Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T19:48:35.200Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 October 2014

Ivan Arzhantsev
Affiliation:
Moscow State University
Ulrich Derenthal
Affiliation:
Leibniz Universität Hannover
Jürgen Hausen
Affiliation:
Eberhard-Karls-Universität Tübingen, Germany
Antonio Laface
Affiliation:
Universidad de Concepción, Chile
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Cox Rings , pp. 501 - 516
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] A., A'Campo-Neuen. Note on a counterexample to Hilbert's fourteenth problem given by P. Roberts. Indag. Math. (N.S.), 5(3):253–257, 1994.Google Scholar
[2] A., A'Campo-Neuen and J., Hausen. Examples and counterexamples for existence of categorical quotients. J. Algebra, 231(1):67–85, 2000.Google Scholar
[3] A., A'Campo-Neuen and J., Hausen. Toric prevarieties and subtorus actions. Geom. Dedicata, 87(1–3):35–64, 2001.Google Scholar
[4] A. G., Aleksandrov and B. Z., Moroz. Complete intersections in relation to a paper of B. J. Birch. Bull. London Math. Soc., 34(2):149–154, 2002.Google Scholar
[5] V., Alexeev and V. V., Nikulin. Del Pezzo and K3 surfaces. MSJ Memoirs, Vol. 15. Mathematical Society of Japan, Tokyo, 2006.Google Scholar
[6] D. F., Anderson. Graded Krull domains. Comm. Algebra, 7(1):79–106, 1979.Google Scholar
[7] E., Arbarello, M., Cornalba, P. A., Griffiths, and J., Harris. Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften, Vol. 267. Springer-Verlag, New York, 1985.Google Scholar
[8] M., Artebani, A., Garbagnati, and A., Laface. Cox rings of extremal rational elliptic surfaces. arXiv:1302.4361, 2013.Google Scholar
[9] M., Artebani, J., Hausen, and A., Laface. On Cox rings of K3 surfaces. Compos. Math., 146(4):964–998, 2010.Google Scholar
[10] M., Artebani and A., Laface. Cox rings of surfaces and the anticanonical Iitaka dimension. Adv. Math., 226(6):5252–5267, 2011.Google Scholar
[11] M., Artebani and A., Laface. Hypersurfaces in Mori dream spaces. J. Algebra, 371:26–37, 2012.Google Scholar
[12] M., Artin. Some numerical criteria for contractability of curves on algebraic surfaces. Amer. J. Math., 84:485–496, 1962.Google Scholar
[13] I. V., Arzhantsev. On the factoriality of Cox rings. Mat. Zametki, 85(5):643–651, 2009.Google Scholar
[14] I. V., Arzhantsev. Projective embeddings with a small boundary for homogeneous spaces. Izv. Ross. Akad. Nauk Ser. Mat., 73(3):5–22, 2009.Google Scholar
[15] I. V., Arzhantsev, D., Celik, and J., Hausen. Factorial algebraic group actions and categorical quotients. J. Algebra, 387:87–98, 2013.Google Scholar
[16] I. V., Arzhantsev and S. A., Gaĭfullin. Cox rings, semigroups, and automorphisms of affine varieties. Mat. Sb., 201(1):3–24, 2010.Google Scholar
[17] I. V., Arzhantsev and S. A., Gaĭfullin. Homogeneous toric varieties. J. Lie Theory, 20(2):283–293, 2010.Google Scholar
[18] I. V., Arzhantsev and J., Hausen. On embeddings of homogeneous spaces with small boundary. J. Algebra, 304(2):950–988, 2006.Google Scholar
[19] I. V., Arzhantsev and J., Hausen. On the multiplication map of a multigraded algebra. Math. Res. Lett., 14(1):129–136, 2007.Google Scholar
[20] I. V., Arzhantsev and J., Hausen. Geometric invariant theory via Cox rings. J. Pure Appl. Algebra, 213(1):154–172, 2009.Google Scholar
[21] I. V., Arzhantsev, J., Hausen, E., Herppich, and A., Liendo. The automorphism group of a variety with torus action of complexity one. Mosc. Math. J., 14(3):429–471, 2014.Google Scholar
[22] M. F., Atiyah and I. G., Macdonald. Introduction to commutative algebra. Addison-Wesley, Reading, MA-London-Don Mills, Ont., 1969.Google Scholar
[23] M., Audin. The topology of torus actions on symplectic manifolds. Progress in Mathematics, Vol. 93. Birkhäuser Verlag, Basel, 1991.Google Scholar
[24] R., Avdeev. An epimorphic subgroup arising from Roberts' counterexample. Indag. Math. (N.S.), 23(1–2):10–18, 2012.Google Scholar
[25] S., Baier and T. D., Browning. Inhomogeneous cubic congruences and rational points on del Pezzo surfaces. J. reine angew. Math., 680:69–151, 2013.Google Scholar
[26] S., Baier and U., Derenthal. Quadratic congruences on average and rational points on cubic surfaces. arXiv:1205.0373, 2012.Google Scholar
[27] H., Bäker. Good quotients of Mori dream spaces. Proc. Amer. Math. Soc., 139(9):3135–3139, 2011.Google Scholar
[28] H., Bäker, J., Hausen, and S., Keicher. On Chow quotients of torus actions. arXiv:1203.3759, 2012.Google Scholar
[29] W. P., Barth, K., Hulek, C. A. M., Peters, and A., Van de Ven. Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 4, 2nd ed. Springer-Verlag, Berlin, 2004.Google Scholar
[30] V. V., Batyrev. Quantum cohomology rings of toric manifolds. Astérisque, (218):9–34, 1993. Journeés de Géométrie Algébrique d'Orsay (Orsay, 1992).Google Scholar
[31] V. V., Batyrev and F., Haddad. On the geometry of SL(2)-equivariant flips. Mosc. Math. J., 8(4):621–646, 846, 2008.Google Scholar
[32] V. V., Batyrev and Yu. I., Manin. Sur le nombre des points rationnels de hauteur borné des variétés algébriques. Math. Ann., 286(1–3):27–43, 1990.Google Scholar
[33] V. V., Batyrev and O. N., Popov. The Cox ring of a del Pezzo surface. In Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002). Progress in Mathematics, Vol. 226, pp. 85–103. Birkhäuser Boston, Boston, 2004.Google Scholar
[34] V. V., Batyrev and Yu., Tschinkel. Rational points of bounded height on compactifications of anisotropic tori. Int. Math. Res. Not. IMRN, (12):591–635, 1995.Google Scholar
[35] V. V., Batyrev and Yu., Tschinkel. Rational points on some Fano cubic bundles. C. R. Acad. Sci. Paris Sér. I Math., 323(1):41–46, 1996.Google Scholar
[36] V. V., Batyrev and Yu., Tschinkel. Manin's conjecture for toric varieties. J. Algebraic Geom., 7(1):15–53, 1998.Google Scholar
[37] V. V., Batyrev and Yu., Tschinkel. Tamagawa numbers of polarized algebraic varieties. Astérisque, (251):299–340, 1998. Nombre et répartition de points de hauteur bornée (Paris, 1996).Google Scholar
