Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T07:36:08.820Z Has data issue: false hasContentIssue false

Part III - Where Science and Conservation Management Meet

Published online by Cambridge University Press:  24 March 2017

Joris P. G. M. Cromsigt
Affiliation:
Swedish University of Agricultural Sciences
Sally Archibald
Affiliation:
University of the Witwatersrand, Johannesburg
Norman Owen-Smith
Affiliation:
University of the Witwatersrand, Johannesburg
Get access
Type
Chapter
Information
Conserving Africa's Mega-Diversity in the Anthropocene
The Hluhluwe-iMfolozi Park Story
, pp. 263 - 396
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

11.10 References

African Rhino Specialist Group (ARSG) (1991) Population estimates for black rhinoceros (Diceros bicornis) and white rhinoceros (Ceratotherium simum) in Africa in 1991, and trends since 1987. IUCN/SSC, Gland, Switzerland.Google Scholar
African Rhino Specialist Group (ARSG) (1992) Proceedings of the African Rhino Specialist Group Held at Victoria Falls, Zimbabwe from 17–22 November 1992. ARSG, Pietermaritzburg.Google Scholar
Balfour, D. (1999) Managing the white rhino population in Hluhluwe-Umfolozi Park. Unpublished report, Natal Parks Board, Pietermaritzburg.Google Scholar
Balfour, D. (2001) Managing black rhino for productivity: some questions about current RMG assumptions and guidelines and some ideas about data use. In: Proceedings of a SADC rhino management group (RMG) workshop on biological management to meet continental and national black rhino conservation goals (ed. Emslie, R.), pp. 3536. SADC Regional Programme for Rhino Conservation, Giants Castle, South Africa.Google Scholar
Brain, C., Forge, O. & Erb, P. (1999) Lion predation on black rhinoceros (Diceros bicornis) in Etosha National Park. African Journal of Ecology 37: 107109.CrossRefGoogle Scholar
Brooks, P. M. & Macdonald, I. A. W. (1983) The Hluhluwe-Umfolozi Reserve: an ecological case history. In: Management of large mammals in African conservation areas (ed. Owen-Smith, N.), pp. 5177. Haum Educational Publishers, Pretoria.Google Scholar
Clinning, G., Druce, D., Robertson, D., Bird, J., & Nxele, B. (2009) Black rhino in Hluhluwe-iMfolozi Park: historical records, status of current population and monitoring and future management recommendations. Unpublished report, Ezemvelo KwaZulu-Natal Wildlife, Pietermaritzburg.Google Scholar
Conway, A., Balfour, D., Dale, T., et al. (2001) Hluhluwe-Umfolozi Management Plan 2001. Unpublished report, Ezemvelo KZN Wildlife, Pietermaritzburg.Google Scholar
Cooke, M. (1998) Air lifting immobilized rhinoceros. Unpublished report, Natal Parks Board document, Pietermaritzburg.Google Scholar
Courchamp, F., Langlais, M., & Sugihara, G. (2000) Rabbits killing birds: modelling the hyperpredation process. Journal of Animal Ecology 69: 154164.CrossRefGoogle Scholar
Cromsigt, J. P. G. M. & Kuijper, D. P. J. (2011) Revisiting the browsing lawn concept: evolutionary interactions or pruning herbivores? Perspectives in Plant Ecology Evolution and Systematics 13: 207215.CrossRefGoogle Scholar
Cromsigt, J. P. G. M., Hearne, J., Heitkӧnig, I. M. A., & Prins, H. H. T. (2002) Using models in the management of black rhino populations. Ecological Modelling 149: 203211.CrossRefGoogle Scholar
Emslie, R. H. (1999) The feeding ecology of the black rhinoceros (Diceros bicornis minor) in Hluhluwe-Umfolozi Park, with special reference to the probable causes of the Hluhluwe population crash. PhD thesis, University of Stellenbosch.Google Scholar
Emslie, R. (2001) Black rhino in Hluhluwe-Umfolozi Park. In: Proceedings of a SADC rhino management group (RMG) workshop on biological management to meet continental and national black rhino conservation goals (ed. Emslie, R.), pp. 8691. SADC Regional Programme for Rhino Conservation, Giants Castle, South Africa.Google Scholar
Emslie, R. & Brooks, M. (1999) African rhino: status survey and conservation action plan. IUCN/SSC African Rhino Specialist Group, Gland, Switzerland.Google Scholar
Emslie, R., Amin, R. & Kock, R. (2009) Guidelines for the in situ re-introduction and translocation of African and Asian rhinoceros. Occasional Paper of the IUCN Species Survival Commission No. 39.CrossRefGoogle Scholar
Ferreira, S. M., Greaver, C. C., & Knight, M. H. (2011) Assessing the population performance of the black rhinoceros in Kruger National Park. South African Journal of Wildlife Research 41: 192204.CrossRefGoogle Scholar
Ferreira, S. M., Botha, J. M., & Emmett, M. (2012) Anthropogenic influences on conservation values of white rhinos. PLoS ONE 7: e45989.CrossRefGoogle Scholar
Fornara, D. A. & du Toit, J. T. (2007) Browsing lawns? Responses of Acacia nigrescens to ungulate browsing in an African savanna. Ecology 88: 200209.CrossRefGoogle Scholar
Fowler, C. W. (1981) Density dependence as related to life history strategy. Ecology 62: 602610.CrossRefGoogle Scholar
Goodman, P. (2001) Black rhino harvesting strategies to improve and maintain productivity and minimise risk. In: Proceedings of a SADC rhino management group (RMG) workshop on biological management to meet continental and national black rhino conservation goals (ed. Emslie, R.), pp. 5763. SADC Regional Programme for Rhino Conservation, Giants Castle, South Africa.Google Scholar
Harthoorn, A. (1962a) The capture and relocation of the white (square-lipped) rhinoceros, Ceratotherium simum simum, using drug-immobilising techniques, at the Umfolozi Game Reserve, Natal. Lammergeyer 2: 19.Google Scholar
Harthoorn, A. (1962b) Capture of white (square-lipped) rhinoceros, Ceratotherium simum simum (Burchell), with the use of the drug immobilization technique. Canadian Journal of Comparative Medicine 26: 203208.Google ScholarPubMed
Hitchins, P. M. (1969) Influence of vegetation types on sizes of home ranges of black rhinoceros, Hluhluwe Game Reserve, Zululand. Lammergeyer 12: 4855.Google Scholar
Hitchins, P. (1971) Preliminary findings in a telemetric study of the black rhinoceros in Hluhluwe Game Reserve, Zululand. In: Proceedings of a Symposium on Biotelemetry. CSIR, Pretoria.Google Scholar
King, J. & Carter, B. (1965) The use of the oripavine derivative M-99 for the immobilization of the black rhinoceros (Diceros bicornis) and its antagonism with the related compound M-285. East African Wildlife Journal 3: 1927.CrossRefGoogle Scholar
Knight, M. (2001) Current and possible population performance indicators for black rhinos. In: Proceedings of a SADC rhino management group (RMG) workshop on biological management to meet continental and national black rhino conservation goals (ed. Emslie, R.), pp. 4956. SADC Regional Programme for Rhino Conservation, Giants Castle, South Africa.Google Scholar
Lent, P. C. and Fike, B. (2003). Home ranges, movements and spatial relationships in an expanding population of black rhinoceros in the Great Fish River Reserve, South Africa. South African Journal of Wildlife Research 33: 109118.Google Scholar
Linklater, W. & Cameron, E. (2009) Social dispersal but with philopatry reveals incest avoidance in a polygynous ungulate. Animal Behaviour 77: 10851093.CrossRefGoogle Scholar
Linklater, W. L. & Hutcheson, I. (2010) Black rhinoceros are slow to colonize a harvested neighbour's range. South African Journal of Wildlife Research 40: 5863.CrossRefGoogle Scholar
Linklater, W. L., Flammand, J., Rochet, Q., et al. (2006) Preliminary analyses of the free-release and scent-broadcasting strategies for black rhinoceros re-introduction. Ecological Journal 7: 2634.Google Scholar
Linklater, W. L., Plotz, R., Kerley, G. I. H., et al. (2010) Dissimilar home range estimates for black rhinoceros (Diceros bicornis) can not be used to infer habitat change. Oryx 44: 1619.CrossRefGoogle Scholar
Maddock, A. (1992) White rhino sink strategy. Unpublished report, Natal Parks Board, Pietermaritzburg.Google Scholar
Makhabu, S. W. & Skarpe, C. (2006) Rebrowsing by elephants three years after simulated browsing on five woody plant species in northern Botswana. South African Journal of Wildlife Research 36: 99102.Google Scholar
Milliken, T. (1993) The decline of the black rhino in Zimbabwe: implications for future rhino conservation. Traffic International, Cambridge.Google Scholar
