Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T03:56:34.969Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  10 December 2020

Ruth Durrer
Affiliation:
Université de Genève
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abate, A. et al. [Large Synoptic Survey Telescope Dark Energy Science Collaboration] (2012). arXiv:1211.0310 [astro-ph.CO].Google Scholar
Abbott, L. F., and Schaefer, R. K. (1986). A general analysis of the cosmic microwave anisotropy. Astrophys. J. 308, 546.CrossRefGoogle Scholar
Abbott, T. M. C. et al. [DES Collaboration] (2018). Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. D98, 043526. DOI:10.1103/PhysRevD.98.043526.Google Scholar
Abraham, R., and Marsden, J. (1982). Foundations of Mechanics. New York: Addison and Wesley, chapter 3.Google Scholar
Abramowitz, M., and Stegun, I. A. (1970). Handbook of Mathematical Functions, 9th ed. New York: Dover Publications.Google Scholar
Achucarro, A., Atal, V., Hu, B. Ortiz, P., and Torrado, J. (2014). Inflation with moderately sharp features in the speed of sound: Generalized slow roll and in-in formalism for power spectrum and bispectrum. Phys. Rev. D90, no. 2, 023511. DOI:10.1103/PhysRevD.90.023511.Google Scholar
Achucarro, A., Gong, J. O., Palma, G. A., and Patil, S. P. (2013). Correlating features in the primordial spectra. Phys. Rev. D87, 121301. DOI:10.1103/PhysRevD.87.121301.Google Scholar
Acquaviva, V., Bartolo, N. Matarrese, S., and Riotto, A. (2003). Second order cosmological perturbations from inflation. Nucl. Phys. B 667, 119. DOI:10.1016/S0550–3213(03)00550-9.Google Scholar
Adams, J. A., Ross, G. G., and Sarkar, S. (1997). Multiple inflation. Nucl. Phys. B503, 405.Google Scholar
Ade, P. A. R. et al. [Planck Collaboration] (2013). Planck intermediate results. X. Physics of the hot gas in the Coma cluster. Astron. Astrophys. 554, A140. DOI:10.1051/0004-6361/201220247.Google Scholar
Ade, P. A. R. et al. [Planck Collaboration] (2016). Planck 2015 results. VI. LFI mapmaking. Astron. Astrophys. 594, A6. DOI:10.1051/0004-6361/201525813.Google Scholar
Ade, P. A. R. et al. [Planck Collaboration] (2016). Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13. DOI:10.1051/0004-6361/201525830.Google Scholar
Ade, P. A. R. et al. [Planck Collaboration] (2016). Planck 2015 results. XV. Gravitational lensing. Astron. Astrophys. 594, A15. DOI:10.1051/0004-6361/201525941.Google Scholar
Ade, P. A. R. et al. [Planck Collaboration] (2016). Planck 2015 results. XVII. Constraints on primordial non-Gaussianity. Astron. Astrophys. 594, A17. DOI:10.1051/0004-6361/201525836.Google Scholar
Ade, P. A. R. et al. [Planck Collaboration] (2016). Planck 2015 results. XXIV. Cosmology from Sunyaev-Zeldovich cluster counts. Astron. Astrophys. 594, A24. DOI:10.1051/0004-6361/201525833.Google Scholar
Aghanim, N. et al. [Planck Collaboration] (2016). Planck 2015 results. XXII. A map of the thermal Sunyaev-Zeldovich effect. Astron. Astrophys. 594, A22. DOI:10.1051/0004-6361/201525826.Google Scholar
Aghanim, N. et al. [Planck Collaboration] (2018). Planck 2018 results. VI. Cosmological parameters. arXiv:1807.06209.Google Scholar
Aghanim, N. et al. [Planck Collaboration] (2018). Planck 2018 results. VIII. Gravitational lensing. arXiv:1807.06210.Google Scholar
Akrami, Y. et al. [Planck Collaboration] (2018). Planck 2018 results. X. Constraints on inflation. arXiv:1807.06211.Google Scholar
Albrecht, A., Coulson, D., Ferreira, P., and Magueijo, J. (1996). Causality, randomness, and the microwave background. Phys. Rev. Lett. 76, 1413.CrossRefGoogle ScholarPubMed
Alcock, C., and Paczynsk, B. (1979). An evolution free test for non-zero cosmological constant. Nature 281, 358. DOI:10.1038/281358a0.Google Scholar
Alonso, D., and Ferreira, P. G. (2015). Constraining ultralarge-scale cosmology with multiple tracers in optical and radio surveys. Phys. Rev. D 92, no. 6, 063525. DOI:10.1103/PhysRevD.92.063525.CrossRefGoogle Scholar
Amendola, L. et al. (2018). Cosmology and fundamental physics with the Euclid satellite. Living Rev. Rel. 21, 2. DOI:10.1007/s41114–017-0010-3.Google Scholar
Anderson, L. et al. (2012). The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 9 Spectroscopic Galaxy Sample. Mon. Not. Roy. Astron. Soc. 427, 3435. DOI:10.1111/j.1365-2966.2012.22066.x.Google Scholar
Arfken, G. B., and Weber, H. J. (2001). Mathematical Methods for Physicists, 5th ed. San Diego, CA: Academic Press.Google Scholar
Arnol’d, V. I. (1978). Mathematical Methods of Classical Mechanics. Berlin: Springer-Verlag.Google Scholar
Bardeen, J. (1980). Gauge-invariant cosmological perturbations. Phys. Rev. D22, 1882.Google Scholar