[38] S., Bauer. Die Manin-Vermutung für eine del-Pezzo-Fläche, Master's thesis, Universität München, 2013.Google Scholar
[39] A., Beauville. Complex algebraic surfaces. London Mathematical Society Student Texts, Vol. 34, 2nd ed. Cambridge University Press, Cambridge, 1996.Google Scholar
[40] B., Bechtold. Factorially graded rings and Cox rings. J. Algebra, 369:351–359, 2012.Google Scholar
[41] O., Benoist. Quasi-projectivity of Normal Varieties. Int. Math. Res. Not. IMRN, (17):3878–3885, 2013.Google Scholar
[42] F., Berchtold and J., Hausen. Homogeneous coordinates for algebraic varieties. J. Algebra, 266(2):636–670, 2003.Google Scholar
[43] F., Berchtold and J., Hausen. Bunches of cones in the divisor class group—a new combinatorial language for toric varieties. Int. Math. Res. Not. IMRN, (6):261–302, 2004.Google Scholar
[44] F., Berchtold and J., Hausen. Cox rings and combinatorics. Trans. Amer. Math. Soc., 359(3):1205–1252 (electronic), 2007.Google Scholar
[45] A., Bialynicki-Birula. Finiteness of the number of maximal open subsets with good quotients. Transform. Groups, 3(4):301–319, 1998.Google Scholar
[46] A., Bialynicki-Birula, J. B., Carrell, and W. M., McGovern. Algebraic quotients. Torus actions and cohomology. The adjoint representation and the adjoint action. Invariant Theory and Algebraic Transformation Groups, II. Encyclopaedia of Mathematical Sciences, Vol. 131. Springer-Verlag, Berlin, 2002.Google Scholar
[47] A., Bialynicki-Birula and J., Święcicka. Three theorems on existence of good quotients. Math. Ann., 307(1):143–149, 1997.Google Scholar
[48] A., Bialynicki-Birula and J., Święcicka. A recipe for finding open subsets of vector spaces with a good quotient. Colloq. Math., 77(1):97–114, 1998.Google Scholar
[49] F., Bien and A., Borel. Sous-groupes epimorphiques de groupes linéaires algébriques. I. C. R. Acad. Sci. Paris Sér. I Math., 315(6):649–653, 1992.Google Scholar
[50] F., Bien and A., Borel. Sous-groupes epimorphiques de groupes linéaires algébriques. II. C. R. Acad. Sci. Paris Sér. I Math., 315(13):1341–1346, 1992.Google Scholar
[51] F., Bien, A., Borel, and J., Kollár. Rationally connected homogeneous spaces. Invent. Math., 124(1–3):103–127, 1996.Google Scholar
[52] B. J., Birch. Forms in many variables. Proc. Roy. Soc. Ser. A, 265:245–263, 1961/1962.Google Scholar
[53] C., Birkar, P., Cascini, C. D., Hacon, and J., McKernan. Existence of minimal models for varieties of log general type. J. Amer. Math. Soc., 23(2):405–468, 2010.Google Scholar
[54] V., Blomer and J., Brüdern. The density of rational points on a certain threefold. In Contributions in analytic and algebraic number theory. Springer Proceedings in Mathematics, Vol. 9, pp. 1–15. Springer-Verlag, New York, 2012.Google Scholar
[55] V., Blomer, J., Brüdern, and P., Salberger. On a senary cubic form. Proc. Lond. Math. Soc. (3), 108(4):911–964, 2014.Google Scholar
[56] A., Borel. Linear algebraic groups. Graduate Texts in Mathematics, Vol. 126, 2nd ed. Springer-Verlag, New York, 1991.Google Scholar
[57] M., Borovoi. The Brauer-Manin obstructions for homogeneous spaces with connected or abelian stabilizer. J. reine angew. Math., 473:181–194, 1996.Google Scholar
[58] N., Bourbaki. Commutative algebra. Chapters 1–7. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 1998.Google Scholar
[59] D., Bourqui. Fonction zêta des hauteurs des variétés toriques déployées dans le cas fonctionnel. J. reine angew. Math., 562:171–199, 2003.Google Scholar
[60] D., Bourqui. Comptage de courbes sur le plan projectif éclaté en trois points alignés. Ann. Inst. Fourier (Grenoble), 59(5):1847–1895, 2009.Google Scholar
[61] D., Bourqui. Fonction zêta des hauteurs des variétés toriques non déployées. Mem. Amer. Math. Soc., 211(994):viii+151, 2011.Google Scholar
[62] D., Bourqui. La conjecture de Manin géométrique pour une famille de quadriques intrinsèques. Manuscripta Math., 135(1–2):1–41, 2011.Google Scholar
[63] D., Bourqui. Exemples de comptage de courbes sur les surfaces. Math. Ann., 357(4):1291–1327, 2013.Google Scholar
[64] J.-F., Boutot. Singularités rationnelles et quotients par les groupes réductifs. Invent. Math., 88(1):65–68, 1987.Google Scholar
[65] H., Brenner and S., Schröer. Ample families, multihomogeneous spectra, and algebraization of formal schemes. Pacific J. Math., 208(2):209–230, 2003.Google Scholar
[66] R., de la Bretèche. Compter des points d'une variété torique. J. Number Theory, 87(2):315–331, 2001.Google Scholar
[67] R., de la Bretèche. Répartition des points rationnels sur la cubique de Segre. Proc. Lond. Math. Soc. (3), 95(1):69–155, 2007.Google Scholar
[68] R., de la Bretèche and T. D., Browning. On Manin's conjecture for singular del Pezzo surfaces of degree 4. I. Michigan Math. J., 55(1):51–80, 2007.Google Scholar
[69] R., de la Bretèche and T. D., Browning. On Manin's conjecture for singular del Pezzo surfaces of degree four. II. Math. Proc. Cambridge Philos. Soc., 143(3):579–605, 2007.Google Scholar
[70] R., de la Bretèche and T. D., Browning. Manin's conjecture for quartic del Pezzo surfaces with a conic fibration. Duke Math. J., 160(1):1–69, 2011.Google Scholar
[71] R., de la Bretèche and T. D., Browning. Binary forms as sums of two squares and Châtelet surfaces. Israel J. Math., 191(2):973–1012, 2012.Google Scholar
[72] R., de la Bretèche, T. D., Browning, and U., Derenthal. On Manin's conjecture for a certain singular cubic surface. Ann. Sci. École Norm. Sup. (4), 40(1):1–50, 2007.Google Scholar
[73] R., de la Bretèche, T. D., Browning, and E., Peyre. On Manin's conjecture for a family of Châtelet surfaces. Ann. of Math. (2), 175(1):297–343, 2012.Google Scholar
[74] R., de la Bretèche and E., Fouvry. L'éclaté du plan projectif en quatre points dont deux conjugués. J. reine angew. Math., 576:63–122, 2004.Google Scholar
[75] R., de la Bretèche and G., Tenenbaum. Sur la conjecture de Manin pour certaines surfaces de Châtelet. J. Inst. Math. Jussieu, 12(4):759–819, 2013.Google Scholar
[76] M., Brion. The total coordinate ring of a wonderful variety. J. Algebra, 313(1):61–99, 2007.Google Scholar
