Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-17T18:12:43.877Z Has data issue: false hasContentIssue false

4 - Finding the Right Balance

Cooperation and Conflict in Nature

from Part I - Broad Insights from Political Science to Molecular Behavior

Published online by Cambridge University Press:  08 February 2021

Walter Wilczynski
Affiliation:
Georgia State University
Sarah F. Brosnan
Affiliation:
Georgia State University
Get access

Summary

Cooperation is the defining feature of societies; in these groups, members work together to achieve something that the individuals alone cannot. We marvel at cooperation in part because it requires communication and coordination, complex behaviors that speak directly to the creative, constructive power of natural selection. Nevertheless, societies can be disrupted by internal conflicts (Hurst et al., 1996; Chapman, 2006; Ratnieks et al., 2006; Burt and Trivers, 2009; Queller and Strassmann, 2018; Sachs et al., 2018). Conflict can be defined in many ways, but it amounts to an incentive to defect because actions that benefit the individual (e.g., do not pay taxes) run counter to those that benefit the group (everyone pays their taxes). In some cases, conflict results in a tragedy of the commons, where cooperation produces goods that are available to all, but some individuals deplete the public good without contributing to its production.

Type
Chapter
Information
Cooperation and Conflict
The Interaction of Opposites in Shaping Social Behavior
, pp. 66 - 86
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ågren, J. A. (2013) Selfish genes and plant speciation. Evolutionary Biology, 40(3): 439449.CrossRefGoogle Scholar
Ågren, J. A., and Clark, A. G. (2018) Selfish genetic elements. PLoS Genetics, 14(11): e1007700.Google Scholar
Andersen, S. B., Marvig, R. L., Molin, S., Krogh, Johansen H., and Griffin, A. S. (2015) Long-term social dynamics drive loss of function in pathogenic bacteria. Proceedings of the National Academy of Sciences USA, 112(34): 1075610761.CrossRefGoogle ScholarPubMed
Araujo Casares, F., and Faugeron, S. (2016) Higher reproductive success for chimeras than solitary individuals in the kelp Lessonia spicata but no benefit for individual genotypes. Evolutionary Ecology, 30(5): 953972.Google Scholar
Bekof, M. (1992) Kin recognition and kin discrimination. Trends in Ecology and Evolution, 7(3): 100.Google Scholar
Ben-David, E., Burga, A., and Kruglyak, L. (2017) A maternal-effect selfish genetic element in Caenorhabditis elegans. Science, 356(6342): 10511055.Google Scholar
Birky, C. W. (1995) Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. Proceedings of the National Academy of Sciences USA, 92(25): 1133111338.Google Scholar
Bourke, A. F. G. (2011a) Principles of Social Evolution. Oxford: Oxford University Press.Google Scholar
Bourke, A. F. G. (2011b) The validity and value of inclusive fitness theory. Proceedings of the Royal Society B Biological Science, 278(1723): 33133320.Google Scholar
Bourke, A. F. G., and Ratnieks, F. L. W. (1999) Kin conflict over caste determination in social Hymenoptera. Behavioral Ecology and Sociobiology, 46(5): 287297.CrossRefGoogle Scholar
Brand, C. L., Larracuente, A. M., and Presgraves, D. C. (2015) Origin, evolution, and population genetics of the selfish Segregation Distorter gene duplication in European and African populations of Drosophila melanogaster. Evolution, 69(5): 12711283.Google Scholar