Milner-Gulland, E. (2001) The exploitation of spatially structured populations. In: Conservation of exploited species (eds Reynolds, J., Mace, G., Redford, K., & Robinson, J.), pp. 4166. Cambridge University Press, Cambridge.Google Scholar
Novaro, A. J., Funes, M. C., & Walker, R. S. (2005) An empirical test of source–sink dynamics induced by hunting. Journal of Applied Ecology 42: 910920.CrossRefGoogle Scholar
Owen-Smith, R. N. (1973) The behavioral ecology of the white rhinoceros. PhD thesis, University of Wisconsin.Google Scholar
Owen-Smith, R. N. (1975) The social ethology of the white rhinoceros Ceratotherium simum (Burchell 1817). Zeitschrift fur Tierpsychologie 38: 337384.CrossRefGoogle Scholar
Owen-Smith, N. (1981) The white rhino over-population problem, and a proposed solution. In: Problems in management of locally abundant wild animals (eds Jewell, J., Holt, S., & Hart, D.), pp. 129150. Academic Press, New York.CrossRefGoogle Scholar
Owen-Smith, R. N. (1988) Megaherbivores: the influence of large body size on ecology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Pienaar, D. J., Bothma, J. d. P., & Theron, G. K. (1992) Landscape preference of the white rhinoceros in the southern Kruger National Park. Koedoe 35: 17.CrossRefGoogle Scholar
Pienaar, U. d. V. (1970) The recolonisation history of the square-lipped (white) rhinoceros in the Kruger National Park (October 1961–November 1969). Koedoe 13: 157169.CrossRefGoogle Scholar
Player, I. (1972) The white rhino saga. William Collins Sons & Co. Ltd, London.Google Scholar
Plotz, R. (2014) The inter-specific relationships of black rhinoceros (Diceros bicornis) in Hluhluwe-iMfolozi Park. PhD thesis, Victoria University of Wellington.Google Scholar
Plotz, R. & Linklater, W. (2009) Black rhinoceros (Diceros bicornis: Rhinocerotidae) calf succumbs after lion predation attempt: implications for conservation management. African Zoology 42: 283287.CrossRefGoogle Scholar
Plotz, R. D., Grecian, W.J., Kerley, G. I. H., & Linklater, W. L. (2016) Standardising home range studies for improved management of the critically endangered black rhinoceros. PLoS ONE 11(3): e0150571.CrossRefGoogle ScholarPubMed
Pulliam, H. R. (1988) Sources, sinks, and population regulation. American Naturalist 132: 652661.CrossRefGoogle Scholar
Punt, A. & Smith, A. (2001) The gospel of maximum sustainable yield in fisheries management: birth, crucifixion and reincarnation. In: Conservation of exploited species (eds Reynolds, J., Mace, G., Redford, K., & Robinson, J.), pp. 4166. Cambridge University Press, Cambridge.Google Scholar
Reid, C., Slotow, R., Howison, O., & Balfour, D. (2007) Habitat changes reduce the carrying capacity of Hluhluwe-Umfolozi Park, South Africa, for critically endangered black rhinoceros Diceros bicornis.Oryx 41: 247254.CrossRefGoogle Scholar
Reynolds, J., Mace, G., Redford, K., & Robinson, J. (eds) (2001) Conservation of exploited species. Cambridge University Press, Cambridge.Google Scholar
Rosenberg, A. A., Fogarty, M. J., Sissenwine, M. P., Beddington, J. R., & Shepherd, J. G. (1993) Achieving sustainable use of renewable resources. Science 262: 828829.CrossRefGoogle ScholarPubMed
Shrader, A. M. & Owen-Smith, N. (2002) The role of companionship in the dispersal of white rhinoceros (Ceratotherium simum). Behavioral Ecology and Sociobiology 52: 255261.CrossRefGoogle Scholar
Slotow, R., Reid, C., Balfour, D., & Howison, O. (2010) Use of black rhino range estimates for conservation decisions: a response to Linklater et al. Oryx 44: 1819.CrossRefGoogle Scholar
Stamps, J. & Swaisgood, R. (2007) Someplace like home: experience, habitat selection and conservation biology. Applied Animal Behaviour Science 102: 392409.CrossRefGoogle Scholar
Sutherland, W. & Gill, J. (2001) The role of behaviour in studying sustainable exploitation. In: Conservation of exploited species (eds Reynolds, J., Mace, G., Redford, K., & Robinson, J., pp. 259280. Cambridge University Press, Cambridge.Google Scholar
Waldram, M. (2005) The ecological effects of grazing by the white rhino (Ceratotherium simum simum) at a landscape scale. MSc thesis, University of Cape Town.Google Scholar
Walker, B. H., Emslie, R. H., Owen-Smith, R. N., & Scholes, R. J. (1987). To cull or not to cull: lessons from a southern African drought. Journal of Applied Ecology, 24: 381-401.CrossRefGoogle Scholar
Western, D. & Vigne, L. (1985) The deteriorating status of African rhinos. Oryx 19: 215220.CrossRefGoogle Scholar

12.8 References

Anderson, J. L. (1981) The re-establishment and management of a lion Panthera leo population in Zululand, South Africa. Biological Conservation 19: 107117.CrossRefGoogle Scholar
Becker, P. A., Miller, P. S., Gunther, M. S., et al. (2012) Inbreeding avoidance influences the viability of reintroduced populations of African wild dogs (Lycaon pictus). PLoS ONE 7: e37181.CrossRefGoogle ScholarPubMed
Blaustein, A. R., Bekoff, M., & Daniels, T.J. (1987) Kin recognition in vertebrates (excluding primates): empirical evidence. In: Kin recognition in animals (eds Fletcher, D.J. C. & Michener, C. D.), pp. 287331. Wiley, Chichester.Google Scholar
Bourquin, O., Vincent, J., & Hitchins, P. M. (1971) The vertebrates of the Hluhluwe Game Reserve–Corridor–Umfolozi Game Reserve Complex. Lammergeyer 14: 158.Google Scholar
Carruthers, E. (1985) The Pongola Game Reserve: an eco-political study. Koedoe 28: 116.CrossRefGoogle Scholar
Creel, S. & Creel, N. M. (1998) Six ecological factors that may limit African wild dogs, Lycaon pictus. Animal Conservation 1: 19.CrossRefGoogle Scholar
Creel, S. & Creel, N. M. (2002) The African wild dog: behavior, ecology, and conservation. Princeton University Press, Princeton, NJ.CrossRefGoogle Scholar
Creel, S., Becker, M. S., Durant, S. M., et al. (2013) Conserving large populations of lions – the argument for fences has holes. Ecology Letters 16: 1413–e3.CrossRefGoogle ScholarPubMed
Dalerum, F., Cameron, E. Z., Kunkel, K., & Somers, M.J. (2012) Interactive effects of species richness and species traits on functional diversity and redundancy. Theoretical Ecology 5: 129139.CrossRefGoogle Scholar
Darnell, A. M., Graf, J. A., Somers, M.J., Slotow, R., & Gunther, M. S. (2014) Space use of African wild dogs in relation to other large carnivores. PLoS ONE 9: e98846.CrossRefGoogle ScholarPubMed
Davies-Mostert, H. T., Mills, M. G. L., & Macdonald, D. W. (2009) A critical assessment of South Africa's managed metapopulation recovery strategy for African wild dogs. In: Reintroduction of top-order predators (eds Hayward, M. W. & Somers, M.J.), pp. 1042. Wiley-Blackwell, London.CrossRefGoogle Scholar
Deane, N. N. (1962) The spotted hyaena Crocuta crocuta crocuta. Lammergeyer 2: 2644.Google Scholar
DeVault, T. L., Rhodes, R, & Shivik, J. A. (2003) Scavenging by vertebrates: behavioural, ecological and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102: 225234.CrossRefGoogle Scholar
Edwards, J. M. (2009) Conservation genetics of African wild dogs Lycaon pictus (Temminck, 1820) in South Africa. MSc thesis, University of Pretoria.Google Scholar
Estes, J. A., Terborgh, J., Brashares, J. S., et al. (2011) Trophic downgrading of planet earth. Science 333: 301306.CrossRefGoogle ScholarPubMed
Foster, W. E. (1955) History of the Umfolozi Game Reserve. Unpublished report, Natal Parks Board, Pietermaritzburg.Google Scholar
Girman, J. G., Mills, M. G. L., Geffen, E. & Wayne, R. K. (1997) A molecular genetic analysis of social structure, dispersal and interpack relationships of the African wild dog (Lycaon pictus). Behavioral Ecology and Sociobiology 40: 187198.CrossRefGoogle Scholar
Graf, J. A., Gusset, M., Reid, C., et al. (2006) Evolutionary ecology meets wildlife management: artificial group augmentation in the re-introduction of endangered African wild dogs (Lycaon pictus). Animal Conservation 9: 398403.CrossRefGoogle Scholar
Graf, J., Somers, M.J., Szykman, M., & Slotow, R. (2009) Heterogeneity in the density and distribution of spotted hyaenas in Hluhluwe-iMfolozi Park, South Africa. Acta Theriologica 54: 333343.CrossRefGoogle Scholar
Grange, S., Owen-Smith, N., Gaillard, J.-M., et al. (2012) Changes of population trends and mortality patterns in response to the reintroduction of large predators: the case study of African ungulates. Acta Oecologica 42: 1629.CrossRefGoogle Scholar