[77] M., Brion and S., Kumar. Frobenius splitting methods in geometry and representation theory. Progress in Mathematics, Vol. 231. Birkhäuser Boston, Boston, 2005.Google Scholar
[78] T. D., Browning. Quantitative arithmetic of projective varieties. Progress in Mathematics, Vol. 277. Birkhäuser Verlag, Basel, 2009.Google Scholar
[79] T. D., Browning and U., Derenthal. Manin's conjecture for a cubic surface with D5 singularity. Int. Math. Res. Not. IMRN, (14):2620–2647, 2009.Google Scholar
[80] T. D., Browning and U., Derenthal. Manin's conjecture for a quartic del Pezzo surface with A4 singularity. Ann. Inst. Fourier (Grenoble), 59(3):1231–1265, 2009.Google Scholar
[81] T. D., Browning and D. R., Heath-Brown. Quadratic polynomials represented by norm forms. Geom. Funct. Anal., 22(5):1124–1190, 2012.Google Scholar
[82] T. D., Browning and L., Matthiesen. Norm forms for arbitrary number fields as products of linear polynomials. arXiv:1307.7641, 2013.Google Scholar
[83] T. D., Browning, L., Matthiesen, and A. N., Skorobogatov. Rational points on pencils of conics and quadrics with many degenerate fibres. Ann. of Math. 180(1):381–402, 2014.Google Scholar
[84] J. W., Bruce and C. T. C., Wall. On the classification of cubic surfaces. J. London Math. Soc. (2), 19(2):245–256, 1979.Google Scholar
[85] W., Bruns and J., Gubeladze. Polytopal linear groups. J. Algebra, 218(2):715–737, 1999.Google Scholar
[86] A.-M., Castravet and J., Tevelev. Hilbert's 14th problem and Cox rings. Compos. Math., 142(6):1479–1498, 2006.Google Scholar
[87] D., Celik. A categorical quotient in the category of dense constructible subsets. Colloq. Math., 116(2):147–151, 2009.Google Scholar
[88] A., Chambert-Loir and Yu., Tschinkel. On the distribution of points of bounded height on equivariant compactifications of vector groups. Invent. Math., 148(2):421–452, 2002.Google Scholar
[89] R., Chirivì, P., Littelmann, and A., Maffei. Equations defining symmetric varieties and affine Grassmannians. Int. Math.Res.Not.IMRN, (2):291–347, 2009.Google Scholar
[90] R., Chirivì and A., Maffei. The ring of sections of a complete symmetric variety. J. Algebra, 261(2):310–326, 2003.Google Scholar
[91] J.-L., Colliot-Thélène. Points rationnels sur les fibrations. In Higher dimensional varieties and rational points (Budapest, 2001), Bolyai Society Mathematical Studies, Vol. 12, pp. 171–221. Springer-Verlag, Berlin, 2003.Google Scholar
[92] J.-L., Colliot-Thélène. Lectures on linear algebraic groups, Morning Side Centre, Beijing, http://www.math.u-psud.fr/~colliot, 2007.Google Scholar
[93] J.-L., Colliot-Thélène, D., Harari, and A. N., Skorobogatov. Valeurs d'un polynôme a une variable représentées par une norme. In Number theory and algebraic geometry. London Mathematical Society Lecture Note Series, Vol. 303, pp. 69–89. Cambridge University Press, Cambridge, 2003.Google Scholar
[94] J.-L., Colliot-Thélène, A., Pál, and A. N., Skorobogatov. Pathologies of the Brauer-Manin obstruction. arXiv:1310.5055, 2013.Google Scholar
[95] J.-L., Colliot-Thélène and P., Salberger. Arithmetic on some singular cubic hyper-surfaces. Proc. London Math. Soc. (3), 58(3):519–549, 1989.Google Scholar
[96] J.-L., Colliot-Thélène and J.-J., Sansuc. Torseurs sous des groupes de type multiplicatif; applications à l'étude des points rationnels de certaines variétés algebriques. C. R. Acad. Sci. Paris Sér. A-B, 282(18):Aii, A1113–A1116, 1976.Google Scholar
[97] J.-L., Colliot-Thélène and J.-J., Sansuc. La descente sur une variété rationnelle définie sur un corps de nombres. C. R. Acad. Sci. Paris Sér. A-B, 284(19):A1215–A1218, 1977.Google Scholar
[98] J.-L., Colliot-Thélène and J.-J., Sansuc. Variétés de première descente attachées aux variétés rationnelles. C. R. Acad. Sci. Paris Sér. A-B, 284(16):A967–A970, 1977.Google Scholar
[99] J.-L., Colliot-Thélène and J.-J., Sansuc. La descente sur les variétés rationnelles. In Journées de géometrie algébrique d'Angers, Juillet 1979/Algebraic geometry, Angers, 1979, pp. 223–237. Sijthoff & Noordhoff, Alphen aan den Rijn, 1980.Google Scholar
[100] J.-L., Colliot-Thélène and J.-J., Sansuc. La descente sur les variétés rationnelles. II. Duke Math. J., 54(2):375–492, 1987.Google Scholar
[101] J.-L., Colliot-Thélène, J.-J., Sansuc, and P., Swinnerton-Dyer. Intersections of two quadrics and Châtelet surfaces. I. J. reine angew. Math., 373:37–107, 1987.Google Scholar
[102] J.-L., Colliot-Thélène, J.-J., Sansuc, and P., Swinnerton-Dyer. Intersections of two quadrics and Châtelet surfaces. II. J. reine angew. Math., 374:72–168, 1987.Google Scholar
[103] F. R., Cossec and I. V., Dolgachev. Enriques surfaces. I. Progress in Mathematics, Vol. 76. Birkhäuser Boston, Boston, 1989.Google Scholar
[104] D. A., Cox. The homogeneous coordinate ring of a toric variety. J. Algebraic Geom., 4(1):17–50, 1995.Google Scholar
[105] D. A., Cox, J. B., Little, and H. K., Schenck. Toric varieties. Graduate Studies in Mathematics, Vol. 124. American Mathematical Society, Providence, RI, 2011.Google Scholar
[106] C., De Concini and C., Procesi. Complete symmetric varieties. In Invariant theory (Montecatini, 1982). Lecture Notes in Mathematics, Vol. 996, pp. 1–44. Springer-Verlag, Berlin, 1983.Google Scholar
[107] J. A., De Loera, J., Rambau, and F., Santos. Triangulations. Algorithms and Computation in Mathematics, Vol. 25. Springer-Verlag, Berlin, 2010. Structures for algorithms and applications.Google Scholar
[108] M., Demazure. Sous-groupes algébriques de rang maximum du groupe de Cremona. Ann. Sci. École Norm. Sup. (4), 3:507–588, 1970.Google Scholar
[109] U., Derenthal. Geometry of universal torsors. PhD thesis, Universität Göttingen, 2006.Google Scholar
[110] U., Derenthal. Universal torsors of del Pezzo surfaces and homogeneous spaces. Adv. Math., 213(2):849–864, 2007.Google Scholar
[111] U., Derenthal. Counting integral points on universal torsors. Int. Math. Res. Not. IMRN, (14):2648–2699, 2009.Google Scholar
[112] U., Derenthal. Manin's conjecture for a quintic del Pezzo surface with A2 singularity. arXiv:0710.1583, 2007.Google Scholar