Bravo Núñez, M. A., Nuckolls, N. L., and Zanders, S. E. (2018) Genetic villains: killer meiotic drivers. Trends in Genetics, 34(6): 424433.Google Scholar
Burt, A., and Trivers, R. (2009) Genes in Conflict: The Biology of Selfish Genetic Elements. Cambridge MA: Harvard University Press.Google Scholar
Buss, L. W. (1982) Somatic cell parasitism and the evolution of somatic tissue compatibility. Proceedings of the National Academy of Sciences USA, 79(17): 53375341.Google Scholar
Buss, L. W. (1983) Evolution, development, and the units of selection. Proceedings of the National Academy of Sciences USA, 80(5): 13871391.CrossRefGoogle ScholarPubMed
Buss, L. W. (1987) The Evolution of Individuality. Princeton, NJ: Princeton University Press.Google Scholar
Buttery, N. J., Rozen, D. E., Wolf, J. B., and Thompson, C. R. L. (2009) Quantification of social behavior in D. discoideum reveals complex fixed and facultative strategies. Current Biology, 19(16): 13731377.Google Scholar
Chang, E. S., Orive, M. E., and Cartwright, P. (2018) Nonclonal coloniality: Genetically chimeric colonies through fusion of sexually produced polyps in the hydrozoan Ectopleura larynx. Evolution Letters, 2(4): 442455.Google Scholar
Chapman, T. (2006) Evolutionary conflicts of interest between males and females. Current Biology, 16(17): R744R754.CrossRefGoogle ScholarPubMed
Charlesworth, D. (2006) Balancing selection and its effects on sequences in nearby genome regions. PLoS Genetics, 2(4): e64.Google Scholar
Chase, C. D. (2007) Cytoplasmic male sterility: A window to the world of plant mitochondrial–nuclear interactions. Trends in Genetics, 23(2): 8190.Google Scholar
Cornwallis, C. K., West, S. A., and Griffin, A. S. (2009) Routes to indirect fitness in cooperatively breeding vertebrates: Kin discrimination and limited dispersal. Journal of Evolutionary Biology, 22(12): 24452457.Google Scholar
Crespi, B., and Nosil, P. (2013) Conflictual speciation: Species formation via genomic conflict. Trends in Ecology and Evolution, 28(1): 4857.Google Scholar
Darwin, C. R. (1861) On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, 3rd ed. London: John Murray.Google Scholar
Dawkins, R. (2006) The Selfish Gene: With a New Introduction by the Author. Oxford: Oxford University Press.Google Scholar
De Tomaso, A. W., Nyholm, S. V., Palmeri, K. J., Ishizuka, K. J., Ludington, W. B., Mitchel, K., and Weissman, I. L. (2005) Isolation and characterization of a protochordate histocompatibility locus. Nature, 438(7067): 454459.CrossRefGoogle ScholarPubMed
Didion, J. P., Morgan, A. P., Yadgary, L. et al. (2016) R2d2 drives selfish sweeps in the house mouse. Molecular Biology and Evolution, 33(6): 13811395.CrossRefGoogle ScholarPubMed
Dobata, S. (2012) Arms race between selfishness and policing: Two-trait quantitative genetic model for caste fate conflict in eusocial Hymenoptera. Evolution, 66(12): 37543764.Google Scholar
Dobata, S., Sasaki, T., Mori, H., and Hasegawa, E. (2011) Persistence of the single lineage of transmissible “social cancer” in an asexual ant. Molecular Ecology, 20(3): 441455.Google Scholar
Douglas, A. E. (1998) Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera. Annual Review of Entomology, 43: 1737.CrossRefGoogle ScholarPubMed
Flack, J. C., de Waal, F. B. M., and Krakauer, D. C. (2005) Social structure, robustness, and policing cost in a cognitively sophisticated species. The American Naturalist, 165(5): E126E139.Google Scholar