Bashinsky, S. (2006). Gravity of cosmological perturbations in the CMB. Phys. Rev. D74, 043007.Google Scholar
Bautista, J. E. et al. (2017). Measurement of baryon acoustic oscillation correlations at z = 2.3 with SDSS DR12 Lyα-Forests. Astron. Astrophys. 603, A12. DOI:10.1051/0004-6361/201730533.Google Scholar
Bernardeau, F., Colombi, S., Gaztanaga, E., and Scoccimarro, R. (2002). Large scale structure of the universe and cosmological perturbation theory. Phys. Rept. 367, 1. DOI:10.1016/S0370–1573(02)00135-7.Google Scholar
Bernstein, J., Brown, L., and Feinberg, G. (1989). Cosmological helium production simplified. Rev. Mod. Phys. 61, 25.Google Scholar
Bevis, N., Hindmarsh, M., Kunz, M., and Urrestilla, J. (2007). CMB polarization power spectra contributions from a network of cosmic strings. Phys. Rev. D76, 043005.Google Scholar
Blas, D., Lesgourgues, J., and Tram, T. (2011). The Cosmic Linear Anisotropy Solving System (CLASS) II: Approximation schemes. JCAP 1107, 034. DOI:10.1088/1475-7516/2011/07/034.Google Scholar
Böhringer, H., Chon, G., and Collins, C. A. (2014). The extended ROSAT-ESO Flux Limited X-ray Galaxy Cluster Survey (REFLEX II) IV. X-ray Luminosity Function and First Constraints on Cosmological Parameters. Astron. Astrophys. 570, A31. DOI:10.1051/0004-6361/201323155.Google Scholar
Bonvin, C., and Durrer, R. (2011). What galaxy surveys really measure. Phys. Rev. D84, 063505.Google Scholar
Bonvin, C., Durrer, R., and Gasparini, M. A. (2006a). Fluctuations of the luminosity distance. Phys. Rev. D73, 023523.Google Scholar
Bonvin, C., Durrer, R., and Kunz, M. (2006b). The dipole of the luminosity distance: a direct measure of H(z). Phys. Rev. Lett. 96, 191302.CrossRefGoogle ScholarPubMed
Bowman, J. D., Rogers, A. E. E., Monsalve, R. A. Mozdzen, T. J., and Mahesh, N. (2018). An absorption profile centred at 78 megahertz in the sky-averaged spectrum. Nature 555, 67. DOI:10.1038/nature25792.Google Scholar
Bucher, M., Moodley, K., and Turok, N. (2000). General primordial cosmic perturbations. Phys. Rev. D62, 083508.Google Scholar
Bucher, M., Moodley, K., and Turok, N. (2001). Constraining iso-curvature perturbations with CMB polarization. Phys. Rev. Lett. 87, 191301.Google Scholar
Burles, S., Nollett, K., and Turner, M. (2001). Big-bang nucleosynthesis predictions for precision cosmology, Astrophys. J. 552, L1.CrossRefGoogle Scholar
Cabass, G., Gerbino, M., Giusarma, E., Melchiorri, A., Pagano, L., and Salvati, L. (2015). Constraints on the early and late integrated Sachs-Wolfe effects from the Planck 2015 cosmic microwave background anisotropies in the angular power spectra. Phys. Rev. D92, 063534. DOI:10.1103/PhysRevD.92.063534.Google Scholar
Caldwell, R. R., Dave, R., and Steinhardt, P. J. (1998). Cosmological imprint of an energy component with general equation of state. Phys. Rev. Lett. 80, 1582.Google Scholar
Caldwell, R. R., Kamionkowski, M., and Weinberg, N. N. (2003). Phantom energy and cosmic doomsday. Phys. Rev. Lett. 91, 071301.Google Scholar
Caprini, C., Durrer, R., and Kahniashvili, T. (2004). The cosmic microwave background and helical magnetic fields: the tensor mode. Phys. Rev. D69, 063006.Google Scholar
Challinor, A., and Lewis, A. (2005). Lensed CMB power spectra from all-sky correlation functions. Phys. Rev. D71, 103010.Google Scholar
Challinor, A., and Lewis, A. (2011). The linear power spectrum of observed source number counts. Phys. Rev. D84, 043516.Google Scholar
Chandrasekhar, S. (1939). An Introduction to the Study of Stellar Structure. Chicago: Chicago University Press.Google Scholar
Chluba, J. et al. (2019). Spectral distortions of the CMB as a probe of inflation, recombination, structure formation and particle physics: Astro2020 Science White Paper. Bull. Am. Astron. Soc. 51, 184.Google Scholar
Colafrancesco, S. (2007). Beyond the standard lore of the SZ effect. New Astron. Rev. 51, 394.Google Scholar
Conklin, E. K. (1969). Velocity of the Earth with respect to the cosmic background radiation. Nature 222, 971.CrossRefGoogle Scholar
Creminelli, P. (2003). On non-Gaussianities in single-field inflation. JCAP 0310, 003. [DOI:10.1088/1475-7516/2003/10/003] [astro-ph/0306122].Google Scholar
Creminelli, P., Noreña, J., and Simonović, M. (2012). Conformal consistency relations for single-field inflation. JCAP 1207, 052. DOI:10.1088/1475-7516/2012/07/052.Google Scholar
Creminelli, P., Senatore, L., and Vasy, A. (2019). Asymptotic behavior of cosmologies with Λ > 0 in 2+1 dimensions. arXiv:1902.00519 [hep-th].+0+in+2+1+dimensions.+arXiv:1902.00519+[hep-th].>Google Scholar