Gusset, M., Slotow, R., & Somers, M.J. (2006a) Divided we fail: the importance of social integration for the re-introduction of endangered African wild dogs (Lycaon pictus). Journal of Zoology 270: 502511.CrossRefGoogle Scholar
Gusset, M., Graf, J., & Somers, M.J. (2006b) The re-introduction of endangered wild dogs into Hluhluwe-iMfolozi Park, South Africa: an update on the first 25 years. Re-introduction NEWS 25: 3133.Google Scholar
Gusset, M., Maddock, A. H., Szykman, M., et al. (2008) Conflicting human interests over the re-introduction of endangered wild dogs in South Africa. Biodiversity and Conservation 17: 83101.CrossRefGoogle Scholar
Gusset, M., Jakoby, O., Müller, M. S., et al. (2009) Dogs on the catwalk: modelling re-introduction and translocation of endangered wild dogs in South Africa. Biological Conservation 142: 27742781.CrossRefGoogle Scholar
Hayward, M. W. (2006) Prey preferences of the spotted hyaena (Crocuta crocuta) and degree of dietary overlap with the lion (Panthera leo). Journal of Zoology 270: 606614.CrossRefGoogle Scholar
Hayward, M. W. & Kerley, G. I. H. (2005) Prey preferences of the lion (Panthera leo). Journal of Zoology 267: 309322.CrossRefGoogle Scholar
Hayward, M. W., Henschel, P., O'Brien, J., et al. (2006a) Prey preferences of the leopard (Panthera pardus).Journal of Zoology 270: 298313.CrossRefGoogle Scholar
Hayward, M. W., Hofmeyr, M., O'Brien, J., & Kerley, G. I. H. (2006b) Prey preferences of the cheetah (Acinonyx jubatus) (Felidae: Carnivora): morphological limitations or the need to capture rapidly consumable prey before kleptoparasites arrive? Journal of Zoology 270: 615627.CrossRefGoogle Scholar
Hayward, M. W., O'Brien, J., Hofmeyr, M. & Kerley, G. I. H. (2006c) Prey preferences of the African wild dog Lycaon pictus (Canidae: Carnivora): ecological requirements for conservation. Journal of Mammalogy 87: 11221131.CrossRefGoogle Scholar
Hayward, M. W., O'Brien, J., & Kerley, G. I. H. (2007) Carrying capacity of large African predators: predictions and tests. Biological Conservation 139: 219229.CrossRefGoogle Scholar
Henschel, P., Azani, D., Burton, C., et al. (2010) Lion status updates from five range countries in West and Central Africa. Cat News 52: 3439.Google Scholar
Hunter, L. T. B. (1998) The behavioural ecology of reintroduced lions and cheetahs in the Phinda Resource Reserve, KwaZulu-Natal, South Africa. PhD thesis, University of Pretoria.Google Scholar
IUCN/SSC (2008) Regional conservation strategy for the cheetah and wild dog in eastern Africa. IUCN, Gland, Switzerland.Google Scholar
Kenya Wildlife Service (2010) Proposal for inclusion of species on the Appendices of the Convention of the Conservation of Migratory Species of Wild Animals. Kenya Wildlife Service, Nairobi, Kenya.Google Scholar
Kingdon, J. & Hoffmann, M. (2013) Mammals of Africa volume V carnivores, pangolins, equids and rhinoceroses. Bloomsbury Publishing, London.Google Scholar
Kokko, H. & Ots, I. (2006) When not to avoid inbreeding. Evolution 60: 467475.Google ScholarPubMed
Krüger, S. C., Lawes, M.J., & Maddock, A. H. (1999) Diet choice and capture success of wild dog (Lycaon pictus) in Hluhluwe-Umfolozi Park, South Africa.Journal of Zoology 248: 543551.Google Scholar
Leigh, K. A., Zenger, K. R., Tammen, I., & Raadsma, H. W. (2012) Loss of genetic diversity in an outbreeding species: small population effects in the African wild dog (Lycaon pictus). Conservation Genetics 13: 767777.CrossRefGoogle Scholar
Lindsey, P. A., du Toit, J. T., & Mills, M. G. L. (2004) Area and prey requirements of African wild dogs under varying habitat conditions: implications for reintroductions. South African Journal of Wildlife Research 34: 7786.Google Scholar
Lindsey, P. A., Tambling, C.J., Brummer, R., et al. (2011) Minimum prey and area requirements of cheetahs: implications for reintroductions and management of the species as a managed metapopulation. Oryx 45: 587599.CrossRefGoogle Scholar
Maddock, A. (1995) Wild dogs in Hluhluwe-Umfolozi Park. Reintroduction News 11: 1617.Google Scholar
Maddock, A. (1999) Wild dog demography in Hluhluwe-Umfolozi Park, South Africa. Conservation Biology 13: 412417.CrossRefGoogle Scholar
Maddock, A., Anderson, A., Carlisle, F., et al. (1996) Changes in lion numbers in Hluhluwe-Umfolozi Park. Lammergeyer 44: 618.Google Scholar
Marker-Kraus, L. (1996) Cheetah relocation. African Wildlife – EPPINDUST 50: 21.Google Scholar
McCracken, D. P. (2008) Saving the Zululand wilderness: an early struggle for nature conservation.Jacana Media,Johannesburg.Google Scholar
Mills, M. (1991) Conservation management of large carnivores in Africa. Koedoe 34: 8190.CrossRefGoogle Scholar
Mills, M. G. L. & Gorman, M. L. (1997) Factors affecting the density and distribution of wild dogs in the Kruger National Park. Conservation Biology 11: 13971406.CrossRefGoogle Scholar
Moehrenschlager, A. & Somers, M. (2004) Canid reintroductions and metapopulation management. In: Canids: foxes, wolves, jackals, and dogs. Status survey and conservation action plan (eds Sillero-Zubiri, C., Hoffmann, M., & Macdonald, D. W.), pp. 5967. IUCN/SSC Canid Specialist Group, Gland, Switzerland.Google Scholar
Moleón, M., Sánchez-Zapata, J. A., Selva, N., Donázar, J. A., & Owen-Smith, N. (2014) Inter-specific interactions linking predation and scavenging in terrestrial vertebrate assemblages. Biological Reviews 89: 10421054.CrossRefGoogle ScholarPubMed
Moleón, M., Sánchez-Zapata, J. A., Sebastián-González, E., & Owen-Smith, N. (2015) Carcass size shapes the structure and functioning of an African scavenging assemblage. Oikos 124: 13911403.CrossRefGoogle Scholar
Owen-Smith, N. & Mills, M. G. L. (2008) Predator–prey size relationships in an African large-mammal food web.Journal of Animal Ecology 77: 173183.CrossRefGoogle Scholar
Packer, C., Loveridge, A., Canney, S., et al. (2013) Conserving large carnivores: dollars and fence. Ecology Letters 16: 635641.CrossRefGoogle ScholarPubMed
Pereira, L. M., Owen-Smith, N., & Moleón, M. (2014) Facultative predation and scavenging by mammalian carnivores: seasonal, regional and intra-guild comparisons. Mammal Review 44: 4455.CrossRefGoogle Scholar
Player, I. (1997) Zululand wilderness: shadow and soul. David Philip, Cape Town.Google Scholar
Potter, H. B. B. (1934) Report of Zululand Game Reserve and Parks Committee province of Natal – report of game conservator (Capt. Potter) for 1933.Journal of the Society for the Preservation of the Fauna of the Empire 23: 6470.Google Scholar
Potter, H. B. B. (1941) Report of Zululand Game Reserve and Parks Committee province of Natal – report of game conservator (Capt. Potter) for 1941. Journal of the Society for the Preservation of the Fauna of the Empire 43: 3541.Google Scholar
Pringle, J. A. (1977) The distribution of mammals in Natal. Part 2. Carnivora. Annals of the Natal Museum 23: 93115.Google Scholar
Prugh, L. R., Stoner, C.J., Epps, C. W., et al. (2009) The rise of the mesopredator. BioScience 59: 779791.CrossRefGoogle Scholar
Rautenbach, I. L., Skinner, J. D., & Nel, J. A.J. (1980) The past and present status of mammals of Maputaland. In: The ecology of Maputaland (eds Bruton, M. N. & Cooper, K. H.), pp. 322345. Rhodes University & Natal Branch of The Wildlife Society of Southern Africa, Grahamstown.Google Scholar
Ripple, W.J. & Beschta, R. L. (2012) Trophic cascades in Yellowstone: the first 15 years after wolf reintroduction. Biological Conservation 145: 205213.CrossRefGoogle Scholar
Roberts, A. (1954) The mammals of South Africa, 2nd edn. Trustees of ‘The mammals of South Africa’ Book Fund, Johannesburg.Google Scholar
Rowe-Rowe, D. T. (1992) The carnivores of Natal. Unpublished report, Natal Parks Board, Pietermaritzburg.Google Scholar
Rowe-Rowe, D. T. (1994) The ungulates of Natal. Unpublished report, Natal Parks Board, Pietermaritzburg.Google Scholar
Saleni, P., Gusset, M., Graf, J. A., et al. (2007) Refuges in time: temporal avoidance of interference competition in endangered wild dogs. Canid News 10: 15.Google Scholar
Sinclair, A. R. E., Mduma, S., & Brashares, J. S. (2003) Patterns of predation in a diverse predator–prey system. Nature 425: 288290.CrossRefGoogle Scholar
Somers, M.J. & Hayward, M. (eds). (2012) Fencing for conservation: restriction of evolutionary potential or a riposte to threatening processes? Springer Science & Business Media, New York.CrossRefGoogle Scholar