Fletcher, J. A., and Doebeli, M. (2009) A simple and general explanation for the evolution of altruism. Proceedings of the Royal Society of London B Biological Science, 276(1654): 1319.Google Scholar
Foster, K. R., and Ratnieks, F. L. (2000) Facultative worker policing in a wasp. Nature, 407(6805): 692693.Google Scholar
Foster, K. R., Ratnieks, F. L. W., and Wenseleers, T. (2000) Spite in social insects. Trends in Ecology and Evolution, 15(11): 469470.Google Scholar
Foster, K. R., Wenseleers, T., and Ratnieks, F. L. W. (2001) Spite: Hamilton’s unproven theory. Annales Zoologici Fennici, 38(3/4): 229238.Google Scholar
Frank, S. A. (1991) Divergence of meiotic drive-suppression systems as an explanation for sex-biased hybrid sterility and inviability. Evolution, 45(2): 262267.Google Scholar
Frank, S. A. (1996) Host-symbiont conflict over the mixing of symbiotic lineages. Proceedings of the Royal Society of London B Biological Science, 263(1368): 339344.Google Scholar
Frank, S. A. (2003) Repression of competition and the evolution of cooperation. Evolution, 57(4): 693705.Google Scholar
Gardner, A., and West, S. A. (2004) Spite and the scale of competition. Journal of Evolutionary Biology, 17(6): 11951203.Google Scholar
Gardner, A., West, S. A., and Wild, G. (2011) The genetical theory of kin selection. Journal of Evolutionary Biology, 24(5): 10201043.Google Scholar
Geist, K. S., Strassmann, J. E., and Queller, D. C. (2019) Family quarrels in seeds and rapid adaptive evolution in Arabidopsis. Proceedings of the National Academy of Sciences USA, 116(19): 94639468.Google Scholar
Ghoul, M., Andersen, S. B., and West, S. A. (2017) Sociomics: Using omic approaches to understand social evolution. Trends in Genetics, 33(6): 408419.Google Scholar
Ghoul, M., Griffin, A. S., and West, S. A. (2014) Toward an evolutionary definition of cheating. Evolution, 68(2): 318331.Google Scholar
Greiner, S., Sobanski, J., and Bock, R. (2015) Why are most organelle genomes transmitted maternally? BioEssays, 37(1): 8094.CrossRefGoogle ScholarPubMed
Grosberg, R. K., and Strathmann, R. R. (1998) One cell, two cell, red cell, blue cell: The persistence of a unicellular stage in multicellular life histories. Trends in Ecology and Evolution, 13(3): 112116.Google Scholar
Haldane, J. B. S. (1955) Population genetics. New Biology, 18: 3451.Google Scholar
Hamilton, W. D. (1964a) The genetical evolution of social behaviour. I. Journal of Theoretical Biology, 7(1): 116.CrossRefGoogle ScholarPubMed
Hamilton, W. D. (1964b) The genetical evolution of social behaviour. II. Journal of Theoretical Biology, 7(1): 1752.Google Scholar
Harrison, E., MacLean, R. C., Koufopanou, V., and Burt, A. (2014) Sex drives intracellular conflict in yeast. Journal of Evolutionary Biology, 27(8): 17571763.Google Scholar
Hepper, P. G. (2005) Kin Recognition. Cambridge: Cambridge University Press.Google Scholar
Hillesland, K. L. (2018) Evolution on the bright side of life: Microorganisms and the evolution of mutualism. Annals of the New York Academy of Sciences, 1422(1): 88103.CrossRefGoogle ScholarPubMed
Hirose, S., Benabentos, R., Ho, H.-I., Kuspa, A., and Shaulsky, G. (2011) Self-recognition in social amoebae is mediated by allelic pairs of tiger genes. Science, 333(6041): 467470.Google Scholar
Hjort, K., Goldberg, A. V., Tsaousis, A. D., Hirt, R. P., and Embley, T. M. (2010) Diversity and reductive evolution of mitochondria among microbial eukaryotes. Philosophical Transactions of the Royal Society of London B Biological Sciences, 365(1541): 713727.Google Scholar
