Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- Introduction
- 1 A Bundle Approach to Conformal Surfaces in Space-Forms
- 2 The Mean Curvature Sphere Congruence
- 3 Surfaces under Change of Flat Metric Connection
- 4 Willmore Surfaces
- 5 The Euler–Lagrange ConstrainedWillmore Surface Equation
- 6 Transformations of Generalized Harmonic Bundles and Constrained Willmore Surfaces
- 7 Constrained Willmore Surfaces with a Conserved Quantity
- 8 Constrained Willmore Surfaces and the Isothermic Surface Condition
- 9 The Special Case of Surfaces in 4-Space
- Appendix A Hopf Differential and Umbilics
- Appendix B Twisted vs. Untwisted Bäcklund Transformation Parameters
- References
- Index
8 - Constrained Willmore Surfaces and the Isothermic Surface Condition
Published online by Cambridge University Press: 13 May 2021
- Frontmatter
- Dedication
- Contents
- Preface
- Introduction
- 1 A Bundle Approach to Conformal Surfaces in Space-Forms
- 2 The Mean Curvature Sphere Congruence
- 3 Surfaces under Change of Flat Metric Connection
- 4 Willmore Surfaces
- 5 The Euler–Lagrange ConstrainedWillmore Surface Equation
- 6 Transformations of Generalized Harmonic Bundles and Constrained Willmore Surfaces
- 7 Constrained Willmore Surfaces with a Conserved Quantity
- 8 Constrained Willmore Surfaces and the Isothermic Surface Condition
- 9 The Special Case of Surfaces in 4-Space
- Appendix A Hopf Differential and Umbilics
- Appendix B Twisted vs. Untwisted Bäcklund Transformation Parameters
- References
- Index
Summary
This chapter is dedicated to the very special class of constant mean curvature surfaces. A classical result by Thomsen characterizes isothermic Willmore surfaces in 3-space as minimal surfaces in some 3-dimensional space-form. Constant mean curvature surfaces in 3-dimensional space-forms are examples of constrained Willmore surfaces, characterized by the existence of some conserved quantity. Both constrained Willmore spectral deformation and Bäcklund transformation prove to preserve the existence of such a conserved quantity, defining, in particular, transformations within the class of constant mean curvature surfaces in 3-dimensional space-forms, with, furthermore, preservation of both the space-form and the mean curvature, in the latter case. The class of constant mean curvature surfaces in 3-dimensional space-forms lies, in this way, at the intersection of several integrable geometries, with classical transformations of its own, as well as transformations as a class of constrained Willmore surfaces, together with transformations as a subclass of the class of isothermic surfaces, as we explore in this chapter. Constrained Willmore transformation proves to be unifying to this rich transformation theory, as we shall conclude.
Keywords
- Type
- Chapter
- Information
- Constrained Willmore SurfacesSymmetries of a Möbius Invariant Integrable System, pp. 145 - 182Publisher: Cambridge University PressPrint publication year: 2021