Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-02T12:38:03.370Z Has data issue: false hasContentIssue false

3 - Causal Graphs, Identification, and Models of Causal Exposure

Published online by Cambridge University Press:  05 June 2012

Stephen L. Morgan
Affiliation:
Cornell University, New York
Christopher Winship
Affiliation:
Harvard University, Massachusetts
Get access

Summary

In this chapter, we present the basic conditioning strategy for the identification and estimation of causal effects. After introducing a methodology for building causal graphs, we present what has become known as the back-door criterion for sufficient conditioning to identify a causal effect. We then present models of causal exposure, introducing the treatment assignment and treatment selection literature from statistics and econometrics. We then return to the back-door criterion and discuss the two basic motivations of conditioning – balancing determinants of the cause of interest and adjusting for other causes of the outcome. We conclude with a discussion of the identification and estimation of conditional average causal effects by conditioning.

Causal Graphs and Conditioning as Back-Door Identification

In his 2000 book titled Causality: Models, Reasoning, and Inference, Judea Pearl lays out a powerful and extensive graphical theory of causality. Here, we present and use only the most basic elements of his theory. To the reader familiar with traditional linear path models, much of this material will look familiar. There are, however, important and subtle differences between traditional path models and Pearl's usage of directed acyclic graphs (DAGs).

Pearl's work provides a language and a framework for thinking about causality that differs from the potential outcome perspective presented in the last chapter. Beyond the alternative terminology and notation, Pearl (2000, Section 7.3) proves that the fundamental concepts underlying the potential outcome model and his more recent perspective are equivalent.

Type
Chapter
Information
Counterfactuals and Causal Inference
Methods and Principles for Social Research
, pp. 61 - 86
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×