Hughes, W. O. H., and Boomsma, J. J. (2008) Genetic royal cheats in leaf-cutting ant societies. Proceedings of the National Academy of Sciences USA, 105(13): 51505153.Google Scholar
Hurst, L. D. (1998) Selfish genes and meiotic drive. Nature, 391(6664): 223.Google Scholar
Hurst, L. D., Atlan, A., and Bengtsson, B. O. (1996) Genetic conflicts. The Quarterly Review of Biology, 71(3): 317364.CrossRefGoogle ScholarPubMed
Ingvarsson, P. K., and Taylor, D. R. (2002) Genealogical evidence for epidemics of selfish genes. Proceedings of the National Academy of Sciences USA, 99(17): 1126511269.CrossRefGoogle ScholarPubMed
Jordan, L. A., Allsopp, M. H., Oldroyd, B. P., Wossler, T. C., and Beekman, M. (2008) Cheating honeybee workers produce royal offspring. Proceedings of the Royal Society B Biological Science, 275(1632): 345351.Google Scholar
Keller, L., and Ross, K. G. (1998) Selfish genes: A green beard in the red fire ant. Nature, 394(6693): 573575.Google Scholar
Khare, A., Santorelli, L. A., Strassmann, J. E., Queller, D. C., Kuspa, A., and Shaulsky, G. (2009) Cheater-resistance is not futile. Nature, 461(7266): 980982.Google Scholar
Kiers, E. T., Rousseau, R. A., West, S. A., and Denison, R. F. (2003) Host sanctions and the legume-rhizobium mutualism. Nature, 425(6953): 7881.Google Scholar
Lakkis, F. G., Dellaporta, S. L., and Buss, L. W. (2008) Allorecognition and chimerism in an invertebrate model organism. Organogenesis, 4(4): 236240.Google Scholar
Larracuente, A. M., and Presgraves, D. C. (2012) The selfish Segregation Distorter gene complex of Drosophila melanogaster. Genetics, 192(1): 3353.Google Scholar
Lehmann, L., Ravigné, V., and Keller, L. (2008) Population viscosity can promote the evolution of altruistic sterile helpers and eusociality. Proceedings of the Royal Society B Biological Science, 275(1645): 18871895.CrossRefGoogle ScholarPubMed
Leigh, E. G., Jr. (2010) The evolution of mutualism. Journal of Evolutionary Biology, 23(12): 25072528.Google Scholar
León-Avila, G., and Tovar, J. (2004) Mitosomes of Entamoeba histolytica are abundant mitochondrion-related remnant organelles that lack a detectable organellar genome. Microbiology, 150(Pt 5): 12451250.Google Scholar
Levin, S. R., Brock, D. A., Queller, D. C., and Strassmann, J. E. (2015) Concurrent coevolution of intra-organismal cheaters and resisters. Journal of Evolutionary Biology, 28(4): 756765.Google Scholar
Lindholm, A. K., Dyer, K. A., Firman, R. C. et al. (2016) The ecology and evolutionary dynamics of meiotic drive. Trends in Ecology and Evolution, 31(4): 315326.Google Scholar
Litman, G. W. (2006) How Botryllus chooses to fuse. Immunity, 25(1): 1315.Google Scholar
Manhes, P., and Velicer, G. J. (2011) Experimental evolution of selfish policing in social bacteria. Proceedings of the National Academy of Sciences USA, 108(20): 83578362.CrossRefGoogle ScholarPubMed
Mank, J. E. (2017) Population genetics of sexual conflict in the genomic era. Nature Reviews Genetics, 18(12): 721730.Google Scholar
Morandin, C., Tin, M. M. Y., Abril, S. et al. (2016) Comparative transcriptomics reveals the conserved building blocks involved in parallel evolution of diverse phenotypic traits in ants. Genome Biology, 17: article number 43.Google Scholar
Nicotra, M. L. (2019) Invertebrate allorecognition. Current Biology, 29(11): R463R467.Google Scholar
Nielsen, R. (2005) Molecular signatures of natural selection. Annual Review of Genetics, 39: 197218.CrossRefGoogle ScholarPubMed