Somers, M.J. & Maddock, A. (1999) Painted dogs of Zululand. African Wildlife 53: 2426.Google Scholar
Somers, M.J., Graf, J. A., Szykman, M., Slotow, R., & Gusset, M. (2008) Dynamics of a small re-introduced population of wild dogs over 25 years: allee effects and the implications of sociality for endangered species’ recovery. Oecologia 158: 239247.CrossRefGoogle ScholarPubMed
Spiering, P. A., Somers, M.J., Maldonado, J. E., Wildt, D. E., & Gunther, M. S. (2010) Reproductive sharing and proximate factors mediating cooperative breeding in the African wild dog (Lycaon pictus). Behavioral Ecology and Sociobiology 64: 583592.CrossRefGoogle Scholar
Spiering, P. A., Gunther, M. S., Somers, M.J., et al. (2011) Inbreeding, heterozygosity and fitness in a reintroduced population of endangered African wild dogs (Lycaon pictus). Conservation Genetics 12: 401412.CrossRefGoogle Scholar
Steele, N. A. (1970) A preliminary report on the lions in the Umfolozi and Hluhluwe Game Reserves. Lammergeyer 11: 6879.Google Scholar
Stein, B. (1999) Genetic variation and depletion in a population of lions (Panthera leo) in Hluhluwe-iMfolozi Park. MAgric thesis, University of Natal.Google Scholar
Swanson, A., Caro, T., Davies-Mostert, H., et al. (2014) Cheetahs and wild dogs show contrasting patterns of suppression by lions.Journal of Applied Ecology 83: 14181427.CrossRefGoogle ScholarPubMed
Trinkel, M., van Niekerk, R. W., Fleischmann, P. H., Ferguson, N., & Slotow, R. (2007) The influence of vegetation on lion group sizes in the Hluhluwe-Umfolozi Park, South Africa. Acta Zoologica Sinica 53: 1521.Google Scholar
Trinkel, M., Ferguson, A., Reid, C., et al. (2008) Translocating new lions into an inbred lion population in the Hluhluwe-iMfolozi Park, South Africa. Animal Conservation 11: 138143.CrossRefGoogle Scholar
Van Dyk, G. & Slotow, R. (2003) The effects of fences and lions on the ecology of African wild dogs reintroduced to Pilanesberg National Park, South Africa. African Zoology 38: 7994.CrossRefGoogle Scholar
Vaughan-Kirby, F. (1916) Game and game preservation in Zululand. South African Journal of Science 13: 375396.Google Scholar
Walton, L. R. & Joly, D. O. (2003) Canis mesomelas. Mammalian Species 715: 19.CrossRefGoogle Scholar
Whateley, A. & Brooks, P. M. (1985) The carnivores of the Hluhluwe and Umfolozi Game Reserves: 1973–1982. Lammergeyer 35: 128.Google Scholar
Whittington-Jones, B. M., Parker, D. M., Bernard, R. T. F., & Davies-Mostert, H. T. (2014) Habitat selection by transient African wild dogs (Lycaon pictus) in northern KwaZulu-Natal, South Africa: implications for range expansion. South African Journal of Wildlife Research 44: 135147.CrossRefGoogle Scholar
Wilmers, C. C. & Getz, W. M. (2005) Gray wolves as climate change buffers in Yellowstone. PloS Biology 3: e92.CrossRefGoogle ScholarPubMed
Wilson, E. E. & Wolkovich, E. M. (2011) Scavenging: how carnivores and carrion structure communities. Trends in Ecology and Evolution 26: 129135.CrossRefGoogle ScholarPubMed
Woodroffe, R., McNutt, J. W., & Mills, M. G. L. (2004) African wild dog. In: Foxes, wolves, jackals and dogs: status survey and conservation action plan (eds Sillero-Zubiri, C. & Macdonald, D. W.), pp. 174183. IUCN, Gland.Google Scholar

13.6 References

Alexander, K. A. & Appel, M.J. G. (1994) African wild dogs (Lycaon pictus) endangered by a canine distemper epizootic among domestic dogs near the Maasai-Mara National Reserve, Kenya.Journal of Wildlife Diseases 30: 481485.CrossRefGoogle Scholar
Alexander, K. A., Smith, J. S., Macharia, M. J., & King, A. A. (1993) Rabies in the Maasai-Mara, Kenya – preliminary report. Onderstepoort Journal of Veterinary Research 60: 411414.Google Scholar
Alexander, K. A., Kat, P. W., Munson, L. A., Kalake, A., & Appel, M.J. G. (1996) Canine distemper related mortality among wild dogs (Lycaon pictus) in Chobe National Park, Botswana. Journal of Zoo and Wildlife Medicine 27: 426427.Google Scholar
Alexander, K. A., McNutt, J.W., Briggs, M. B., et al. (2010) Multi-host pathogens and carnivore management in southern Africa. Comparative Immunology, Microbiology and Infectious Diseases 33: 249265.CrossRefGoogle ScholarPubMed
Beechler, B., Ezenwa, V. O., & Jolles, A. E. (2009) Evaluation of hematologic values in free-ranging African buffalo (Syncerus caffer).Journal of Wildlife Disease 45: 5766.CrossRefGoogle ScholarPubMed
Beechler, B. R., Broughton, H., Bell, A., Ezenwa, V. O., & Jolles, A. E. (2012) Innate immunity in free-ranging African buffalo (Syncerus caffer): associations with parasite infection and white blood cell counts. Physiological & Biochemical Zoology 85: 255264.CrossRefGoogle ScholarPubMed
Beechler, B. R., Paweska, J. T., Swanepoel, R., et al. (2013) Rift Valley fever in Kruger National Park: do buffalo play a role in the interepidemic circulation of virus? Transboundary Emerging Diseases 62: 2432.CrossRefGoogle ScholarPubMed
Bengis, R. G., Kock, R. A., & Fischer, J. (2002) Infectious animal diseases: the wildlife/livestock interface. Revue Scientifique et Technique – Office International des Epizooties 21: 5365.Google ScholarPubMed
Brennan, G., Podell, M. D., Wack, R., et al. (2006) Neurologic disease in captive lions (Panthera leo) with low-titer lion lentivirus infection.Journal of Clinical Microbiology 44: 43454352.CrossRefGoogle ScholarPubMed
Brown, E. W., Yuhki, N., Packer, C., & O'Brien, S.J. (1994) A lion lentivirus related to feline immunodeficiency virus: epidemiologic and phylogenetic aspects.Journal of Virology 68: 59535968.CrossRefGoogle ScholarPubMed
Bull, M. E., Kennedy-Stoskopf, S., Levine, J., et al. (2003) Evaluation of T lymphocytes in captive African lions (Panthera leo) infected with feline immunodeficiency virus. American Journal of Veterinary Research 64: 12931300.CrossRefGoogle ScholarPubMed
Caron, A., Cross, P. C., & du Toit, J. T. (2003) Ecological implications of bovine tuberculosis in African buffalo herds. Ecological Applications 13: 13381345.CrossRefGoogle Scholar
Carpenter, M. A. & O'Brien, S.J. (1995) Coadaptation and immunodeficiency virus –lessons from the Felidae. Current Opinion in Genetics & Development 5: 739745.CrossRefGoogle ScholarPubMed
Chitanga, S., Namangala, B., De Deken, R., & Marcotty, T. (2013) Shifting from wild to domestic hosts: the effect on the transmission of Trypanosoma congolense in tsetse flies. Acta Tropica 125: 3236.CrossRefGoogle ScholarPubMed
Coltmann, D. W., Pilkington, J. G., Smith, J. A., & Pemberton, J. M. (1999) Parasite-mediated selection against inbred Soay sheep in a free-living, island population. Evolution 53: 12591267.Google Scholar
Coltmann, D. W., Wilson, K., Pilkington, J. G., Stear, M.J., & Pemberton, J. M. (2001) A microsatellite polymorphsm in the gamma interferon gene is associated with resistance to gastrointestinal nematodes in a naturally-parasitized population of Soay sheep. Parasitology 122: 571582.CrossRefGoogle Scholar
Connor, R.J. & van den Bossche, P. (2004) African animal trypanosomoses. In: Infectious diseases of livestock (eds Coetzer, J. A. W. & Tustin, R. C.), pp.251296. Oxford University Press Southern Africa, Cape Town.Google Scholar
Creel, S. & Creel, N. M. (1998) Six ecological factors that limit African wild dogs, Lycaon pictus. Animal Conservation 1: 19.CrossRefGoogle Scholar
Creel, S., Creel, N. M., Munson, L., Sanderlin, D., & Appel, M.J. G. (1997) Serosurvey for selected viral diseases and demography of African wild dogs in Tanzania. Journal of Wildlife Diseases 33: 823832.CrossRefGoogle ScholarPubMed
De Castro, F. & Bolker, B. (2005) Mechanisms of disease-induced extinction. Ecology Letters 8: 117126.CrossRefGoogle Scholar
Durchfeld, B., Baumgartner, W., Herbst, W., & Brahm, R. (1990) Vaccine-associated canine distemper infection in a litter of African hunting dogs (Lycaon pictus). Journal of Veterinary Medicine Series B – Infectious Diseases and Veterinary Public Health 37: 203212.CrossRefGoogle Scholar
Ezenwa, V. O. &Jolles, A. E. (2008) Horns honestly advertise parasite infection in both male and female African buffalo (Syncerus caffer). Animal Behaviour 75: 20132021.CrossRefGoogle Scholar
Ezenwa, V. O & Jolles, A. E. (2011) From host immunity to pathogen invasion: how do within-host mechanisms scale up to disease dynamics? Integrative and Comparative Biology 51: 540551.CrossRefGoogle Scholar