[113] U., Derenthal. Singular Del Pezzo surfaces whose universal torsors are hypersur-faces. Proc. Lond. Math. Soc. (3), 108(3):638–681, 2014.Google Scholar
[114] U., Derenthal. Manin's conjecture for a certain singular cubic surface. arXiv:math.NT/0504016, 2005.Google Scholar
[115] U., Derenthal, A.-S., Elsenhans, and J., Jahnel. On the factor alpha in Peyre's constant. Math. Comp., 83(286):965–977, 2014.Google Scholar
[116] U., Derenthal and C., Frei. Counting imaginary quadratic points via universal torsors. Compositio Math., in press, arXiv:1302.6151, 2013.Google Scholar
[117] U., Derenthal and C., Frei. Counting imaginary quadratic points via universal torsors, II. Math. Proc. Cambridge Philos. Soc., 156(3):383–407, 2014.Google Scholar
[118] U., Derenthal and C., Frei. On Manin's conjecture for a certain singular cubic surface over imaginary quadratic fields. Int. Math. Res. Not. IMRN, in press, arXiv:1311.2809, 2013.Google Scholar
[119] U., Derenthal, M., Joyce, and Z., Teitler. The nef cone volume of generalized del Pezzo surfaces. Algebra Number Theory, 2(2):157–182, 2008.Google Scholar
[120] U., Derenthal and D., Loughran. Singular del Pezzo surfaces that are equivariant compactifications. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 377(Issledovaniya po Teorii Chisel. 10):26–43, 241, 2010.Google Scholar
[121] U., Derenthal and M., Pieropan. Cox rings over nonclosed fields, preprint, 2014.Google Scholar
[122] U., Derenthal, A., Smeets, and D., Wei. Universal torsors and values of quadratic polynomials represented by norms. Math. Ann., in press, arXiv:1202.3567, 2012.Google Scholar
[123] U., Derenthal and Yu., Tschinkel. Universal torsors over del Pezzo surfaces and rational points. In Equidistribution in number theory, an introduction. NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 237, pp. 169–196. Springer-Verlag, Dordrecht, 2007.Google Scholar
[124] K., Destagnol. La conjecture de Manin sur les surfaces de Châtelet, Master's thesis, Université Paris 7 Diderot, 2013.Google Scholar
[125] I. V., Dolgachev. Newton polyhedra and factorial rings. J. Pure Appl. Algebra, 18(3):253–258, 1980.Google Scholar
[126] I. V., Dolgachev. On automorphisms of Enriques surfaces. Invent. Math., 76(1):163–177, 1984.Google Scholar
[127] I. V., Dolgachev. Classical algebraic geometry. Cambridge University Press, Cambridge, 2012. A modern view.Google Scholar
[128] I. V., Dolgachev and Yi, Hu. Variation of geometric invariant theory quotients. Inst. Hautes Études Sci. Publ. Math., (87):5–56, 1998.Google Scholar
[129] I. V., Dolgachev and De-Qi, Zhang. Coble rational surfaces. Amer. J. Math., 123(1):79–114, 2001.Google Scholar
[130] F., Donzelli. Algebraic density property of Danilov-Gizatullin surfaces. Math. Z., 272(3–4):1187–1194, 2012.Google Scholar
[131] J. J., Duistermaat. Discrete integrable systems. Springer Monographs in Mathematics. Springer-Verlag, New York, 2010. QRT maps and elliptic surfaces.Google Scholar
[132] D., Eisenbud. Commutative algebra. Graduate Texts in Mathematics, Vol. 150. Springer-Verlag, New York, 1995.Google Scholar
[133] D., Eisenbud and S., Popescu. The projective geometry of the Gale transform. J. Algebra, 230(1):127–173, 2000.Google Scholar
[134] E. J., Elizondo, K., Kurano, and K., Watanabe. The total coordinate ring of a normal projective variety. J. Algebra, 276(2):625–637, 2004.Google Scholar
[135] A.-S., Elsenhans and J., Jahnel. Moduli spaces and the inverse Galois problem for cubic surfaces. Trans. Amer. Math. Soc., in press, arXiv:1209.5591, 2012.Google Scholar
[136] G., Ewald. Polygons with hidden vertices. Beiträge Algebra Geom., 42(2):439–442, 2001.Google Scholar
[137] H., Flenner, S., Kaliman, and M., Zaidenberg. On the Danilov-Gizatullin isomorphism theorem. Enseign. Math. (2), 55(3-4):275–283, 2009.Google Scholar
[138] J., Franke, Yu. I., Manin, and Yu., Tschinkel. Rational points of bounded height on Fano varieties. Invent. Math., 95(2):421–435, 1989.Google Scholar
[139] C., Frei. Counting rational points over number fields on a singular cubic surface. Algebra Number Theory, 7(6):1451–1479, 2013.Google Scholar
[140] C., Frei and M., Pieropan. O-minimality on twisted universal torsors and Manin's conjecture over number fields. arXiv:1312.6603, 2013.Google Scholar
[141] W., Fulton. Introduction to toric varieties. Annals of Mathematics Studies, Vol. 131. Princeton University Press, Princeton, NJ, 1993.Google Scholar
[142] W., Fulton. Intersection theory. Ergebnisse der Mathematik und ihrer Grenzge-biete (3), Vol. 2, 2nd ed. Springer-Verlag, Berlin, 1998.Google Scholar
[143] W., Fulton and J., Harris. Representation theory. Graduate Texts in Mathematics, Vol. 129. Springer-Verlag, New York, 1991.Google Scholar
[144] G., Gagliardi. The Cox ring of a spherical embedding. J. Algebra, 397:548–569, 2014.Google Scholar
[145] S. A., Gaĭfullin. Affine toric SL(2)-embeddings. Mat. Sb., 199(3):3–24, 2008.Google Scholar
[146] C., Galindo and F., Monserrat. The total coordinate ring of a smooth projective surface. J. Algebra, 284(1):91–101, 2005.Google Scholar
[147] M. H., Gizatullin and V. I., Danilov. Automorphisms of affine surfaces. II. Izv. Akad. Nauk SSSR Ser. Mat., 41(1):54–103, 231, 1977.Google Scholar
[148] Y., Gongyo, S., Okawa, A., Sannai, and S., Takagi. Characterization of varieties of Fano type via singularities of Cox rings. J. Algebraic Geom., in press, arXiv:1201.1133, 2012.Google Scholar
[149] B., Green and T., Tao. Linear equations in primes. Ann. Math. (2), 171(3):1753–1850, 2010.Google Scholar
[150] F. D., Grosshans. Algebraic homogeneous spaces and invariant theory. Lecture Notes in Mathematics, Vol. 1673. Springer-Verlag, Berlin, 1997.Google Scholar
[151] A., Grothendieck. Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes. Inst. Hautes Études Sci. Publ. Math., (8):222, 1961.Google Scholar
[152] N., Guay. Embeddings of symmetric varieties. Transform. Groups, 6(4):333–352, 2001.Google Scholar
[153] M., Hanselmann. Rational points on quartic hypersurfaces. PhD thesis, Ludwig-Maximilians-Universität München, 2012.Google Scholar