Okada, Y., Watanabe, Y., Tin, M. M. Y., Tsuji, K., and Mikheyev, A. S. (2017) Social dominance alters nutrition-related gene expression immediately: Transcriptomic evidence from a monomorphic queenless ant. Molecular Ecology, 26(11): 29222938.CrossRefGoogle ScholarPubMed
Ostrowski, E. A. (2019) Enforcing cooperation in the social amoebae. Current Biology, 29(11): R474R484.Google Scholar
Ostrowski, E. A., Katoh, M., Shaulsky, G., Queller, D. C., and Strassmann, J. E. (2008) Kin discrimination increases with genetic distance in a social amoeba. PLoS Biology, 6(11): e287.Google Scholar
Ostrowski, E. A., and Shaulsky, G. (2009) Learning to get along despite struggling to get by. Genome Biology, 10(5): 218.Google Scholar
Ostrowski, E. A., Shen, Y., Tian, X. et al. (2015) Genomic signatures of cooperation and conflict in the social amoeba. Current Biology, 25(12): 16611665.Google Scholar
Patten, M. M. (2018) Selfish X chromosomes and speciation. Molecular Ecology, 27: 37723782.Google Scholar
Phadnis, N., and Orr, H. A. (2009) A single gene causes both male sterility and segregation distortion in Drosophila hybrids. Science, 323(5912): 376379.Google Scholar
Pizzari, T., and Foster, K. R. (2008) Sperm sociality: Cooperation, altruism, and spite. PLoS Biology, 6(5): e130.Google Scholar
Queller, D. C. (2000) Relatedness and the fraternal major transitions. Philosophical Transactions of the Royal Society of London B, 355(1403): 16471655.CrossRefGoogle ScholarPubMed
Queller, D. C., and Strassmann, J. E. (2018) Evolutionary conflict. Annual Review of Ecology, Evolution, and Systematics, 49(1): 7393.Google Scholar
Rainey, P. B., and Rainey, K. (2003) Evolution of cooperation and conflict in experimental bacterial populations. Nature, 425(6953): 7274.Google Scholar
Rainey, P. B., and Travisano, M. (1998) Adaptive radiation in a heterogeneous environment. Nature, 394(6688): 6972.Google Scholar
Rankin, D. J., and Taborsky, M. (2009) Assortment and the evolution of generalized reciprocity. Evolution, 63(7): 19131922.Google Scholar
Ratnieks, F. L. W. (1988) Reproductive harmony via mutual policing by workers in eusocial Hymenoptera. The American Naturalist, 132(2): 217236.Google Scholar
Ratnieks, F. L. W., Foster, K. R., and Wenseleers, T. (2006) Conflict resolution in insect societies. Annual Review of Entomology, 51: 581608.CrossRefGoogle ScholarPubMed
Ratnieks, F. L. W., and Wenseleers, T. (2005) Policing insect societies. Science, 307(5706): 5456.Google Scholar
Robinson, G. E., Grozinger, C. M., and Whitfield, C. W. (2005) Sociogenomics: Social life in molecular terms. Nature Reviews Genetics, 6(4): 257270.Google Scholar
Rosengarten, R. D., and Nicotra, M. L. (2011) Model systems of invertebrate allorecognition. Current Biology, 21(2): R82R92.Google Scholar
Ross, K. G., and Keller, L. (1998) Genetic control of social organization in an ant. Proceedings of the National Academy of Sciences USA, 95(24): 1423214237.Google Scholar
Sachs, J. L., Quides, K. W., and Wendlandt, C. E. (2018) Legumes versus rhizobia: A model for ongoing conflict in symbiosis. The New Phytologist, 219(4): 11991206.Google Scholar
Sandler, L., and Novitski, E. (1957) Meiotic drive as an evolutionary force. The American Naturalist, 91(857): 105110.Google Scholar
Santorelli, L. A., Thompson, C. R. L., Villegas, E. et al. (2008) Facultative cheater mutants reveal the genetic complexity of cooperation in social amoebae. Nature, 451(7182): 11071110.Google Scholar
