wider conceptual framework of diagnosability in angiosperms.

Type
Chapter
Information
Cryptic Species
Morphological Stasis, Circumscription, and Hidden Diversity
, pp. 130 - 142
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Austin, D. F. (1973) The American Erycibeae (Convolvulaceae): Maripa, Dicranostyles, and Lysiostyles I. systematics. Annals of the Missouri Botanical Garden 60(2): 306.Google Scholar
Austin, D. F. (1975) Typification of the New World subdivisions of Ipomoea L. (Convolvulaceae). Taxon 24(1): 107110.CrossRefGoogle Scholar
Austin, D. F. (1979) An infrageneric classification for Ipomoea (Convolvulaceae). Taxon 28(4): 359361.Google Scholar
Austin, D. F. (1980) Additional comments on infrageneric taxa in Ipomoea (Convolvulaceae). Taxon 29(4): 501502.Google Scholar
Austin, D. F. and Huáman, Z. (1996) A synopsis of Ipomoea (Convolvulaceae) in the Americas. Taxon 45(1): 338.Google Scholar
Callaway, E. (2018) ‘Why not sequence everything?’ A plan to decode every complex species on Earth. Nature: d41586–018-07279-z.Google Scholar
Carine, M.A. and Scotland, R. W. (2002) Classification of Strobilanthinae (Acanthaceae): Trying to classify the unclassifiable? Taxon 51(2): 259.Google Scholar
Carruthers, T., Muñoz-Rodríguez, P., Wood, J. R. I., and Scotland, R. W. 2020) The temporal dynamics of evolutionary diversification in Ipomoea. Molecular Phylogenetics and Evolution 146: 106768.CrossRefGoogle ScholarPubMed
Choisy, J.D. (1838) De Convolvulaceis. In: Memoires de la Société de Physique et d’Histoire Naturelle de Genève [Internet]. Vol. 8. Librairie d’Abraham Cherbuliez, Geneva, pp. 4386. www.biodiversitylibrary.org/item/39750Google Scholar
Choisy, J.D. (1845) Convolvulaceae. In: Candolle, A-L-P-P de (ed.) Prodromus Systematis Naturalis Regni Vegetabilis [Internet]. Vol. 9. Sumptibus Sociorum Treuttel et Würtz, Parisii, pp. 323462. http://bibdigital.rjb.csic.es/ing/Libro.php?Libro=6160Google Scholar
Eserman, L. A., Tiley, G. P., Jarret, R. L., Leebens-Mack, J. H.,and Miller, R. E. (2014) Phylogenetics and diversification of morning glories (tribe Ipomoeeae, Convolvulaceae) based on whole plastome sequences. American Journal of Botany 101(1): 92103.Google Scholar
Hallier, H. (1893) Versuch einer natürlichen Gliederung der Convolvulaceen auf morphologischer und anatomischer Grundlage. Botanische Jahrbücher für Systematik, Pflanzengeshichte und Pflanzengeographie 16: 453591.Google Scholar
Hallier, H. (1894) Convolvulaceae Africanae. Botanische Jahrbücher für Systematik, Pflanzengeshichte und Pflanzengeographie 28: 2854.Google Scholar
Hennig, W. (1966) Phylogenetic Systematics [Internet]. University of Illinois Press, Urbana [accessed 6 July 2020]. https://doi.org/10.1002/mmnd.19820290131Google Scholar
House, H. D. (1908) The North American species of the genus Ipomoea. Annals of the New York Academy of Sciences 18(1): 181263.Google Scholar
McDonald, J. A. (1991) Origin and diversity of Mexican Convolvulaceae. Anales del Instituto de Biología de la Universidad Nacional Autónoma de México, Serie Botánica 62(1): 6582.Google Scholar
Mickevich, M. F. and Platnick, N. I. (1989) On the information content of classifications. Cladistics 5(1): 3347.CrossRefGoogle ScholarPubMed
Miller, R. E., McDonald, J. A., and Manos, P. S. (2004) Systematics of Ipomoea subgenus Quamoclit (Convolvulaceae) based on ITS sequence data and a Bayesian phylogenetic analysis. American Journal of Botany 91(8): 12081218.Google Scholar
Miller, R.E., Rausher, M. D., and Manos, P. S. (1999) Phylogenetic systematics of Ipomoea (Convolvulaceae) based on ITS and Waxy sequences. Systematic Botany 24(2): 209227.Google Scholar