[154] D., Harari. Obstructions de Manin transcendantes. In Number theory (Paris, 1993–1994), London Mathematical Society Lecture Note Series, Vol. 235, pp. 75–87. Cambridge University Press, Cambridge, 1996.Google Scholar
[155] D., Harari. Groupes algébriques et points rationnels. Math. Ann., 322(4):811–826, 2002.Google Scholar
[156] D., Harari. Weak approximation on algebraic varieties. In Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), Progress in Mathematics, Vol. 226, pp. 43–60. Birkhäuser Boston, Boston, 2004.Google Scholar
[157] D., Harari and A. N., Skorobogatov. Descent theory for open varieties. In Torsors, etale homotopy and applications to rational points. London Mathematical Society Lecture Note Series, Vol. 405, pp. 250–279. Cambridge University Press, Cambridge, 2013.Google Scholar
[158] Y., Harpaz, A. N., Skorobogatov, and O., Wittenberg. The Hardy–Littlewood conjecture and rational points. Compositio Math., in press, arXiv:1304.3333, 2013.Google Scholar
[159] R., Hartshorne. Ample subvarieties of algebraic varieties. Notes written in collaboration with C. Musili. Lecture Notes in Mathematics, Vol. 156. Springer-Verlag, Berlin, 1970.Google Scholar
[160] R., Hartshorne. Algebraic geometry. Graduate Texts in Mathematics, Vol. 52. Springer-Verlag, New York, 1977.Google Scholar
[161] H., Hasse. Die Normenresttheorie relativ-Abelscher Zahlkörper als Klassen-körpertheorie im Kleinen. J. reine angew. Math., 162:145–154, 1930.Google Scholar
[162] B., Hassett and Yu., Tschinkel. Universal torsors and Cox rings. In Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002). Progress in Mathematics, Vol. 226, pp. 149–173. Birkhäuser Boston, Boston, 2004.Google Scholar
[163] J., Hausen. Equivariant embeddings into smooth toric varieties. Canad. J. Math., 54(3):554–570, 2002.Google Scholar
[164] J., Hausen. Geometric invariant theory based on Weil divisors. Compos. Math., 140(6):1518–1536, 2004.Google Scholar
[165] J., Hausen. Cox rings and combinatorics. II. Mosc. Math. J., 8(4):711–757, 847, 2008.Google Scholar
[166] J., Hausen and E., Herppich. Factorially graded rings of complexity one. In Torsors, etale homotopy and applications to rational points. London Mathematical Society Lecture Note Series, Vol. 405, pp. 414–428. Cambridge University Press, Cambridge, 2013.Google Scholar
[167] J., Hausen, E., Herppich, and H., Süß. Multigraded factorial rings and Fano varieties with torus action. Doc. Math., 16:71–109, 2011.Google Scholar
[168] J., Hausen, S., Keicher, and A., Laface. Computing Cox rings. arXiv:1305.4343, 2013.Google Scholar
[169] J., Hausen and H., Sufi. The Cox ring of an algebraic variety with torus action. Adv. Math., 225(2):977–1012, 2010.Google Scholar
[170] D. R., Heath-Brown. The density of rational points on Cayley's cubic surface. In Proceedings of the Session in Analytic Number Theory and Diophantine Equations. Bonner Mathematische Schriften, Vol. 360, pp. 33, Bonn, 2003. Universität Bonn.Google Scholar
[171] D. R., Heath-Brown. Zeros of pairs of quadratic forms. arXiv:1304.3894, 2013.Google Scholar
[172] D. R., Heath-Brown and A., Skorobogatov. Rational solutions of certain equations involving norms. Acta Math., 189(2):161–177, 2002.Google Scholar
[173] H., Hironaka. Triangulations of algebraic sets. In Algebraic geometry (Humboldt State Univ., Arcata, Calif., 1974). Proc. Sympos. Pure Math., Vol. 29, pp. 165–185. Amer. Math. Soc., Providence, RI, 1975.Google Scholar
[174] M., Hochster and J. L., Roberts. Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay. Adv. Math., 13:115–175, 1974.Google Scholar
[175] C., Hooley. On nonary cubic forms. J. reine angew. Math., 386:32–98, 1988.Google Scholar
[176] Y., Hu and S., Keel. Mori dream spaces and GIT. Michigan Math. J., 48:331–348, 2000.Google Scholar
[177] E., Huggenberger. Fano varieties with a torus action of complexity one. PhD thesis, Universiät Tübingen, 2013.Google Scholar
[178] J. E., Humphreys. Linear algebraic groups. Graduate Texts in Mathematics, Vol. 21. Springer-Verlag, New York, 1975.Google Scholar
[179] D., Hwang and J., Park. Redundant blow-ups and Cox rings of rational surfaces. arXiv:1303.2274, 2013.Google Scholar
[180] M.-N., Ishida. Graded factorial rings of dimension 3 of a restricted type. J. Math. Kyoto Univ., 17(3):441–456, 1977.Google Scholar
[181] S.-Y., Jow. A Lefschetz hyperplane theorem for Mori dream spaces. Math. Z., 268(1-2):197–209, 2011.Google Scholar
[182] T., Kajiwara. The functor of a toric variety with enough invariant effective Cartier divisors. Tohoku Math. J. (2), 50(1):139–157, 1998.Google Scholar
[183] Y., Kawamata and S., Okawa. Mori dream spaces of Calabi-Yau type and the log canonicity of the Cox rings. J. reine angew. Math., in press, arXiv:1202.2696, 2012.Google Scholar
[184] A. D., King. Moduli of representations of finite-dimensional algebras. Quart. J. Math. Oxford Ser. (2), 45(180):515–530, 1994.Google Scholar
[185] S. L., Kleiman. Toward a numerical theory of ampleness. Ann. of Math. (2), 84:293–344, 1966.Google Scholar
[186] P., Kleinschmidt. A classification of toric varieties with few generators. Aequationes Math., 35(2-3):254–266, 1988.Google Scholar
[187] F., Knop. The Luna-Vust theory of spherical embeddings. In Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), pp. 225–249, Madras, 1991. Manoj Prakashan.Google Scholar
[188] F., Knop. Über Hilberts vierzehntes Problem für Varietäten mit Kompliziertheit eins. Math. Z., 213(1):33–36, 1993.Google Scholar
[189] F., Knop, H., Kraft, D., Luna, and T., Vust. Local properties of algebraic group actions. In Algebraische Transformationsgruppen und Invariantentheorie. DMV Seminar, Vol. 13, pp. 63–75. Birkhäuser, Basel, 1989.Google Scholar
[190] F., Knop, H., Kraft, and T., Vust. The Picard group of a G-variety. In Algebraische Transformationsgruppen und Invariantentheorie. DMV Seminar, Vol. 13, pp. 77–87. Birkhäuser, Basel, 1989.Google Scholar
[191] M., Koitabashi. Automorphism groups of generic rational surfaces. J. Algebra, 116(1):130–142, 1988.Google Scholar