Ezenwa, V. O. &Jolles, A. E. (2015) Opposite effects of anthelmintic treatment on microbial infection at individual vs. population scales. Science 347: 175177.CrossRefGoogle Scholar
Ezenwa, V. O.,Jolles, A. E., & O'Brien, M. (2009) A reliable body condition scoring technique for estimating condition in African buffalo. African Journal of Ecology 47: 476481.CrossRefGoogle Scholar
Ezenwa, V. O., Etienne, R. S., Luikhart, G., Beja-Perreira, A., & Jolles, A. E. (2010) Hidden consequences of living in a wormy world: nematode-induced immune-suppression facilitates TB invasion in African buffalo. American Naturalist 176: 613624.CrossRefGoogle Scholar
Flacke, G., Spiering, P., Cooper, D., et al. (2010) A survey of internal parasites in free-ranging African wild dogs (Lycaon pictus) from KwaZulu-Natal, South Africa. South African Journal of Wildlife Research 40: 176180.CrossRefGoogle Scholar
Flacke, G., Becker, P., Cooper, D., et al. (2013) An infectious disease and mortality survey in a population of free-ranging African wild dogs and sympatric domestic dogs. International Journal of Biodiversity e497623.CrossRefGoogle Scholar
Gascoyne, S. C., Laurenson, M. K., Lelo, S., & Borner, M. (1993) Rabies in African wild dogs (Lycaon pictus) in the Serengeti region, Tanzania. Journal of Wildlife Diseases 29: 396402.CrossRefGoogle ScholarPubMed
Gillingwater, K., Mamabolo, M. V., & Majiwa, P. A. O. (2010) Prevalence of mixed Trypanosoma congolense infections in livestock and tsetse in KwaZulu-Natal, South Africa.Journal of the South African Veterinary Association 81: 219223.CrossRefGoogle ScholarPubMed
Goller, K. V., Fyumagwa, R. D., Nikolin, V., et al. (2010) Fatal canine distemper infection in a pack of African wild dogs in the Serengeti ecosystem, Tanzania. Veterinary Microbiology 146: 245252.CrossRefGoogle Scholar
Gorsich, E. E., Ezenwa, V. O., & Jolles, A. E. (2014) Costs of co-infection in a seasonal environment: gastrointestinal parasites in African buffalo. International Journal for Parasitology: Parasites & Wildlife 3: 124134.Google Scholar
Green, K. K. & Venter, G. J. (2007) Evaluation and improvement of sticky traps as monitoring tools for Glossina austeni and G. brevipalpis (Diptera: Glossinidae) in north-eastern KwaZulu-Natal, South Africa. Bulletin of Entomological Research 97: 545553.CrossRefGoogle Scholar
Hofmann-Lehmann, R., Fehr, D., Grob, M., et al. (1996) Prevalence of antibodies to feline parvovirus calicivirus, herpesvirus, coronavirus, and immunodeficiency virus and of feline leukemia virus antigen and the interrelationship of these viral infections in free-ranging lions in East Africa. Clinical and Diagnostic Laboratory Immunology 3: 554562.CrossRefGoogle ScholarPubMed
Hofmeyr, M., Bingham, J., Lane, E. P., Ide, A., & Nel, L. (2000) Rabies in African wild dogs (Lycaon pictus) in the Madikwe Game Reserve, South Africa. Veterinary Record 146: 5052.CrossRefGoogle ScholarPubMed
Jolles, A. E. (2007) Population biology of African buffalo (Syncerus caffer) at Hluhluwe-iMfolozi Park, South Africa. African Journal of Ecology 45: 398406.CrossRefGoogle Scholar
Jolles, A. E. & Ezenwa, V. O. (2015) Ungulates as model systems for the study of disease processes in natural populations.Journal of Mammalogy 96: 415.CrossRefGoogle Scholar
Jolles, A. E., Cooper, D., & Levin, S. A. (2005) Hidden effects of chronic tuberculosis in African buffalo. Ecology 86: 23582364.CrossRefGoogle Scholar
Jolles, A. E., Etienne, R. S., & Olff, H. (2006) Independent and competing disease risks: implications for host populations in variable environments. American Naturalist 167: 745757.CrossRefGoogle ScholarPubMed
Jolles, A. E., Ezenwa, V. O., Etienne, R. S., Turner, W. C., & Olff, H. (2008) Interactions between macroparasites and microparasites drive patterns of infection in free-ranging African buffalo. Ecology 89: 22392250.CrossRefGoogle ScholarPubMed
Kat, P. W., Alexander, K. A., Smith, J. S., & Munson, L. (1995) Rabies and African wild dogs in Kenya. Proceedings of the Royal Society B 262: 229233.Google ScholarPubMed
Kirschner, D. (1999) Dynamics of co-infection with M. tuberculosis and HIV-1. Theoretical Population Biology 55: 94109.CrossRefGoogle Scholar
Kwan, C. K. & Ernst, J. D. (2011) HIV and tuberculosis: a deadly human syndemic. Clinical Microbiology Reviews 24: 351376.CrossRefGoogle ScholarPubMed
Laisse, C. J. M., Gavier-Widen, D., Ramis, G., et al. (2011) Characterization of tuberculosis lesions in naturally infected African buffalo (Syncerus caffer). Journal of Veterinary Diagnostic Investigation 23: 10221027.CrossRefGoogle ScholarPubMed
Lane-deGraaf, K. E., Amish, S. J., Gardipee, F., et al. (2015) Testing for signatures of natural and artificial disease-induced selection at immune loci in a free-ranging wildlife population. Conservation Genetics 16: 289300.CrossRefGoogle Scholar
Lembo, T., Hampson, K., Haydon, D. T., et al. (2008) Exploring reservoir dynamics: a case study of rabies in the Serengeti ecosystem.Journal of Applied Ecology 45: 12461257.CrossRefGoogle ScholarPubMed
Le Roex, N., Cooper, D., van Helden, P. D., Hoal, E. G., & Jolles, A. E. (2015) Disease control in wildlife: evaluating a test and cull programme for bovine tuberculosis in African buffalo. Transboundary Emerging Diseases DOI: 10.1111/tbed.12329.Google ScholarPubMed
Maas, M., Keet, D. F., Rutten, V. P. M. G., Heesterbeek, J. A. P., & Nielen, M. (2012) Assessing the impact of feline immunodeficiency virus and bovine tuberculosis co-infection in African lions. Proceedings of the Royal Society B 279: 42064214.CrossRefGoogle ScholarPubMed
Macdonald, D. W. (1992) Cause of wild dog deaths. Nature 360: 633634.CrossRefGoogle Scholar
Maddock, A., Anderson, A., Carlisle, F., et al. (1996) Changes in lion numbers in Hluhluwe-Umfolozi Park. Lammergeyer 44: 618.Google Scholar
Mamabolo, M. V., Ntantiso, L., Latif, A., & Majiwa, P. A. O. (2009) Natural infection of cattle and tsetse flies in South Africa with two genotypic groups of Trypanosoma congolense. Parasitology 136: 425431.CrossRefGoogle ScholarPubMed
McCallum, H. & Dobson, A. (1995) Detecting disease and parasite threats to endangered species and ecosystems. Trends in Ecology and Evolution 10: 190194.CrossRefGoogle ScholarPubMed
McCormick, A. E. (1983) Canine distemper in African Cape hunting dogs (Lycaon pictus) – possibly vaccine induced.Journal of Zoo and Wildlife Medicine 14: 6671.CrossRefGoogle Scholar
McDonald, R. A., Delahay, R.J., Carter, S. P., Smith, G. C., & Cheeseman, C. L. (2008) Perturbing implications of wildlife ecology for disease control. Trends in Ecology & Evolution 23: 5356.CrossRefGoogle ScholarPubMed
Mech, L. D. & Goyal, S. M. (1995) Effects of canine parvovirus on gray wolves in Minnesota.Journal of Wildlife Management 59: 565570.CrossRefGoogle Scholar
Michel, A. L., Bengis, R. G., Keet, D. F., et al. (2006) Wildlife tuberculosis in South African conservation areas: implications and challenges. Veterinary Microbiology 112: 91100.CrossRefGoogle Scholar
Michel, A. L., Cooper, D.,Jooste, J., de Klerk, L.-M., & Jolles, A. E. (2011) Approaches towards optimising the gamma interferon assay for diagnosing Mycobacterium bovis infection in African buffalo (Syncerus caffer). Preventive Veterinary Medicine 98: 142151.CrossRefGoogle ScholarPubMed
Miller, S. M., Bissett, C., Burger, A., et al. (2013) Management of reintroduced lions in small, fenced reserves in South Africa: an assessment and guidelines. South African Journal of Wildlife Research 43: 138154.CrossRefGoogle Scholar
Mills, M. G. L. (1993) Social systems and behavior of the African wild dog Lycaon pictus and the spotted hyena Crocuta crocuta with special reference to rabies. Onderstepoort Journal of Veterinary Research 60: 405409.Google Scholar
Motloang, M., Masumu, J., Mans, B., van den Bossche, P., & Latif, A. (2012) Vector competence of Glossina austeni and Glossina brevipalpis for Trypanosoma congolense in KwaZulu-Natal, South Africa. Onderstepoort Journal of Veterinary Research 79: 16.CrossRefGoogle ScholarPubMed
Motloang, M. Y., Masumu, J., Mans, B.J., & Latif, A. A. (2014) Virulence of Trypanosoma congolense strains isolated from cattle and African buffaloes (Syncerus caffer) in KwaZulu-Natal, South Africa. Onderstepoort Journal of Veterinary Research 81: 7 pp.CrossRefGoogle ScholarPubMed
