Book contents
- Frontmatter
- Contents
- Contributors
- Foreword
- Preface
- Introductory Notes
- 1 Physiology of ventilation and gas exchange
- 2 Assessing the need for ventilatory support
- 3 Oxygen therapy, continuous positive airway pressure and non-invasive ventilation
- 4 Management of the artificial airway
- 5 Modes of mechanical ventilation
- 6 Oxygenation
- 7 Carbon dioxide balance
- 8 Sedation, paralysis and analgesia
- 9 Nutrition in the mechanically ventilated patient
- 10 Mechanical ventilation in asthma and chronic obstructive pulmonary disease
- 11 Mechanical ventilation in patients with blast, burn and chest trauma injuries
- 12 Ventilatory support: extreme solutions
- 13 Heliox in airway obstruction and mechanical ventilation
- 14 Adverse effects and complications of mechanical ventilation
- 15 Mechanical ventilation for transport
- 16 Special considerations in infants and children
- 17 Tracheostomy
- 18 Weaning, extubation and de-cannulation
- 19 Long-term ventilatory support
- 20 The history of mechanical ventilation
- Glossary
- Index
6 - Oxygenation
Published online by Cambridge University Press: 14 October 2009
- Frontmatter
- Contents
- Contributors
- Foreword
- Preface
- Introductory Notes
- 1 Physiology of ventilation and gas exchange
- 2 Assessing the need for ventilatory support
- 3 Oxygen therapy, continuous positive airway pressure and non-invasive ventilation
- 4 Management of the artificial airway
- 5 Modes of mechanical ventilation
- 6 Oxygenation
- 7 Carbon dioxide balance
- 8 Sedation, paralysis and analgesia
- 9 Nutrition in the mechanically ventilated patient
- 10 Mechanical ventilation in asthma and chronic obstructive pulmonary disease
- 11 Mechanical ventilation in patients with blast, burn and chest trauma injuries
- 12 Ventilatory support: extreme solutions
- 13 Heliox in airway obstruction and mechanical ventilation
- 14 Adverse effects and complications of mechanical ventilation
- 15 Mechanical ventilation for transport
- 16 Special considerations in infants and children
- 17 Tracheostomy
- 18 Weaning, extubation and de-cannulation
- 19 Long-term ventilatory support
- 20 The history of mechanical ventilation
- Glossary
- Index
Summary
Introduction
Oxygenation is one of the primary gas exchange functions of the lung. Acute hypoxaemic respiratory failure is defined as an arterial partial pressure of oxygen (PaO2) of less than 8 kPa. This specific value is to a degree arbitrary, but reflects the beginning of the relatively steep portion of the oxy-haemoglobin dissociation curve (Figure 6.1).
This chapter will briefly review how to assess the adequacy of oxygen uptake and, in the context of each of the mechanisms of arterial hypoxaemia, examine how this can be improved in the mechanically ventilated patient.
Is the patient adequately oxygenated?
The assessment of oxygenation has two facets, one pulmonary, and one extra-pulmonary. The pulmonary facet is asking the question ‘how well are this patient's lungs able to take up the oxygen I am supplying?’ This is an important question to answer because it provides information on how sick the patient is, and provides an impetus for further action to improve pulmonary function. The extrapulmonary facet is asking the question ‘is enough oxygen being supplied to the patient's vital organs?’ This too is an important question, because inadequate oxygen delivery will lead to organ failure, but in the absence of arterial hypoxaemia the management of this problem cannot be addressed by ventilatory strategies.
Keywords
- Type
- Chapter
- Information
- Core Topics in Mechanical Ventilation , pp. 115 - 141Publisher: Cambridge University PressPrint publication year: 2008
- 2
- Cited by