Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T09:37:57.353Z Has data issue: false hasContentIssue false

2 - Counterfactuals and the Potential Outcome Model

Published online by Cambridge University Press:  05 December 2014

Stephen L. Morgan
Affiliation:
The Johns Hopkins University
Christopher Winship
Affiliation:
Harvard University, Massachusetts
Get access

Summary

In this chapter, we introduce the foundational components of the potential outcome model. We first discuss causal states, the relationship between potential and observed outcome variables, and the usage of the label “counterfactual” to refer to unobserved potential outcomes. We introduce average causal effects and then discuss the assumption of causal effect stability, which is maintained explicitly in most applications that use the potential outcome model. We discuss simple estimation techniques and demonstrate the importance of considering the relationship between the potential outcomes and the process of causal exposure. We conclude by extending our presentation to over-time potential outcome variables for one or more units of analysis, as well as causal variables that take on more than two values.

Defining the Causal States

The counterfactual framework for observational data analysis presupposes the existence of well-defined causal states to which all members of the population of interest could be exposed. As we will show in the next section, causal effects are then defined based on comparisons of outcomes that would result from exposure to alternative causal states. For a binary cause, the two states are usually labeled treatment and control. When a many-valued cause is analyzed, the convention is to refer to the alternative states as alternative treatments.

Although these labels are simple, the assumed underlying states must be very carefully defined so that the contribution of an empirical analysis based upon them is clear.

Type
Chapter
Information
Counterfactuals and Causal Inference
Methods and Principles for Social Research
, pp. 37 - 76
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×