[192] J., Kollár and S., Mori. Birational geometry of algebraic varieties. Cambridge Tracts in Mathematics, Vol. 134. Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti.Google Scholar
[193] J., Kollár and E., Szabó. Fixed points of group actions and rational maps. arXiv:math/9905053, 1999.Google Scholar
[194] S., Kondō. Enriques surfaces with finite automorphism groups. Jpn. J. Math., 12(2):191–282, 1986.Google Scholar
[195] S., Kondō. Algebraic K3 surfaces with finite automorphism groups. Nagoya Math. J., 116:1–15, 1989.Google Scholar
[196] M., Koras and P., Russell. Linearization problems. In Algebraic group actions and quotients, pp. 91–107. Hindawi, Cairo, 2004.Google Scholar
[197] H., Kraft. Geometrische Methoden in der Invariantentheorie. Aspects of Mathematics, D1. Friedr. Vieweg & Sohn, Braunschweig, 1984.Google Scholar
[198] A., Laface and D., Testa. Nef and semiample divisors on rational surfaces. In Torsors, étale homotopy and applications to rational points. London Mathematical Society Lecture Note Series, Vol. 405, pp. 429–446. Cambridge University Press, Cambridge, 2013.Google Scholar
[199] A., Laface and M., Velasco. Picard-graded Betti numbers and the defining ideals of Cox rings. J. Algebra, 322(2):353–372, 2009.Google Scholar
[200] A., Laface and M., Velasco. A survey on Cox rings. Geom. Dedicata, 139:269–287, 2009.Google Scholar
[201] K. F., Lai and K. M., Yeung. Rational points in flag varieties over function fields. J. Number Theory, 95(2):142–149, 2002.Google Scholar
[202] R., Lazarsfeld. Positivity in algebraic geometry. I. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 48. Springer-Verlag, Berlin, 2004.Google Scholar
[203] P., Le Boudec. Manin's conjecture for a cubic surface with 2A2 + A1 singularity type. Math. Proc. Cambridge Philos. Soc., 153(3):419–455, 2012.Google Scholar
[204] P., LeBoudec. Manin's conjecture for a quartic del Pezzo surface with A3 singularity and four lines. Monatsh. Math., 167(3-4):481–502, 2012.Google Scholar
[205] P., Le Boudec. Manin's conjecture for two quartic del Pezzo surfaces with 3A1 and A1 + A2 singularity types. Acta Arith., 151(2):109–163, 2012.Google Scholar
[206] P., Le Boudec. Affine congruences and rational points on a certain cubic surface. Algebra Number Theory, in press, arXiv:1207.2685, 2012.Google Scholar
[207] J., Lipman. Rational singularities, with applications to algebraic surfaces and unique factorization. Inst. Hautes Études Sci. Publ. Math., (36):195–279, 1969.Google Scholar
[208] D., Loughran. Manin's conjecture for a singular quartic del Pezzo surface. J. Lond. Math. Soc. (2), 86(2):558–584, 2012.Google Scholar
[209] D., Loughran. Rational points of bounded height and the Weil restriction. Israel J. Math., in press, arXiv:1210.1792, 2012.Google Scholar
[210] D., Luna. Slices étales. In Sur les groupes algébriques, pages 81–105. Bull. Soc. Math. France, Paris, Mémoire 33. Soc. Math. France, Paris, 1973.Google Scholar
[211] D., Luna. Toute variéte magnifique est sphérique. Transform. Groups, 1(3):249–258, 1996.Google Scholar
[212] D., Luna and T., Vust. Plongements d'espaces homogènes. Comment. Math. Helv., 58(2):186–245, 1983.Google Scholar
[213] D., Maclagan and B., Sturmfels. Introduction to tropical geometry. In preparation.
[214] Yu. I., Manin. Cubic forms. North-Holland Mathematical Library, Vol. 4, 2nd ed. North-Holland Publishing Co., Amsterdam, 1986.Google Scholar
[215] K., Matsuki. Introduction to the Mori program. Universitext. Springer-Verlag, New York, 2002.Google Scholar
[216] H., Matsumura. Commutative ring theory. Cambridge Studies in Advanced Mathematics, Vol. 8, 2nd ed. Cambridge University Press, Cambridge, 1989.Google Scholar
[217] J., McKernan. Mori dream spaces. Jpn. J. Math., 5(1):127–151, 2010.Google Scholar
[218] E., Miller and B., Sturmfels. Combinatorial commutative algebra. Graduate Texts in Mathematics, Vol. 227. Springer-Verlag, New York, 2005.Google Scholar
[219] J. S., Milne. Étale cohomology. Princeton Mathematical Series, Vol. 33. Princeton University Press, Princeton, NJ, 1980.Google Scholar
[220] R., Miranda and U., Persson. On extremal rational elliptic surfaces. Math. Z., 193(4):537–558, 1986.Google Scholar
[221] S., Mori. Graded factorial domains. Jpn. J. Math., 3(2):223–238, 1977.Google Scholar
[222] D. R., Morrison. On K3 surfaces with large Picard number. Invent. Math., 75(1):105–121, 1984.Google Scholar
[223] S., Mukai. Geometric realization of T -shaped root systems and counterexamples to Hilbert's fourteenth problem. In Algebraic transformation groups and algebraic varieties. Encyclopaedia Mathematical Sciences, Vol. 132, pp. 123–129. Springer-Verlag, Berlin, 2004.Google Scholar
[224] D., Mumford. The red book of varieties and schemes. Lecture Notes in Mathematics, Vol. 1358, expanded edition. Springer-Verlag, Berlin, 1999.Google Scholar
[225] D., Mumford, J., Fogarty, and F., Kirwan. Geometric invariant theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (2), Vol. 34, 3rd ed. Springer-Verlag, Berlin, 1994.Google Scholar
[226] I. M., Musson. Differential operators on toric varieties. J. Pure Appl. Algebra, 95(3):303–315, 1994.Google Scholar
[227] M., Mustaţă. Vanishing theorems on toric varieties. Tohoku Math. J. (2), 54(3):451–470, 2002.Google Scholar
[228] M., Nagata. On the 14-th problem of Hilbert. Amer. J. Math., 81:766–772, 1959.Google Scholar
[229] N., Nakayama. Classification of log del Pezzo surfaces of index two. J. Math. Sci. Univ. Tokyo, 14(3):293–498, 2007.Google Scholar
[230] V. V., Nikulin. Quotient-groups of groups of automorphisms of hyperbolic forms of subgroups generated by 2-reflections. Dokl. Akad. Nauk SSSR, 248(6):1307–1309, 1979.Google Scholar
[231] V. V., Nikulin. K3 surfaces with a finite group of automorphisms and a Picard group of rank three. Trudy Mat. Inst. Steklov., 165:119–142, 1984. Algebraic geometry and its applications.Google Scholar
[232] V. V., Nikulin. A remark on algebraic surfaces with polyhedral Mori cone. Nagoya Math. J., 157:73–92, 2000.Google Scholar