Moonlight, P. W., Ardi, W. H., Padilla, L. A. et al. (2018) Dividing and conquering the fastest-growing genus: towards a natural sectional classification of the mega-diverse genus Begonia (Begoniaceae). Taxon 67(2): 267323.CrossRefGoogle Scholar
Muñoz-Rodríguez, P., Carruthers, T, Wood, J. R. I. et al. (2019) A taxonomic monograph of Ipomoea integrated across phylogenetic scales. Nature Plants 5:11361144.Google Scholar
van Ooststroom, S. J. (1953) Convolvulaceae. In: Flora Malesiana [Internet]. Vol. 4. Noordhoff-Kolff N.V., Djakarta, pp. 388512. http://biodiversitylibrary.org/page/28682917Google Scholar
Patterson, C. (1982) Morphological characters and homology. In: Joysey, K. A. and Friday, A. E. (eds.) Problems in Phylogenetic Reconstruction. Academic Press, London, pp. 2174.Google Scholar
Peralta, I. E. and Spooner, D.M. (2000) Classification of wild tomatoes: A review. Kurtz 28(1): 4554.Google Scholar
Royal Botanic Gardens, Kew. (2019) World Checklist of Selected Plant Families. World Checklist of Selected Plant Families [Internet]. [accessed 1 August 2019]. http://wcsp.science.kew.org/Google Scholar
Sauquet, H., von Balthazar, M., Magallón, S. et al. (2017) The ancestral flower of angiosperms and its early diversification. Nature Communications 8(1): 16047.Google Scholar
Scotland, R. W. (2010) Deep homology: A view from systematics. Bioessays 32(5): 438449.Google Scholar
Scotland, R. W. (2011) What is parallelism? Evolution & Development 13(2): 214227.Google Scholar
Simões, A. R. and Staples, G. (2017) Dissolution of Convolvulaceae tribe Merremieae and a new classification of the constituent genera. Botanical Journal of the Linnean Society 183(4): 561586.Google Scholar
Simões, A. R., Culham, A., and Carine, M. (2015) Resolving the unresolved tribe: A molecular phylogenetic framework for the Merremieae (Convolvulaceae). Botanical Journal of the Linnean Society 179(3): 374387.Google Scholar
Sneath, P. H. and Sokal, R. R. (1973) Numerical Taxonomy: The Principles and Practice of Numerical Classification. 1st ed. W.H. Freeman & Co., San Francisco.Google Scholar
Stefanovic, S., Austin, D. F., and Olmstead, R. G. (2003) Classification of Convolvulaceae: A phylogenetic approach. Systematic Botany 28(4): 791806.Google Scholar
Stefanovic, S., Krueger, L., and Olmstead, R. G. (2002) Monophyly of the Convolvulaceae and circumscription of their major lineages based on DNA sequences of multiple chloroplast loci. American Journal of Botany 89(9): 15101522.CrossRefGoogle ScholarPubMed
Stevens, P. F. (1984) Metaphors and typology in the development of botanical systematics 1690–1960, or the art of putting new wine in old bottles. Taxon 33(2): 169211.Google Scholar
Stevens, P. F. (2020) Angiosperm Phylogeny Website, version 14. Angiosperm Phylogeny Website [Internet]. [accessed 1 September 2020]. www.mobot.org/MOBOT/research/APweb/Google Scholar
Verdcourt, B. (1957) Typification of the subdivisions of Ipomoea L. (Convolvulaceae) with particular regard to the East African species. Taxon 6(5): 150152.CrossRefGoogle Scholar
Wilkin, P. (1999) A morphological cladistic analysis of the Ipomoeeae (Convolvulaceae). Kew Bulletin 54(4): 853876.Google Scholar
Wojciechowski, M. F. (2013) Towards a new classification of Leguminosae: Naming clades using non-Linnaean phylogenetic nomenclature. South African Journal of Botany 89: 8593.CrossRefGoogle Scholar
Wood, J. R. I., Williams, B. R. M., Mitchell, T. C. et al. (2015) A foundation monograph of Convolvulus L. (Convolvulaceae). Phytokeys 51: 1282.Google Scholar
Wood, J. R. I., Muñoz-Rodríguez, P., Williams, B. R. M., and Scotland, R. W. (2020) A foundation monograph of Ipomoea (Convolvulaceae) in the New World. Phytokeys 143: 1823.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×