Dalal, N., Dore, O., Huterer, D., and Shirokov, A. (2008). The imprints of primordial non-gaussianities on large-scale structure: Scale dependent bias and abundance of virialized objects. Phys. Rev. D77, 123514. DOI:10.1103/PhysRevD.77.123514.Google Scholar
De Petris, M. et al. (2002). MITO measurements of the Sunyaev–Zel’dovich effect in the Coma cluster of galaxies. Astrophys. J. 574, L119.Google Scholar
Di Dio, E., Montanari, F., Lesgourgues, J., and Durrer (2013). The CLASSgal code for Relativistic Cosmological Large Scale Structure. JCAP 1311, 044. DOI:10.1088/1475-7516/2013/11/044 [arXiv:1307:1459].Google Scholar
Di Dio, E., Montanari, F., Raccanelli, A., and Durrer, R., Kamionkowski, M., and Lesgourgues, J. (2016). Curvature constraints from Large Scale Structure. JCAP 1606(06):013. DOI:10.1088/1475-7516/2016/06/013.Google Scholar
Diu, B., Guthmann, C., Lederer, D., and Roulet, B. (1989). Physique Statistique. Paris: Moradinezhad, Hermann, Editeurs des Sciences et des Arts.Google Scholar
Dizgah, A., and Durrer, R. (2016). Lensing corrections to the Eg (z) statistics from large scale structure. JCAP 1609, 035. DOI:10.1088/1475-7516/2016/09/035.Google Scholar
Dodelson, S. (2003). Modern Cosmology. New York: Academic Press.Google Scholar
Doran, M. (2005). CMBeasy: An object oriented code for the cosmic microwave background. JCAP 0510, 011.Google Scholar
Durrer, R. (1990). Gauge-invariant cosmological perturbation theory with seeds. Phys. Rev. D42, 2533.Google Scholar
Durrer, R. (1994). Gauge invariant cosmological perturbation theory. Fund. Cosmic Phys. 15, 209.Google Scholar
Durrer, R., and Straumann, N. (1988). Some applications of the 3 + 1 formalism of general relativity. Helv. Phys. Acta 61, 1027.Google Scholar
Durrer, R. et al. (1999). Seeds of large-scale anisotropy in string cosmology. Phys. Rev. D59, 043511.Google Scholar
Durrer, R., Kunz, M., and Melchiorri, A. (2002). Cosmic structure formation with topological defects. Phys. Rep. 364, 1.Google Scholar
Durrer, R., and Tansella, V. (2016). Vector perturbations of galaxy number counts. JCAP 1607(07), 037.Google Scholar
Ehlers, J. (1971). General relativity and kinetic theory. In Proceedings of the Varenna School 1969, Course XLVII, ed. Sachs, R. K.. New York: Academic Press.Google Scholar
Ellis, G. F. R., and Bruni, M. (1989). Covariant and gauge-invariant approach to cosmological density fluctuations. Phys. Rev. D40, 1804.Google Scholar
Enqvist, K., and Sloth, M. S. (2002). Adiabatic CMB perturbations in pre - big bang string cosmology. Nucl. Phys. B 626, 395409. DOI:10.1016/S0550–3213(02)00043-3.Google Scholar
Fan, X. H., Carilli, C. L., and Keating, B. G. (2006). Observational constraints on cosmic reionization. Ann. Rev. Astron. Astrophys. 44, 415. DOI:10.1146/ annurev.astro.44.051905.092514.Google Scholar
Fan, X. H. et al. (2006). Constraining the evolution of the ionizing background and the epoch of reionization with z 6 quasars. 2. A sample of 19 quasars. Astron. J. 132, 117. DOI:10.1086/504836.Google Scholar
Feng, C., and Holder, G., G. (2019). Searching for patchy reionization from cosmic microwave background with hybrid quadratic estimators. Phys. Rev. D99, 123502. DOI:10.1103/PhysRevD.99.123502.Google Scholar
Fergusson, J., and Shellard, E. (2009). The shape of primordial non-Gaussianity and the CMB bispectrum. Phys. Rev. D80, 043510. DOI:10.1103/PhysRevD.80.043510.Google Scholar
Field, G. B. (1959). The spin temperature of intergalactic neutral hydrogen. Astrophys. J 129, 536.Google Scholar
Fields, B. D., and Sarkar, S. (2006). Big-bang nucleosynthesis. J. Phys. G33, 1.Google Scholar
Fixsen, D. J. et al. (1996). The cosmic microwave background spectrum from the full COBE FIRAS data set. Astrophys. J. 707, 916.Google Scholar
Fixsen, D. J. (2009). The temperature of the cosmic microwave background. Astrophys. J. 473, 567.Google Scholar
Friedmann, A. (1922). Über die Krümming des Raumes. Z. Phys. 10, 377.CrossRefGoogle Scholar
Friedmann, A. (1924). Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Z. Phys. 21, 326.Google Scholar
Freedman, W. L. et al. (2001). Final results from the Hubble Space Telescope key project to measure the Hubble constant. Astrophys. J. 553, 47.CrossRefGoogle Scholar
Furlanetto, S., Oh, S. P., and Briggs, F. (2006). Cosmology at low frequencies: The 21 cm transition and the high-redshift universe. Phys. Rept. 433, 181. DOI:10.1016/j.physrep.2006.08.002.Google Scholar
Gamerman, D. (1997). Markov Chain Monte Carlo: Stochastic Simulations for Bayesian Inference. London: Chapman and Hall.Google Scholar
Goldberg, J. N. et al. (1967). Spin-s Spherical Harmonics and --img--. J. Math. Phys. 8, 2155.Google Scholar