Ntantiso, L., De Beer, C., Marcotty, T., & Latif, A. A. (2014) Bovine trypanosomosis prevalence at the edge of Hluhluwe-iMfolozi Park, KwaZulu-Natal, South Africa. Onderstepoort Journal of Veterinary Research 81: 8 pp.CrossRefGoogle ScholarPubMed
Packer, C., Altizer, S., Appel, M., et al. (1999) Viruses of the Serengeti: patterns of infection and mortality in African lions. Journal of Animal Ecology 68: 11611178.CrossRefGoogle Scholar
Paterson, S., Wilson, K., & Pemberton, J. M. (1998) Major histocompatibility complex variation associated with juvenile survival and parasite resistance in a large unmanaged ungulate population (Ovis aries L.). Proceedings of the National Academy of Sciences 95: 37143719.CrossRefGoogle Scholar
Pedersen, A. B. & Fenton, A. (2007) Emphasizing the ecology in parasite community ecology. Trends in Ecology & Evolution 22: 133139.CrossRefGoogle ScholarPubMed
Petney, T. N. & Andrews, R. H. (1998) Multiparasite communities in animals and humans: frequency, structure and pathogenic significance. International Journal for Parasitology 28: 377393.CrossRefGoogle ScholarPubMed
Pienaar, R., Potgieter, F. T., Latif, A. A., Thekisoe, O. M. M., & Mans, B. J. (2011) Mixed Theieria infections in free-ranging buffalo herds: implications for diagnosing Theileria parva infections in Cape buffalo (Syncerus caffer). Parasitology 138: 884895.CrossRefGoogle ScholarPubMed
Prager, K. C., Woodroffe, R., Cameron, A., & Haydon, D. T. (2011) Vaccination strategies to conserve the endangered African wild dog (Lycaon pictus). Biological Conservation 144: 19401948.CrossRefGoogle Scholar
Prager, K. C., Mazet, J. A. K., Dubovi, E. J., et al. (2012a) Rabies virus and canide distemper virus in wild and domestic carnivores in northern Kenya: are domestic dogs the reservoir? Ecohealth 9: 483498.CrossRefGoogle Scholar
Prager, K. C., Mazet, J. A. K., Munson, L., et al. (2012b) The effect of protected areas on pathogen exposure in endangered African wild dog (Lycaon pictus) populations. Biological Conservation 150: 1522.CrossRefGoogle ScholarPubMed
Reid, J. M., Arcese, P., & Keller, L. F. (2003) Inbreeding depresses immune response in song sparrows (Melospiza melodia): direct and intergenerational effects. Proceedings of the Royal Society B 270: 21512157.CrossRefGoogle Scholar
Roelke, M. E., Pecon-Slattery, J., Taylor, S., et al. (2006) T-lymphocyte profiles in FIV-infected wild lions and pumas reveal CD4 depletion.Journal of Wildlife Diseases 42: 234248.CrossRefGoogle ScholarPubMed
Roelke, M. E., Brown, M. A., Troyer, J. L., et al. (2009) Pathological manifestations of feline immunodeficiency virus (FIV) in wild African lions. Virology 390: 112.CrossRefGoogle ScholarPubMed
Spencer, J. A. (1991) Survey of antibodies to feline viruses in free-ranging lions. South African Journal of Wildlife Research 21(2): 59.Google Scholar
Tanser, F., Barnighausen, T., Grapsa, E., Zaidi, J., & Newell, M. L. (2013) High coverage of ART associated with decline in risk of HIV acquisition in rural KwaZulu-Natal, South Africa. Science 339: 966971.CrossRefGoogle ScholarPubMed
Tompkins, D. M., Dunn, A. M., Smith, M.J., & Telfer, S. (2010) Wildlife diseases: from individuals to ecosystems. Journal of Animal Ecology 80: 1938.CrossRefGoogle ScholarPubMed
Toossi, Z. (2003) Virological and immunological impact of tuberculosis on human immunodeficiency virus type 1 disease. Journal of Infectious Diseases 188: 11461155.CrossRefGoogle ScholarPubMed
Trinkel, M., Ferguson, N., Reid, A., et al. (2008) Translocating lions into an inbred lion population in the Hluhluwe-iMfolozi Park, South Africa. Animal Conservation 11: 138143.CrossRefGoogle Scholar
Trinkel, M., Cooper, D., Packer, C., & Slotow, R. (2011) Inbreeding depression increases susceptibility to bovine tuberculosis in lions: an experimental test using an inbred–outbred contrast through translocation.Journal of Wildlife Diseases 47: 494500.CrossRefGoogle ScholarPubMed
Van de Bildt, M. W. G., Kuiken, T., Visee, A. M., Lema, S., Fitzjohn, T. R., & Osterhaus, A. D. M. E. (2002) Distemper outbreak and its effect on African wild dog conservation. Emerging Infectious Diseases 8: 211213.CrossRefGoogle ScholarPubMed
Van den Bossche, P., Esterhuizen, J., Nkuna, R., et al. (2006) An update of the bovine trypanosomosis situation at the edge of Hluhluwe-iMfolozi Park, KwaZulu-Natal Province, South Africa. Onderstepoort Journal of Veterinary Research 73: 7779.CrossRefGoogle ScholarPubMed
Van den Bossche, P., Chitanga, S., Masumu, J., Marcotty, T., & Delespaux, V. (2011) Virulence in Trypanosoma congolense Savannah subgroup. A comparison between strains and transmission cycles. Parasite Immunology 33: 456460.CrossRefGoogle ScholarPubMed
Van Heerden, J., Bingham, J., van Vuuren, M., Burroughs, R. E. J., & Stylianides, E. (2002) Clinical and serological response of wild dogs (Lycaon pictus) to vaccination against canine distemper, canine parvovirus infection, and rabies. Journal of the South African Veterinary Association 73: 812.CrossRefGoogle ScholarPubMed
Van Vuuren, M., Stylianides, E., Kania, S. A., Zuckerman, E. E., & Hardy, W. D. (2003) Evaluation of an indirect enzyme-linked immunosorbent assay for the detection of feline lentivirus-reactive antibodies in wild felids, employing a puma lentivirus-derived synthetic peptide antigen. Onderstepoort Journal of Veterinary Research 70: 16.Google ScholarPubMed
Vial, F., Cleaveland, S., Rasmussen, G., & Haydon, D. T. (2006) Development of vaccination strategies for the management of rabies in African wild dogs. Biological Conservation 131: 180192.CrossRefGoogle Scholar
Woodroffe, R. (2001) Assessing the risks of intervention: immobilization, radio-collaring and vaccination of African wild dogs. Oryx 35: 234–244.CrossRefGoogle Scholar
Woodroffe, R. & Ginsberg, J. R. (1998) Edge effects and the extinction of populations inside protected areas. Science 280: 21262128.CrossRefGoogle ScholarPubMed
Woodroffe, R., Donnelly, C. A.,Jenkins, H., et al. (2006) Culling and cattle controls influence tuberculosis risk for badgers. Proceedings of the National Academy of Sciences 103: 1471314717.CrossRefGoogle ScholarPubMed
Woodroffe, R., Prager, K. C., Munson, L., et al. (2012) Contact with domestic dogs increases pathogen exposure in endangered African wild dogs (Lycaon pictus). PLoS ONE 7: e30099.CrossRefGoogle ScholarPubMed

14.8 References

Bodasing, T. (2011) Determinants of elephant spatial use, habitat selection and daily movement patterns in Hluhluwe-iMfolozi Park. MSc thesis, University of KwaZulu-Natal.Google Scholar
Boundja, R. P. & Midgely, J. J. (2009) Patterns of elephant impact on woody plants in the Hluhluwe-iMfolozi Park, KwaZulu-Natal, South Africa. African Journal of Ecology 48: 206214.CrossRefGoogle Scholar
Carruthers, J., Boshoff, A., Slotow, R., et al. (2008) The elephant in South Africa: history and distribution. In: Elephant management: a scientific assessment for South Africa (eds Scholes, R. J. and Mennell, K. G.), pp. 84145. Wits University Press, Johannesburg.Google Scholar
Chamaillé-Jammes, S., Valeix, M., & Fritz, H. (2007) Managing heterogeneity in elephant distribution: interactions between elephant population density and surface-water availability. Journal of Applied Ecology 44: 625633.CrossRefGoogle Scholar
Cromsigt, J. P. G. M. & Kuijper, D. P. J. (2011) Revisiting the browsing lawn concept: evolutionary interactions or pruning herbivores? Perspectives in Plant Ecology, Evolution and Systematics 13: 207215.CrossRefGoogle Scholar
Dominy, N. J., Ferguson, N. S., & Maddock, A. (1998) Modeling elephant (Loxodonta africana africana) population growth in Hluhluwe-Umfolozi Park to predict and manage limits. South African Journal of Wildlife Research 28: 6167.Google Scholar
Druce, D., Shannon, G., Page, B. R., et al. (2008) Ecological thresholds in the savanna landscape: developing a protocol for monitoring the change in composition and utilization of large trees. PLoS ONE 3: e3979.CrossRefGoogle ScholarPubMed
Fritz, H. & Duncan, P. (1994) On the carrying capacity for large ungulates of African savanna ecosystems. Proceedings of the Royal Society of London Series B 256: 7782.Google ScholarPubMed