[233] B., Nill. Complete toric varieties with reductive automorphism group. Math. Z., 252(4):767–786, 2006.Google Scholar
[234] T., Oda. Convex bodies and algebraic geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 15. Springer-Verlag, Berlin, 1988.Google Scholar
[235] T., Oda and H. S., Park. Linear Gale transforms and Gel'fand-Kapranov-Zelevinskij decompositions. Tohoku Math. J. (2), 43(3):375–399, 1991.Google Scholar
[236] A. L., Onishchik and È. B., Vinberg. Lie groups and algebraic groups. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1990.Google Scholar
[237] P., Orlik and P., Wagreich. Isolated singularities of algebraic surfaces with C* action. Ann. of Math. (2), 93:205–228, 1971.Google Scholar
[238] P., Orlik and P., Wagreich. Algebraic surfaces with k*-action. Acta Math., 138(1–2):43–81, 1977.Google Scholar
[239] J. C., Ottem. On the Cox ring of P2 blown up in points on a line. Math. Scand., 109(1):22–30, 2011.Google Scholar
[240] J. C., Ottem. Cox rings of K3 surfaces with Picard number 2. J. Pure Appl. Algebra, 217(4):709–715, 2013.Google Scholar
[241] T. E., Panov. Toric Kempf–Ness sets. Proc. Steklov Inst. Math., 263:159–172, 2008.Google Scholar
[242] H. S., Park. The Chow rings and GKZ-decompositions for Q-factorial toric varieties. Tohoku Math. J. (2), 45(1):109–145, 1993.Google Scholar
[243] E., Peyre. Hauteurs et mesures de Tamagawa sur les variétés de Fano. Duke Math. J., 79(1):101–218, 1995.Google Scholar
[244] E., Peyre. Terme principal de la fonction zêta des hauteurs et torseurs universels. Astérisque, (251):259–298, 1998. Nombre et répartition de points de hauteur bornée (Paris, 1996).Google Scholar
[245] E., Peyre. Torseurs universels et méthode du cercle. In Rational points on algebraic varieties. Progress in Mathematics, Vol. 199, pp. 221–274. Birkhäuser, Basel, 2001.Google Scholar
[246] E., Peyre. Points de hauteur bornée et géométrie des variétés (d'après Y. Manin et al.). Astérisque, (282):Exp. No. 891, ix, 323–344, 2002. Séminaire Bourbaki, Vol. 2000/2001.Google Scholar
[247] E., Peyre. Points de hauteur bornée, topologie adélique et mesures de Tamagawa. J. Théor. Nombres Bordeaux, 15(1):319–349, 2003. Les XXIIèmes Journees Arithmetiques (Lille, 2001).Google Scholar
[248] E., Peyre. Counting points on varieties using universal torsors. In Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002). Progress in Mathematics, Vol. 226, pp. 61–81. Birkhäuser Boston, Boston, 2004.Google Scholar
[249] E., Peyre. Obstructions au principe de Hasse et à l'approximation faible. Astérisque, (299):Exp. No. 931, viii, 165–193, 2005. Séminaire Bourbaki. Vol. 2003/2004.Google Scholar
[250] E., Peyre. Points de hauteur bornée sur les variétés de drapeaux en caractéristique finie. Acta Arith., 152(2):185–216, 2012.Google Scholar
[251] I. I., Pjatecking-Šapiro and I. R., Šafarevič. Torelli's theorem for algebraic surfaces of type K3. Izv. Akad. Nauk SSSR Ser. Mat., 35:530–572, 1971.Google Scholar
[252] B., Poonen. Insufficiency of the Brauer-Manin obstruction applied to etale covers. Ann. of Math. (2), 171(3):2157–2169, 2010.Google Scholar
[253] B., Poonen. Rational points on varieties, http://www-math.mit.edu/~poonen/papers/Qpoints.pdf, 2008.Google Scholar
[254] O. N., Popov. The Cox ring of a Del Pezzo surface has rational singularities. arXiv:math.AG/0402154, 2004.Google Scholar
[255] V. L., Popov. Quasihomogeneous affine algebraic varieties of the group SL(2). Izv. Akad. Nauk SSSR Ser. Mat, 37:792–832, 1973.Google Scholar
[256] G. V., Ravindra and V., Srinivas. The Grothendieck-Lefschetz theorem for normal projective varieties. J. Algebraic Geom., 15(3):563–590, 2006.Google Scholar
[257] G. V., Ravindra and V., Srinivas. The Noether-Lefschetz theorem for the divisor class group. J. Algebra, 322(9):3373–3391, 2009.Google Scholar
[258] L., Renner. The cone of semi-simple monoids with the same factorial hull. arXiv:math.AG/0603222, 2006.Google Scholar
[259] A., Rittatore. Algebraic monoids and group embeddings. Transform. Groups, 3(4):375–396, 1998.Google Scholar
[260] A., Rittatore. Very flat reductive monoids. Publ. Mat. Urug., 9:93–121 (2002), 2001.Google Scholar
[261] P., Roberts. An infinitely generated symbolic blow-up in a power series ring and a new counterexample to Hilbert's fourteenth problem. J. Algebra, 132(2):461–473, 1990.Google Scholar
[262] B., Saint-Donat. Projective models of K – 3 surfaces. Amer. J. Math., 96:602–639, 1974.Google Scholar
[263] P., Salberger. Tamagawa measures on universal torsors and points of bounded height on Fano varieties. Astérisque, (251):91–258, 1998. Nombre et répartition de points de hauteur bornée (Paris, 1996).Google Scholar
[264] P., Samuel. Lectures on unique factorization domains. Notes by M. Pavman Murthy. Tata Institute of Fundamental Research Lectures on Mathematics, No. 30. Tata Institute of Fundamental Research, Bombay, 1964.Google Scholar
[265] S., Schanuel. Heights in number fields. Bull. Soc. Math. France, 107(4):433–449, 1979.Google Scholar
[266] G., Scheja and U., Storch. Zur Konstruktion faktorieller graduierter Integritätsbereiche. Arch. Math. (Basel), 42(1):45–52, 1984.Google Scholar
[267] V. V., Serganova. Torsors and representation theory of reductive groups. In Tor-sors, etale homotopy and applications to rational points. London Mathematical Society Lecture Note Series, Vol. 405, pp. 75–119. Cambridge University Press, Cambridge, 2013.Google Scholar
[268] V. V., Serganova and A. N., Skorobogatov. Del Pezzo surfaces and representation theory. Algebra Number Theory, 1(4):393–419, 2007.Google Scholar
[269] V. V., Serganova and A. N., Skorobogatov. On the equations for universal torsors over del Pezzo surfaces. J. Inst. Math. Jussieu, 9(1):203–223, 2010.Google Scholar
[270] V. V., Serganova and A. N., Skorobogatov. Adjoint representation of E8 and del Pezzo surfaces of degree 1. Ann. Inst. Fourier (Grenoble), 61(6):2337–2360 (2012), 2011.Google Scholar
[271] J.-P., Serre. Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier, Grenoble, 6:1–42, 1955–1956.