Gorski, K. M. (1994). On determining the spectrum of primordial inhomogeneity from the COBE DMR sky maps: I. Method. Astrophys. J. 430, L85.Google Scholar
Gradshteyn, I. S., and Ryzhik, I. M. (2000). Table of Integrals, Series and Products, 6th ed. New York: Academic Press.Google Scholar
Gunn, J. E., and Peterson, B. A. (1965). On the density of neutral hydrogen in intergalactic space. Astrophys. J. 142, 1633.Google Scholar
Hajian, A. (2007). Efficient cosmological parameter estimation with Hamiltonian Monte Carlo. Phys. Rev. D75, 083525.Google Scholar
Hall, A., Bonvin, C., and Challinor, A. (2013). Testing General Relativity with 21-cm intensity mapping. Phys. Rev. D87, 064026. DOI:10.1103/PhysRevD.87.064026.Google Scholar
Harrison, E. R. (1970). Fluctuations at the threshold of classical cosmology. Phys. Rev. D1, 27262730.Google Scholar
Hawking, S., and Ellis, G. F. R. (1973). The Large Scale Structure of the Universe. Cambridge: Cambridge University Press.Google Scholar
Henry, P. S. (1971). Isotropy of the 3 K background. Nature 231, 516.Google Scholar
Hoffman, M., and Turner, M. (2001). Kinematic constraints to the key inflationary observables. Phys. Rev. D64, 023506.Google Scholar
Hogg, D. et al. (2005). Cosmic homogeneity demonstrated with luminous red galaxies. Astrophys. J. 624, 5458.Google Scholar
Hu, W., and Silk, J. (1993). Thermalization and spectral distortions of the cosmic microwave background radiation. Phys. Rev. D48, 485.Google Scholar
Hu, W., and Sugiayma, N. (1995). Anisotropies in the cosmic microwave background: an analytic approach. Astrophys. J. 444, 489.Google Scholar
Hu, W., and White, M. (1996). CMB anisotropies in the weak coupling limit. Astron. Astrophys. 315, 33.Google Scholar
Hu, W., and White, M. (1997a). Tensor anisotropies in an open universe. Astrophys. J. 486, L1.Google Scholar
Hu, W., and White, M. (1997b). CMB anisotropies: Total angular momentum method. Phys. Rev. D56, 596.Google Scholar
Hu, W., Scott, D., Sugiayma, N., and White, M. (1995). The effect of physical assumptions on the calculation of microwave background anisotropies. Phys. Rev. D52, 5498.Google Scholar
Hu, W., Seljak, U. A., White, M., and Zaldarriaga, M. (1998). Complete treatment of CMB anisotropies in a FRW universe. Phys. Rev. D57, 3290.Google Scholar
Hubble, E. (1929). A relation between distance and radial velocity among extra-galactic nebulae. Proc. Natl. Acad. Sci. USA 15, 168.Google Scholar
Iršič, V., Di Dio, E., and Viel, M. (2016). Relativistic effects in Lyman-forest. JCAP 1602, 051. DOI:10.1088/1475-7516/2016/02/051.Google Scholar
Israel, W., and Stewart, J. (1980). Einstein Commemorative Volume, ed. A. Held. New York: Plenum Press.Google Scholar
Jackson, J. D. (1975). Classical Electrodynamics, 2nd ed. New York: John Wiley & Sons.Google Scholar
Jauch, J. M., and Rorlich, F. (1976). The Theory of Photons and Electrons (New York, Springer-Verlag).Google Scholar
Kaiser, N. (1987). Clustering in real space and in redshift space. Mon. Not. Roy. Ast. Soc. 227, 1.Google Scholar
Kamionkowski, M., Kosowsky, A., and Stebbins, A. (1997). Statistics of cosmic microwave background polarization. Phys. Rev. Lett. 78, 2058.Google Scholar
Kendall, M. S., and Stuart, A. (1969). Advanced Theory of Statistics, vol. II. New York: Van Nostrand.Google Scholar
Kodama, H., and Sasaki, M. (1984). Cosmological perturbation theory. Prog. Theor. Phys. Suppl. 78, 1.Google Scholar
Kogut, A. et al. (2006). ARCADE: absolute radiometer for cosmology, astrophysics, and diffuse emission. New Astron. Rev. 50, 925.Google Scholar
Kolb, E., and Turner, M. (1990). The Early Universe. Reading, MA: Addison Wesley.Google Scholar
Kovetz, E. D. et al. (2017). Line-Intensity Mapping: 2017 Status Report. arXiv:1709.09066.Google Scholar
Kunz, M., Trotta, R., and Parkinson, D. (2006). Measuring the effective complexity of cosmological models. Phys. Rev. D74, 023503.Google Scholar
Lachieze-Rey, M., and Luminet, J. P. (1995). Cosmic topology. Phys. Rep. 254, 135214.Google Scholar
LaRoque, S. et al. (2006). X-ray and Sunyaev–Zel’dovich effect measurements of the gas mass fraction in galaxy clusters. Astrophys. J. 652, 917.Google Scholar
Lazanu, A., Giannantonio, T., Schmittfull, M., and Shellard, E. P. S. (2016). Matter bispectrum of large-scale structure: Three-dimensional comparison between theoretical models and numerical simulations. Phys. Rev. D93, 083517. DOI:10.1103/ PhysRevD.93.083517.Google Scholar
Lemaître, G. (1927). L’univers en expansion. Ann. Soc. Bruxelles 47A, 49.Google Scholar
