Book contents
- Frontmatter
- Dedication
- Contents
- Figures
- Tables
- Preface
- Acknowledgments
- 1 Introduction: Count Data Containing Dispersion
- 2 The Conway–Maxwell–Poisson (COM–Poisson) Distribution
- 3 Distributional Extensions and Generalities
- 4 Multivariate Forms of the COM–Poisson Distribution
- 5 COM–Poisson Regression
- 6 COM–Poisson Control Charts
- 7 COM–Poisson Models for Serially Dependent Count Data
- 8 COM–Poisson Cure Rate Models
- References
- Index
8 - COM–Poisson Cure Rate Models
Published online by Cambridge University Press: 02 March 2023
- Frontmatter
- Dedication
- Contents
- Figures
- Tables
- Preface
- Acknowledgments
- 1 Introduction: Count Data Containing Dispersion
- 2 The Conway–Maxwell–Poisson (COM–Poisson) Distribution
- 3 Distributional Extensions and Generalities
- 4 Multivariate Forms of the COM–Poisson Distribution
- 5 COM–Poisson Regression
- 6 COM–Poisson Control Charts
- 7 COM–Poisson Models for Serially Dependent Count Data
- 8 COM–Poisson Cure Rate Models
- References
- Index
Summary
Survival analysis studies the time-to-event for various subjects. In the biological and medical sciences, interest can focus on patient time to death due to various (competing) causes. In engineering reliability, one may study the time to component failure due to analogous factors or stimuli. Cure rate models serve a particular interest because, with advancements in associated disciplines, subjects can be viewed as “cured meaning that they do not show any recurrence of a disease (in biomedical studies) or subsequent manufacturing error (in engineering) following a treatment. This chapter generalizes two classical cure-rate models via the development of a COM–Poisson cure rate model. The chapter first describes the COM–Poisson cure rate model framework and general notation, and then details the model framework assuming right and interval censoring, respectively. The chapter then describes the broader destructive COM–Poisson cure rate model which allows for the number of competing risks to diminish via damage or eradication. Finally, the chapter details the various lifetime distributions considered in the literature to date for COM–Poisson-based cure rate modeling.
Keywords
- Type
- Chapter
- Information
- The Conway–Maxwell–Poisson Distribution , pp. 284 - 311Publisher: Cambridge University PressPrint publication year: 2023