Städler, T., and Delph, L. F. (2002) Ancient mitochondrial haplotypes and evidence for intragenic recombination in a gynodioecious plant. Proceedings of the National Academy of Sciences USA, 99(18): 1173011735.Google Scholar
Stoner, D. S., and Weissman, I. L. (1996) Somatic and germ cell parasitism in a colonial ascidian: Possible role for a highly polymorphic allorecognition system. Proceedings of the National Academy of Sciences USA, 93(26): 1525415259.Google Scholar
Strassmann, J. E., Zhu, Y., and Queller, D. C. (2000) Altruism and social cheating in the social amoeba Dictyostelium discoideum. Nature, 408(6815): 965967.Google Scholar
Sucgang, R., Kuo, A., Tian, X. et al. (2011) Comparative genomics of the social amoebae Dictyostelium discoideum and Dictyostelium purpureum. Genome Biology, 12(2): R20.Google Scholar
Tao, Y., Hartl, D. L., and Laurie, C. C. (2001) Sex-ratio segregation distortion associated with reproductive isolation in Drosophila. Proceedings of the National Academy of Sciences USA, 98(23): 1318313188.Google Scholar
Tarnita, C. E., Washburne, A., Martinez-Garcia, R., Sgro, A. E., and Levin, S. A. (2015) Fitness tradeoffs between spores and nonaggregating cells can explain the coexistence of diverse genotypes in cellular slime molds. Proceedings of the National Academy of Sciences USA, 112(9): 27762781.Google Scholar
Taylor, P. D. (1992) Altruism in viscous populations – An inclusive fitness model. Evolutionary Ecology, 6(4): 352356.Google Scholar
Toth, A. L. (2017) To reproduce or work? Insect castes emerge from socially induced changes in nutrition-related genes. Molecular Ecology, 26(11): 28392841.Google Scholar
Touzet, P., and Budar, F. (2004) Unveiling the molecular arms race between two conflicting genomes in cytoplasmic male sterility? Trends in Plant Science, 9(12): 568570.Google Scholar
Trivers, R. L. (1971) The evolution of reciprocal altruism. The Quarterly Review of Biology, 46(1): 3557.Google Scholar
Van Dyken, J. D., and Wade, M. J. (2012) Detecting the molecular signature of social conflict: Theory and a test with bacterial quorum sensing genes. The American Naturalist, 179(4): 436450.Google Scholar
Wang, J., Wurm, Y., Nipitwattanaphon, M., Riba-Grognuz, O., Huang, Y.-C., Shoemaker, D., and Keller, L. (2013) A Y-like social chromosome causes alternative colony organization in fire ants. Nature, 493(7434): 664668.Google Scholar
Wenseleers, T., Hart, A. G., Ratnieks, F. L. W., and Quezada-Euan, J. J. G. (2004) Queen execution and caste conflict in the stingless bee Melipona beecheii. Ethology, 110(9): 725736.Google Scholar
Werren, J. H. (2011) Selfish genetic elements, genetic conflict, and evolutionary innovation. Proceedings of the National Academy of Sciences USA, 108 (Suppl. 2): 1086310870.CrossRefGoogle ScholarPubMed
Wielgoss, S., Wolfensberger, R., Sun, L., Fiegna, F., and Velicer, G. J. (2019) Social genes are selection hotspots in kin groups of a soil microbe. Science, 363(6433): 13421345.Google Scholar
Wilson, D. S., Pollock, G. B., and Dugatkin, L. A. (1992) Can altruism evolve in purely viscous populations? Evolutionary Ecology, 6(4): 331341.Google Scholar
Zhao, J., Gladieux, P., Hutchison, E., Bueche, J., Hall, C., Perraudeau, F., and Glass, N. L. (2015) Identification of allorecognition loci in Neurospora crassa by genomics and evolutionary approaches. Molecular Biology and Evolution, 32(9): 24172432.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×