Lemaître, G. (1931). Expansion of the universe, a homogeneous universe of constant mass and increasing radius accounting for the radial velocity of extra-galactic nebulae. Mon. Not. R. Ast. Soc. 91, 483–490; Expansion of the universe. the expanding universe, Mon. Not. R. Astron. Soc. 91, 490–501.Google Scholar
Lepori, F., Di Dio, E., Viel, M., Baccigalupi, C., and Durrer, R. (2016). The Alcock Paczyski test with Baryon Acoustic Oscillations: Systematic effects for future surveys. JCAP 1702 no. 02, 020. DOI:10.1088/1475-7516/2017/02/020.Google Scholar
Lesgourgues, J. (2011). The cosmic linear anisotropy solving system (CLASS) I: Overview. arXiv:1104.2932.Google Scholar
Lewis, A. (2013). Efficient sampling of fast and slow cosmological parameters. Phys. Rev. D 87 (2013) no. 10, 103529. DOI:10.1103/PhysRevD.87.103529.Google Scholar
Lewis, A., and Bridle, S. (2002). Cosmological parameters from CMB and other data: A Monte Carlo approach. Phys. Rev. D66, 103511. (see also http://cosmologist.info/cosmomc/).Google Scholar
Lewis, A., and Challinor, A. (2006). Weak gravitational lensing of the CMB. Phys. Rep. 429, 1.Google Scholar
Lewis, A., Challinor, A., and Lasenby, A. (2000). Efficient computation of CMB anisotropies in closed FRW models. Astrophys. J. 538, 473. (see http://camb.info)Google Scholar
Liddle, A., and Lyth, D. (2000). Cosmological Inflation and Large Scale Structure, Cambridge: Cambridge University Press.Google Scholar
Lifshitz, E. (1946). About gravitational stability of expanding worlds JETP 10, 116.Google Scholar
Lifshitz, E., and Pitajewski, L. (1983). Lehrbuch der Theoretischen Physik, vol. X. Berlin: Akademie Verlag.Google Scholar
Liguori, M., Sefusatti, E., Fergusson, J. R., and Shellard, E. P. S. (2010). Primordial non-Gaussianity and bispectrum measurements in the cosmic microwave background and large-scale structure. Adv. Astron. 2010, 980523. DOI:10.1155/2010/980523.Google Scholar
Limber, D. N. (1954). The analysis of counts of the extragalactic nebulae in terms of a fluctuating density field. II. Astrophys. J. 119, 655. DOI:10.1086/145870.Google Scholar
Linde, A. (1989). Inflation and Quantum Cosmology (New York, Academic Press).Google Scholar
Lizarraga, J., Urrestilla, J., Daverio, D., Hindmarsh, M., and Kunz, M. (2016). New CMB constraints for Abelian Higgs cosmic strings. JCAP 1610, 042. DOI:10.1088/1475-7516/2016/10/042.Google Scholar
Lo Verde, M., and Afshordi, N. (2008). Extended Limber approximation. Phys. Rev. D78, 123506.Google Scholar
Louis, T. et al. [ACTPol Collaboration] (2017). The Atacama Cosmology Telescope: Two-season ACTPol spectra and parameters. JCAP 1706, 031. DOI:10.1088/1475-7516/2017/06/031.Google Scholar
MacKay, D. J. C. (2003). Information Theory, Inference, and Learning Algorithms. Cambridge: Cambridge University Press (see also http:www.inference.phy.cam.ac.uk/mackay/itprnn/book.html).Google Scholar
Maggiore, M. (2005). A Modern Introduction to Quantum Field Theory. Oxford: Oxford University Press.Google Scholar
Maggiore, M. (2007). Gravitational Waves. Oxford: Oxford University Press.Google Scholar
Maldacena, J. (2003). Non-Gaussian features of primordial fluctuations in single field inflationary models. J. High Energy Phys. 0305, 013.Google Scholar
Mao, Q., Berlind, A. A., Scherrer, R. J., Neyrinck, M. C., Scoccimarro, R., Tinker, J. L., McBride, C. K., and Schneider, D. P. (2017). Cosmic voids in the SDSS DR12 BOSS Galaxy Sample: The Alcock Paczynski test. Astrophys. J. 835, 160. DOI:10.3847/ 1538-4357/835/2/160.Google Scholar
Marozzi, G., Fanizza, G., Di Dio, E., and Durrer, R. (2017). Impact of next-to-leading order contributions to cosmic microwave background lensing. Phys. Rev. Lett. 118, 211301. DOI:10.1103/PhysRevLett.118.211301.Google Scholar
Martin, J., and Schwarz, D. (2003). WKB approximation for inflationary cosmological perturbations. Phys. Rev. D67, 083512.Google Scholar
Matsubara, T. (2000). The gravitational lensing in redshift-space correlation functions of galaxies and quasars. Astrophys. J. 537, L77. DOI:10.1086/312762.Google Scholar
Mazumdar, A., and Wang, L. F. (2012). Separable and non-separable multi-field inflation and large non-Gaussianity. JCAP 1209, 005. DOI:10.1088/1475-7516/2012/09/005.Google Scholar
McDonald, P. et al. (2005). The linear theory power spectrum from the Lyman-alpha forest in the Sloan Digital Sky Survey. Astrophys. J. 635, 761.Google Scholar
Mészáros, P. (1974). The behaviour of point masses in an expanding cosmological substratum. Astron. Astrophys. 37, 225.Google Scholar
Mitsou, E., Yoo, J., Durrer, R., Scaccabarozzi, F., and Tansella, V. (2019). Angular N-point spectra and cosmic variance on the light-cone. arXiv:1905.01293.Google Scholar