Kerley, G. I. H., Landman, M., Kruger, L., et al. (2008) Effects of elephants on ecosystems and biodiversity. In: Elephant management: a scientific assessment for South Africa (eds Scholes, R. J. & Mennell, K. G.), pp. 84145. Wits University Press, Johannesburg.Google Scholar
Mackey, R. L., Page, B. R., Duffy, K. J., et al. (2006) Modelling elephant population growth in small, fenced, South African reserves. South African Journal of Wildlife Research 36: 3343.Google Scholar
McCracken, D. P. (2008) Saving the Zululand wilderness. An early struggle for nature conservation. Jacana Media, Johannesburg.Google Scholar
O'Connor, T. G., Goodman, P. S., & Clegg, B. (2007) A functional hypothesis of the threat of local extirpation of woody plant species by elephant in Africa. Biological Conservation 136: 329345.CrossRefGoogle Scholar
O'Kane, C. A. J., Duffy, K. J., Page, B. R., et al. (2012) Heavy impact on seedlings by the impala suggests a central role in woodland dynamics. Journal of Tropical Ecology 28: 291297.CrossRefGoogle Scholar
Owen-Smith, N., Kerley, G. I. H., Page, B., et al. (2006). A scientific perspective on the management of elephants in the Kruger National Park and elsewhere. South African Journal of Science 102: 389394.Google Scholar
Shannon, G., Thaker, M., Vanak, A. T., et al. (2011) Relative impacts of elephant and fire on large trees in a savanna ecosystem. Ecosystems 14: 13721381.CrossRefGoogle Scholar
Slotow, R., van Dyk, G., Poole, J., et al. (2000) Older bull elephants control young males. Nature 408: 425426.CrossRefGoogle ScholarPubMed
Slotow, R., Balfour, D., & Howison, O. (2001) Killing of black and white rhinoceroses by African elephants in Hluhluwe-Umfolozi Park, South Africa. Pachyderm 31: 1420.Google Scholar
Slotow, R., Garaï, M. E., Reilly, B., et al. (2005) Population dynamics of elephants re-introduced to small fenced reserves in South Africa. South African Journal of Wildlife Research 35: 2332.Google Scholar
Van Aarde, R., & Jackson, T. (2007) Megaparks for megapopulations: addressing the causes of locally high elephant numbers in southern Africa. Biological Conservation 134: 289297.CrossRefGoogle Scholar
Vincent, J. (1970) The history of Umfolozi Game Reserve, Zululand, as it relates to management. Lammergeyer 11: 749.Google Scholar
Whateley, A. & Porter, R. N. (1983) The woody vegetation communities of the Hluhluwe–Corridor–Umfolozi Game Reserve Complex. Bothalia 14: 745758.CrossRefGoogle Scholar
Wills, A. J. (1986) Re-establishment of elephant in the Hluhluwe and Umfolozi Game Reserves, Natal, South Africa. Pachyderm 7: 1213.Google Scholar

15.11 References

Akobundu, O. & Ekeleme, F. E. (1996) Potentials for Chromolaena odorata (L.) R. M. King and H. Robinson in fallow management in West and Central Africa. In: Proceedings of the 3rd International Workshop on Biological Control and Management of Chromolaena odorata, 15–19 Nov. 1993, Cote d'Ivoir (eds Prasad, U. K., Muniappan, R., Ferrar, P., Aeschliman, J. P., & De Foresta, H.). Agricultural Experiment Station, University of Guam, Publication No. 202, Mangilao, Guam.Google Scholar
Ambika, S. R. (2002) Allelopathic plants. 5. Chromolaena odorata (L.) King and Robinson. Allelopathy Journal 9: 3541.Google Scholar
Barreto, R. W. & Evans, H. C. (1994) The mycobiota of the weed Chromolaena odorata in southern Brazil with particular reference to fungal pathogens for biological control. Mycological Research 98: 11071116.CrossRefGoogle Scholar
Beale, C. M., van Rensberg, S.J., Bond, W.J., et al. (2013) Ten lessons for the conservation of African savannah ecosystems. Biological Conservation 167: 224232.CrossRefGoogle Scholar
Blackmore, A. C. (1998) Seed dispersal of Chromolaena odorata reconsidered. In: Proceedings of the 4th International Workshop on Biological Control and Management of Chromolaena odorata (eds Ferrar, P., Muniappan, R. & Jayanth, K. P.), pp. 1621. Agricultural Experiment Station, University of Guam, Publication No. 216, Mangilao, Guam.Google Scholar
Boppre, M. & Fischer, O. W. (1994) Zonocerus and Chromolaena in West Africa. In: New trends in locust control (eds Krall, S. & Wilps, H.), pp. 107126. GTZ, Eschborn.Google Scholar
Brooks, M. L., D'Antonio, C. M., Richardson, D. M., et al. (2004) Effects of invasive alien plants on fire regimes. Bioscience 54: 677688.CrossRefGoogle Scholar
Coetzer, A. & Louw, J. (2012) An evaluation of the Contractor Development Model of Working for Water. Water SA 38: 793801.CrossRefGoogle Scholar
Cruttwell McFadyen, R. E. (1988) Ecology of Chromolaena odorata in the Neotropics (1). In: Proceedings of the 1st International Workshop on Biological Control and Management of Chromolaena odorata (ed. Muniappan, R.), pp. 1320. Agricultural Experiment Station, University of Guam, Mangilao, Guam.Google Scholar
De Rouw, A. (1991) The invasion of Chromolaena odorata (L.) King and Robinson (ex Eupatorium odoratum), and competition with the native flora, in a rain forest zone, south-west Cote d'Ivoire.Journal of Biogeography 18: 1323.CrossRefGoogle Scholar
Dew, L. A. (2015) Monitoring and managing Chromolaena odorata in a South African savanna reserve. Evaluating the efficacy of current control programs in response to ecological factors and management protocols. MSc thesis, Umeå University.Google Scholar
Dumalisile, L. (2008) Effects of Chromoleana odorata on mammalian biodiversity in Hluhluwe-iMfolozi Park, South Africa. MSc thesis, University of Pretoria.Google Scholar
Ehrenfeld, J. G. (2010) Ecosystem consequences of biological invasions. Annual Reviews of Ecology, Evolution and Systematics 41: 5980.CrossRefGoogle Scholar
Esuruoso, O. F. (1971) Seed-borne fungi of the Siam weed, Eupatorium odoratum in Nigeria. Pans 17: 458460.Google Scholar
Foxcroft, L. C., Richardson, D. M., Rouget, M., & MacFadyen, S. (2009) Patterns of alien plant distribution at multiple spatial scales in a large national park: implications for ecology, management and monitoring. Diversity and Distributions 15: 367378.CrossRefGoogle Scholar
Foxcroft, L. C., Richardson, D., Rejmánek, M. & Pyšek, P. (2010) Alien plant invasions in tropical and sub-tropical savannas: patterns, processes and prospects. Biological Invasions 12: 39133933.CrossRefGoogle Scholar
Gaertner, M., Biggs, R., te Beest, M., et al. (2014) Invasive plants as drivers of regime shifts: identifying high-priority invaders that alter feedback relationships. Diversity and Distributions 20: 733744.CrossRefGoogle Scholar
Gautier, L. (1992) Taxonomy and distribution of a tropical weed: Chromolaena odorata (L.) R. King and H. Robinson. Candollea 47: 645662.Google Scholar
Goodall, J. M. & Erasmus, D.J. (1996) Review of the status and integrated control of the invasive alien weed, Chromolaena odorata, in South Africa. Agriculture, Ecosystems and Environment 56: 151164.CrossRefGoogle Scholar
Honu, Y. A. K. & Dang, Q. L. (2000) Responses of tree seedlings to the removal of Chromolaena odorata Linn. in a degraded forest in Ghana. Forest Ecology and Management 137: 7582.CrossRefGoogle Scholar
Howison, O. E. (2009) The historical spread and potential distribution of the invasive alien plant Chromolaena odorata in Hluhluwe-iMfolozi Park. MSc thesis, University of Kwazulu-Natal.Google Scholar
Howison, R. A. (2009) Food preferences and feeding interactions among browsers, and the effect of an exotic invasive weed (Chromolaena odorata) on the endangered black rhino (Diceros bicornis), in an African savanna. MSc thesis, University of KwaZulu-Natal.Google Scholar
Kassi, N.J. K. & Decocq, G. (2008) Successional patterns of plant species and community diversity in a semi-deciduous tropical forest under shifting cultivation. Journal of Vegetation Science 19: 809812.CrossRefGoogle Scholar
Kluge, R. L. & Caldwell, P. M. (1992) Phytophagous insects and mites on Chromolaena odorata (Compositae, Eupatoreae) in Southern Africa. Journal of the Entomological Society of Southern Africa 55: 159161.Google Scholar
Koutika, L. S. & Rainey, H. (2010) Chromolaena odorata in different ecosystems: weed or fallow plant? Applied Ecology and Environmental Research 8: 131142.CrossRefGoogle Scholar
Kriticos, D.J., Yonow, T., & McFadyen, R. C. (2005) The potential distribution of Chromolaena odorata (Siam weed) in relation to climate. Weed Research 45: 246254.CrossRefGoogle Scholar