[272] J.-P., Serre. A course in arithmetic. Springer-Verlag, New York, 1973.Google Scholar
[273] J.-P., Serre. Local fields. Graduate Texts in Mathematics, Vol. 67. Springer-Verlag, New York, 1979.Google Scholar
[274] J.-P., Serre. Galois cohomology. Springer Monographs in Mathematics. Springer-Verlag, Berlin, English edition, 2002.Google Scholar
[275] V. V., Shokurov. A nonvanishing theorem. Izv. Akad. Nauk SSSR Ser. Mat., 49(3):635–651, 1985.Google Scholar
[276] C. M., Skinner. Forms over number fields and weak approximation. Compositio Math., 106(1):11–29, 1997.Google Scholar
[277] A. N., Skorobogatov. On a theorem of Enriques-Swinnerton-Dyer. Ann. Fac. Sci. Toulouse Math. (6), 2(3):429–440, 1993.Google Scholar
[278] A. N., Skorobogatov. Beyond the Manin obstruction. Invent. Math., 135(2):399–424, 1999.Google Scholar
[279] A. N., Skorobogatov. Torsors and rational points. Cambridge Tracts in Mathematics, Vol. 144. Cambridge University Press, Cambridge, 2001.Google Scholar
[280] T. A., Springer. Linear algebraic groups, 2nd ed. Modern Birkhäuser Classics. Birkhäuser Boston, Boston, 2009.Google Scholar
[281] M., Stillman, D., Testa, and M., Velasco. Gröbner bases, monomial group actions, and the Cox rings of del Pezzo surfaces. J. Algebra, 316(2):777–801, 2007.Google Scholar
[282] B., Sturmfels. Gröbner bases and convex polytopes. University Lecture Series, Vol. 8. American Mathematical Society, Providence, RI, 1996.Google Scholar
[283] B., Sturmfels and M., Velasco. Blow-ups of & Popf;n – 3 at n points and spinor varieties. J. Commut. Algebra, 2(2):223–244, 2010.Google Scholar
[284] B., Sturmfels and Z., Xu. Sagbi bases of Cox-Nagata rings. J. Eur. Math. Soc. (JEMS), 12(2):429–459, 2010.Google Scholar
[285] H., Sumihiro. Equivariant completion. J. Math. Kyoto Univ., 14:1–28, 1974.Google Scholar
[286] H., Süß. Canonical divisors on T-varieties. arXiv:0811.0626, 2008.Google Scholar
[287] M., Swarbrick Jones. A Note On a Theorem of Heath-Brown and Skorobogatov. Q. J. Math. 64(4):1239–1251, 2013.Google Scholar
[288] J., Święcicka. Quotients of toric varieties by actions of subtori. Colloq. Math., 82(1):105–116, 1999.Google Scholar
[289] J., Święcicka. A combinatorial construction of sets with good quotients by an action of a reductive group. Colloq. Math., 87(1):85–102, 2001.Google Scholar
[290] P., Swinnerton-Dyer. Two special cubic surfaces. Mathematika, 9:54–56, 1962.Google Scholar
[291] P., Swinnerton-Dyer. The solubility of diagonal cubic surfaces. Ann. Sci. École Norm. Sup. (4), 34(6):891–912, 2001.Google Scholar
[292] D., Testa, A., Várilly-Alvarado, and M., Velasco. Cox rings of degree one del Pezzo surfaces. Algebra Number Theory, 3(7):729–761, 2009.Google Scholar
[293] D., Testa, A., Várilly-Alvarado, and M., Velasco. Big rational surfaces. Math. Ann., 351(1):95–107, 2011.Google Scholar
[294] J., Tevelev. Compactifications of subvarieties of tori. Amer. J. Math., 129(4):1087–1104, 2007.Google Scholar
[295] M., Thaddeus. Geometric invariant theory and flips. J. Amer. Math. Soc., 9(3):691–723, 1996.Google Scholar
[296] D. A., Timashev. Homogeneous spaces and equivariant embeddings. Invariant Theory and Algebraic Transformation Groups, 8. Encyclopaedia of Mathematical Sciences, Vol. 138. Springer-Verlag, Heidelberg, 2011.Google Scholar
[297] B., Totaro. The cone conjecture for Calabi-Yau pairs in dimension 2. Duke Math. J., 154(2):241–263, 2010.Google Scholar
[298] É. B., Vinberg. Complexity of actions of reductive groups. Funktsional. Anal. i Prilozhen., 20(1):1–13, 96, 1986.Google Scholar
[299] É. B., Vinberg. On reductive algebraic semigroups. In Lie groups and Lie algebras: E. B. Dynkin's Seminar. American Mathematical Society Translations Series 2, Vol. 169, pp. 145–182. American Mathematical Society, Providence, RI, 1995.Google Scholar
[300] É. B., Vinberg. Classification of 2-reflective hyperbolic lattices of rank 4. Tr. Mosk. Mat. Obs., 68:44–76, 2007.Google Scholar
[301] É. B., Vinberg and V. L., Popov. Invariant theory. In Algebraic Geometry, IV. Encyclopedia of Mathematical Sciences, Vol. 55, pp. 123–278. Springer-Verlag, Berlin, 1994.Google Scholar
[302] V. E., Voskresenski. Algebraicheskie tory. Izdat. “Nauka,” Moscow, 1977.Google Scholar
[303] V. E., Voskresenski. Algebraic groups and their birational invariants. Translations of Mathematical Monographs, Vol. 179. American Mathematical Society, Providence, RI, 1998.Google Scholar
[304] W. C., Waterhouse. Introduction to affine group schemes. Graduate Texts in Mathematics, Vol. 66. Springer-Verlag, New York, 1979.Google Scholar
[305] R., Wazir. Arithmetic on elliptic threefolds. Compos. Math., 140(3):567–580, 2004.Google Scholar
[306] D., Wei. On the equation NK/k(Ξ) = P(t). Proc. London Math. Soc. (3), in press, arXiv:1202.4115, 2012.Google Scholar
[307] O., Wittenberg. Intersections de deux quadriques et pinceaux de courbes de genre 1/Intersections of two quadrics and pencils of curves of genus 1. Lecture Notes in Mathematics, Vol. 1901. Springer-Verlag, Berlin, 2007.Google Scholar
[308] J., Wlodarczyk. Embeddings in toric varieties and prevarieties. J. Algebraic Geom., 2(4):705–726, 1993.Google Scholar
[309] J., Wlodarczyk. Maximal quasiprojective subsets and the Kleiman-Chevalley quasiprojectivity criterion. J. Math. Sci. Univ. Tokyo, 6(1):41–47, 1999.Google Scholar
[310] D.-Q., Zhang. Quotients of K3 surfaces modulo involutions. Jpn. J. Math., 24(2):335–366, 1998.Google Scholar
[311] V. S., Zhgun. On embeddings of universal torsors over del Pezzo surfaces into cones over flag varieties. Izv. Ross. Akad. Nauk Ser. Mat., 74(5):3–44, 2010.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×