Montanari, F., and Durrer, R. (2012). A new method for the Alcock-Paczynski test. Phys. Rev. D86, 063503. DOI:10.1103/PhysRevD.86.063503.Google Scholar
Montanari, F., and Durrer, R. (2015). Measuring the lensing potential with tomographic galaxy number counts. JCAP 1510, 070.Google Scholar
Moodley, K. et al. (2004). Constraints on iso-curvature models from the WMAP first-year data. Phys. Rev. D70, 103520.Google Scholar
Mukhanov, V. F. (2005). Physical Foundations of Cosmology. Cambridge: Cambridge University Press.Google Scholar
Mukhanov, V. F., and Chibisov, G. (1982). The vacuum energy and large scale structure of the Universe. JETP 56, 258.Google Scholar
Mukhanov, V. F., Feldman, H. A., and Brandenberger, R. H. (1992). Theory of cosmological perturbations. Phys. Rep. 215, 203.Google Scholar
Newman, E. T., and Penrose, R. (1966). Note on the Bondi–Metzner–Sachs group. J. Math. Phys. 7, 863.Google Scholar
Newton, I. (1958). Letters from Sir Isaac Newton to Dr. Bentley, Letter I, 203ff quoted by A. Koyré, From the Classical World to the Infinite Universe. New York: Harper and Row.Google Scholar
Nussbaumer, H., and Bieri, L. (2009). Discovering the Expanding Universe. Cambridge: Cambridge University Press.Google Scholar
Obreschkow, D., Power, C., Bruderer, M., and Bonvin, C. (2013). A robust measure of cosmic structure beyond the power-spectrum: Cosmic filaments and the temperature of dark matter. Astrophys. J. 762, 115. DOI:10.1088/0004-637X/762/2/115.CrossRefGoogle Scholar
Okamoto, T., and Hu, W. (2003). CMB lensing reconstruction on the full sky. Phys. Rev. D67, 083002. DOI:10.1103/PhysRevD.67.083002.Google Scholar
Øksendal, B. K. (2007). Stochastic Differential Equations. Berlin: Springer-Verlag.Google Scholar
Olive, K. A., Steigman, G., and Walker, T. P. (2000). Primordial nucleosynthesis: theory and observations. Phys. Rep. 333, 389.Google Scholar
Olive, K. A et al. (PDG) (2014). Neutrino mass, mixing, and oscillations. Chin. Phys. C38, 090001 (http://pdg.lbl.gov).Google Scholar
Padmanabhan, T. (2000). Theoretical Astrophysics vol. I. Cambridge: Cambridge University Press.Google Scholar
Padmanabhan, T. (2010). Gravitation: Foundations and Frontiers. Cambridge: Cambridge University Press.Google Scholar
Palanque-Delabrouille, N. et al. (2015). Constraint on neutrino masses from SDSS-III/BOSS Lyα forest and other cosmological probes. JCAP 1502, 045. DOI:10.1088/ 1475-7516/2015/02/045.Google Scholar
Park, D. (1974). Introduction to the Quantum Theory, 2nd ed. New York: McGraw-Hill.Google Scholar
Particle Data Group (2004). Review of particle physics. Phys. Lett. B592, 191227.Google Scholar
Particle Data Group (2006). Review of particle physics, ed. W.-M. Yao et al., J. Phys. G33, 1.Google Scholar
Peacock, J. A. (1999). Cosmological Physics. Cambridge: Cambridge University Press.Google Scholar
Peebles, P. J. E. (1980). The Large Scale Structure of the Universe. Princeton, NJ: Princeton University Press.Google Scholar
Peebles, P. J. E. (1993). Principles of Physical Cosmology. Princeton, NJ: Princeton University Press.Google Scholar
Perlmutter, S. et al. [Supernova Cosmology Project Collaboration] (1999). Measurements of Ω and Λ from 42 high redshift supernovae. Astrophys. J. 517, 565. DOI:10.1086/307221.Google Scholar
Pietrobon, D., Balbi, A., and Marinucci, D. (2006). Integrated Sachs–Wolfe effect from the cross correlation of WMAP3 year and the NRAO VLA sky survey data: New results and constraints on dark energy. Phys. Rev. D74, 043524.Google Scholar
Pratten, G., and Lewis, A. (2016). Impact of post-Born lensing on the CMB. JCAP 1608, 047. DOI:10.1088/1475-7516/2016/08/047.Google Scholar
Press, W., and Schechter, P. (1974). Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. Astrophys. J. 187, 425.Google Scholar
Reed, M., and Simon, B. (1980). Methods of Modern Mathematical Physics, vol. 1. Functional Analysis. New York: Academic Press.Google Scholar
Regan, D. M., Shellard, E. P. S., and Fergusson, J. R. (2010). General CMB and primordial trispectrum estimation. Phys. Rev. D82 (2010) 023520. DOI:10.1103/ PhysRevD.82.023520.Google Scholar
Renaux-Petel, S. (2013). DBI Galileon in the effective field theory of inflation: Orthogonal non-Gaussianities and constraints from the trispectrum. JCAP 1308, 017. DOI:10.1088/1475-7516/2013/08/017.Google Scholar
Riess, A. G. et al. [Supernova Search Team] (1998). Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009. DOI:10.1086/300499.Google Scholar
Riess, A. G. (2019). The expansion of the Universe is faster than expected. Nature Rev. Phys. 2, 10. DOI:10.1038/s42254–019-0137-0.Google Scholar
Robertson, H. P. (1936). Kinematics and world structure I, II, III. Astrophys. J. 82, 284–301; Astrophys. J. 83, 187–201, 257–271.Google Scholar
Rocher, J., and Sakellariadou, M. (2005). Constraints on supersymmetric grand unified theories from cosmology. J. Cosmol. Astroport. Phys. 0503, 004.Google Scholar
Rubino-Martin, J. A., Chluba, J., and Sunyaev, R. A. (2006). Lines in the cosmic microwave background spectrum from the epoch of cosmological hydrogen recombination. Mon. Not. R. Astron. Soc. 371, 1939.Google Scholar
Rybicki, G. B., and Lightman, A. P. (1979). Radiative Processes in Astrophysics. New York: John Wiley & Sons.Google Scholar
Sachs, R. K., and Wolfe, A. M. (1967). Perturbations of a cosmological model and angular variations of the microwave background. Astrophys. J. 147, 73.Google Scholar
Sakurai, J. J. (1993). Modern Quantum Mechanics. Reading, MA: Addison-Wesley.Google Scholar
Sasaki, M. (1987). The magnitude-redshift relation in a perturbed Friedmann universe. Mon. Not. Roy. Ast. Soc. 228, 653.Google Scholar
Schmalzing, J., and Gorski, K. M. (1998). Minkowski functionals used in the morphological analysis of cosmic microwave background anisotropy maps. Mon. Not. Roy. Astron. Soc. 297 355. DOI:10.1046/j.1365-8711.1998.01467.x.Google Scholar
Schmidt, B. P. et al. [Supernova Search Team] (1998 The High Z supernova search: Measuring cosmic deceleration and global curvature of the universe using type Ia supernovae. Astrophys. J. 507, 46. DOI:10.1086/306308.Google Scholar
Schneider, P. (2007). Weak gravitational lensing. In 33rd Saas Fee Lectures, ed. Jetzer, P. and North, P.. Berlin: Springer-Verlag.Google Scholar
Schneider, P., Ehlers, J., and Falco, E. E. (1993). Gravitational lenses. Springer-Verlag Berlin.Google Scholar
Schneider, R. (1993). Convex Bodies: The Brunn-Minkowski Theory. Cambridge: Cambridge University Press.Google Scholar
Schwarz, D., Terrero-Escalante, C., and Garcia, A. (2001). Higher order corrections to primordial spectra from cosmological inflation. Phys. Lett. B517, 243249.Google Scholar
Scodeller, S., Kunz, M., and Durrer, R. (2009). CMB anisotropies from acausal scaling seeds. Phys. Rev. D79, 083515. DOI:10.1103/PhysRevD.79.083515.Google Scholar
Seager, S., Sasselov, D. D., and Scott, D. (1999). A new calculation of the recombination epoch. Astrophys. J. 523. L1–L5. DOI:10.1086/312250.Google Scholar
Seljak, U. (1996a). Rees–Sciama effect in a CDM universe. Astrophys. J. 460, 549.Google Scholar
Seljak, U. (1996b). Measuring polarization in the cosmic microwave background. Astrophys. J. 482, 6.Google Scholar
Seljak, U., and Zaldarriaga, M. (1996). A line of sight integration approach to cosmic microwave background anisotropies. Astrophys. J. 469, 437.Google Scholar
Sellentin, E., and Durrer, R. (2015). Detecting the cosmological neutrino background in the CMB. Phys. Rev. D92, 063012. DOI:10.1103/PhysRevD.92.063012.Google Scholar
Senatore, L., Smith, K. M., and Zaldarriaga, M. (2010). Non-Gaussianities in single field inflation and their optimal limits from the WMAP 5-year data. JCAP 1001, 028. DOI:10.1088/1475-7516/2010/01/028.Google Scholar
Shajib, A. J., and Wright, E. L. (2016). Measurement of the integrated Sachs-Wolfe effect using the AllWISE data release. Astrophys. J. 827, 116. DOI:10.3847/0004-637X/827/2/116.Google Scholar
Shaw, J. R., and Chluba, J. (2011). Precise cosmological parameter estimation using CosmoRec. Mon. Not. Roy. Astron. Soc. 415, 1343. DOI:10.1111/j.1365-2966.2011.18782.x.Google Scholar
Silk, J. (1968). Cosmic black body radiation and galaxy formation. Astrophys. J. 151, 459. DOI:10.1086/149449.Google Scholar
Singal, J. et al. (2005). Design and performance of sliced-aperture corrugated feed horn antennas. Rev. Sci. Instrum. 76, 124703. (For updates see http://arcade.gsfc.nasa.gov/)Google Scholar
Smoot, G. F. et al. (1992). Structure in the COBE differential microwave radiometer first-year maps. Astrophys. J. 396, L1.Google Scholar
Songaila, A., and Cowie, L. L. (1996). Metal enrichment and ionization balance in the Lyman α forest at z = 3. Astron. J. 112, 335.Google Scholar
Spergel, D., and Zaldarriaga, M. (1997). CMB polarization as a direct test of inflation. Phys. Rev. Lett. 79, 2180.Google Scholar
Spergel, D. N. et al. (2003). First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determinations of cosmological parameters. Astrophys. J. Suppl. 148, 175.Google Scholar
Stewart, J. M. (1971). Non-equilibrium Relativistic Kinetic Theory. Springer Lecture Notes. Berlin: Springer-Verlag.Google Scholar
Stewart, J. M., and Walker, M. (1974). Perturbations of space-times in general relativity. Proc. R. Soc. London A341, 49.Google Scholar
Straumann, N. (1974). Minimal assumptions leading to a Robertson–Walker model of the Universe. Hel. Phys. Acta 47, 379.Google Scholar
Straumann, N. (1984). General Relativity and Relativistic Astrophysics. Berlin: Springer-Verlag.Google Scholar
Straumann, N. (2004). General Relativity with Applications to Astrophysics. Berlin: Springer-Verlag.Google Scholar
Sylos Labini, F., Montuori, M., and Pietronero, L. (1998). Scale-invariance of galaxy clustering. Phys. Rep. 293, 61226.Google Scholar
Tanabashi, M. et al. (Particle Data Group) (2018 and 2019 update). http://pdg.lbl.gov/2019/reviews/contents∼sports.html Phys. Rev. D98, 030001.Google Scholar
Tansella, V., Bonvin, C., Durrer, R., Ghosh, B., and Sellentin, E. (2018). The full-sky relativistic correlation function and power spectrum of galaxy number counts. Part I: Theoretical aspects. JCAP 1803, 019. DOI:10.1088/1475-7516/2018/03/019.Google Scholar
Tansella, V., Jelic-Cizmek, G., Bonvin, C. and Durrer, R. (2018). Coffe: A code for the full-sky relativistic galaxy correlation function. JCAP 1810, 032. DOI:10.1088/1475-7516/2018/10/032.Google Scholar
Tegmark, M. et al. (2004). The 3D power spectrum of galaxies from the SDSS. Astrophys. J. 606, 702.Google Scholar
Thorne, K. (1980). Multipole expansions of gravitational radiation. Rev. Mod. Phys. 52, 299.Google Scholar
Tomita, H. (1986). Curvature invariants of random interface generated by Gaussian fields. Prog. Theo. Phys. 76, 952. DOI:10.1143/PTP.76.952.Google Scholar
Trotta, R. (2017). Bayesian methods in cosmology. arXiv:1701.01467.Google Scholar
Trotta, R., Riazuelo, A., and Durrer, R. (2001). Cosmic microwave background anisotropies with mixed iso-curvature perturbations. Phys. Rev. Lett. 87, 231301. DOI:10.1103/PhysRevLett.87.231301.Google Scholar
Trotta, R., Riazuelo, A. and Durrer, R. (2003). The cosmological constant and general iso-curvature initial conditions, Phys. Rev. D67, 063520. DOI:10.1103/ PhysRevD.67.063520.Google Scholar
Vielva, P., Martnez-Gonzlez, E., Barreiro, R. B., Sanz, J. L., and Cayón, L. (2004). Detection of non-Gaussianity in the Wilkinson microwave anisotropy probe first-year Astrophys. J. 609, 22. DOI:10.1086/421007.Google Scholar
Vilenkin, N. Y., and Smorodinskii, Y. A. (1964). Invariant expansion of relativistic amplitudes. Sov. Phys. JETP, 19, 1209.Google Scholar
Wald, R. M. (1984). General Relativity. Chicago: University of Chicago Press.Google Scholar
Walker, A. G. (1936). Proc. Lond. Math. Soc. 42, 90.Google Scholar
Weinberg, S. (1995). The Quantum Theory of Fields I. Cambridge: Cambridge University Press.Google Scholar
Weinberg, S. (2005). Quantum contributions to cosmological correlations. Phys. Rev. D72, 043514. DOI:10.1103/PhysRevD.72.043514.Google Scholar
Weinberg, S. (2008). Cosmology. Oxford: Oxford University Press.Google Scholar
Wigner, E. P. (1959). Group Theory. New York: Academic Press.Google Scholar
Wolf, J. (1974). Spaces of Constant Curvature. Boston: American Mathematical Society.Google Scholar
Wong, K. C. et al. (2019). H0LiCOW XIII. A 2.4% measurement of H0 from lensed quasars: 5.3σ tension between early and late-Universe probes. arXiv:1907.04869.Google Scholar
Wong, W. Y., Seager, S., and Scott, D. (2006). Spectral distortions to the cosmic microwave background from the recombination of hydrogen and helium. Mon. Not. R. Astron. Soc. 367, 1666. DOI:10.1111/j.1365-2966.2006.10076.x.Google Scholar
Wouthuysen, S. A. (1952). On the excitation mechanism of the 21-cm (radio-frequency) interstellar hydrogen emission line. Astron. J. 57, 31.Google Scholar
Zaldarriaga, M., and Seljak, U. (1997). An all-sky analysis of polarization in the microwave background. Phys. Rev. D55, 18301840.Google Scholar
Zel’dovich, Y. B. (1972). A hypothesis, unifying the structure and the entropy of the Universe. Mon. Not. R. Astron. Soc. 160, 1.Google Scholar
Zhang, P., Liguori, M., Bean, R., and Dodelson, S. (2007). Probing gravity at cosmological scales by measurements which test the relationship between gravitational lensing and matter overdensity. Phys. Rev. Lett. 99, 141302. DOI:10.1103/ PhysRevLett.99.141302.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Ruth Durrer, Université de Genève
  • Book: The Cosmic Microwave Background
  • Online publication: 10 December 2020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Ruth Durrer, Université de Genève
  • Book: The Cosmic Microwave Background
  • Online publication: 10 December 2020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Ruth Durrer, Université de Genève
  • Book: The Cosmic Microwave Background
  • Online publication: 10 December 2020
Available formats
×