Kushwaha, S. P. S., Ramakrishnan, P. S., & Tripathi, R. S. (1981) Population dynamics of Eupatorium odoratum in successional environments following slash and burn agriculture.Journal of Applied Ecology 18: 529535.CrossRefGoogle Scholar
Leslie, A.J. & Spotila, J. R. (2001) Alien plant threatens Nile crocodile (Crocodylus niloticus) breeding in Lake St Lucia, South Africa. Biological Conservation 98: 347355.CrossRefGoogle Scholar
Liggitt, B. (1983) The invasive alien plant Chromolaena odorata, with regards to its status and control in Natal. Monograph 2, pp. 41. Institute of Natural Resources, University of KwaZulu-Natal, Pietermaritzburg, South Africa.Google Scholar
Lowe, S.J., Browne, M. & Boudjelas, S. (2000) 100 of the world's worst invasive alien species. IUCN/SSC Invasive Species Specialist Group, Auckland.Google Scholar
Lucas, E. O. (1989) Siam weed (Chromolaena odorata) and crop production in Nigeria. Outlook on Agriculture 18: 133138.CrossRefGoogle Scholar
King, R. M. & Robinson, H. (1970) Studies in the Eupatorieae (Compositae). XXIX. The genus Chromolaena.Phytologia 20: 196209.CrossRefGoogle Scholar
Macdonald, I. A. W. (1983) Alien trees, shrubs and creepers invading indigenous vegetation in the Hluhluwe-Umfolozi Game Reserve Complex in Natal. Bothalia 14: 949959.CrossRefGoogle Scholar
Mack, R. N., Simberloff, D., Lonsdale, W. M., et al. (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecological Applications 10: 689710.CrossRefGoogle Scholar
Mangla, S., Inderjit, & Callaway, R. M. (2008) Exotic invasive plant accumulates native soil pathogens which inhibit native plants.Journal of Ecology 96: 5867.CrossRefGoogle Scholar
Marais, C. & Wannenburgh, A. (2008) Restoration of water resources (natural capital) through the clearing of invasive alien plants from riparian areas in South Africa – costs and water benefits. South African Journal of Botany 74: 526537.CrossRefGoogle Scholar
McLennan, S. (2006) Determining the effect of environmental factors (rainfall and topo-edaphic) on the abundance of Chromolaena odorata in Hluhluwe-iMfolozi Park, KwaZulu-Natal. BSc thesis, University of KwaZulu-Natal.Google Scholar
McWilliam, A. (2000) A plague on your house? Some impacts of Chromolaena odorata on Timorese livelihoods. Human Ecology 28: 451469.CrossRefGoogle Scholar
Mgobozi, M. P., Somers, M.J. & Dippenaar-Schoeman, A. S. (2008) Spider responses to alien plant invasion: the effect of short-and long-term Chromolaena odorata invasion and management.Journal of Applied Ecology 45: 11891197.CrossRefGoogle Scholar
Moder, W. W. D. (1984) The attraction of Zonocerus variegatus (L.) (Orthoptera, Pyrgomorphidae) to the weed Chromolaena odorata and associated feeding behavior. Bulletin of Entomological Research 74: 239247.CrossRefGoogle Scholar
Muniappan, R., Reddy, G. V. P. & Po-Yung, Lai (2005) Distribution and biological control of Chromolaena odorata. In: Invasive plants: ecological and agricultural aspects (ed. Inderjit, ), pp. 223233. Birkhauser Verlag, Basel.CrossRefGoogle Scholar
Murali, K. S. & Setty, R. S. (2001) Effect of weeds Lantana camara and Chromolaena odorata growth on the species diversity, regeneration and stem density of tree and shrub layer in BRT sanctuary. Current Science 80: 675678.Google Scholar
Norgrove, L., Hauser, S., & Weise, S. F. (2000) Response of Chromolaena odorata to timber tree densities in an agrisilvicultural system in Cameroon: aboveground biomass, residue decomposition and nutrient release. Agriculture Ecosystems and Environment 81: 191207.CrossRefGoogle Scholar
Pejchar, L. & Mooney, H. A. (2009) Invasive species, ecosystem services and human well-being. Trends in Ecology and Evolution 24: 497504.CrossRefGoogle ScholarPubMed
Pyšek, P., Richardson, D. M., Pergl, J., et al. (2008) Geographical and taxonomic biases in invasion ecology. Trends in Ecology and Evolution 23: 237244.CrossRefGoogle ScholarPubMed
Raimundo, R. L. G., Fonseca, R. L., Schachetti-Pereira, R., Townsend Peterson, A., & Lewinsohn, T. M. (2007) Native and exotic distributions of siamweed (Chromolaena odorata) modeled using the genetic algorithm for rule-set production. Weed Science 55: 4148.CrossRefGoogle Scholar
Ramakrishnan, P. S. & Vitousek, P. M. (1989) Ecosystem-level processes and the consequences of biological invasions. In: Biological invasions – a global perspective (eds Drake, J. A., Mooney, H. A., di Castri, F., Groves, R. H., Kruger, F.J., Rejmánek, M., & Williamson, M.), pp. 281300. John Wiley and Sons, New York.Google Scholar
Robertson, M. P., Kriticos, D.J. & Zachariades, C. (2008) Climate matching techniques to narrow the search for biological control agents. Biological Control 46: 442452.CrossRefGoogle Scholar
Rozen-Rechels, D. (2015) The repulsive shrub. Impact of an invasive shrub on habitat selection by African large herbivores. MSc thesis, Swedish University of Agricultural Sciences.Google Scholar
Sala, O. E., Chapin, F. S., Armesto, J.J., et al. (2000) Biodiversity – global biodiversity scenarios for the year 2100. Science 287: 17701774.CrossRefGoogle ScholarPubMed
Sangakkara, U. R., Attanayake, K. B., Dissanayake, U. & Bandaranayake, P. R. S. D. (2008) Allelopathic impact of Chromolaena odorata (L.) King and Robinson on germination and growth of selected tropical crops.Journal of Plant Diseases and Protection: 323326.Google Scholar
Slaats, J.J. P. (1995) Chromolaena odorata fallow in food cropping systems: an agronomic assessment in south-west Ivory Coast. PhD thesis, Wageningen Agricultural University.Google Scholar
Strayer, D. L., Eviner, V. T., Jeschke, J. M., & Pace, M. L. (2006) Understanding the long term effects of species invasions. Trends in Ecology and Evolution 30: 17.Google Scholar
te Beest, M. (2010) The ideal weed? Understanding the invasion of Chromolaena odorata in a South African savanna. PhD thesis, University of Groningen.Google Scholar
te Beest, M., Stevens, N., Olff, H., & Van der Putten, W. H. (2009) Plant–soil feedback induces shifts in biomass allocation in the invasive plant Chromolaena odorata. Journal of Ecology 97: 12811290.CrossRefGoogle Scholar
te Beest, M., Cromsigt, J. P. G. M., Ngobese, J., & Olff, H. (2012) Managing invasions at the cost of native habitat? An experimental test of the impact of fire on the invasion of Chromolaena odorata in a South African savanna. Biological Invasions 14: 607618.CrossRefGoogle Scholar
te Beest, M., Elschot, K., Olff, H., & Etienne, R. S. (2013) Invasion success in a marginal habitat: an experimental test of competitive ability and drought tolerance in Chromolaena odorata. PLoS ONE 8: e68274.CrossRefGoogle Scholar
te Beest, M., Mpandza, N.J., & Olff, H. (2015a) Fire and simulated herbivory have antagonistic effects on resistance of savanna grasslands to alien shrub invasion. Journal of Vegetation Science 26: 114122.CrossRefGoogle Scholar
te Beest, M., Esler, K., & Richardson, D. (2015b) Linking functional traits to impacts of invasive plant species: a case study. Plant Ecology 216: 293305.CrossRefGoogle Scholar
Van der Hoeven, C. A. (2007) The missing link: bridging the gap between science and conservation. PhD thesis, Wageningen University.Google Scholar
Van Gils, H., Delfino, J., Rugege, D., & Janssen, L. (2004) Efficacy of Chromolaena odorata control in a South African conservation forest. South African Journal of Science 100: 251253.Google Scholar
Van Wilgen, B. W., Le Maitre, D. C., & Cowling, R. M. (1998) Ecosystem services, efficiency, sustainability and equity: South Africa's Working for Water programme. Trends in Ecology and Evolution 13: 378.CrossRefGoogle ScholarPubMed
Van Wilgen, B. W., Forsyth, G. G., Le Maitre, D. C., et al. (2012) An assessment of the effectiveness of a large, national-scale invasive alien plant control strategy in South Africa. Biological Conservation 148: 2838.CrossRefGoogle Scholar
Vilá, M., Espinar, J., Hejda, M., et al. (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecology Letters 14: 702708.CrossRefGoogle ScholarPubMed
Whateley, A. & Porter, R. N. (1983) The woody vegetation communities of the Hluhluwe–Corridor–Umfolozi Game Reserve complex. Bothalia 14: 745758.CrossRefGoogle Scholar
Witkowski, E. T. F. & Wilson, M. (2001) Changes in density, biomass, seed production and soil seed banks of the non-native invasive plant, Chromolaena odorata, along a 15 year chronosequence. Plant Ecology 152: 1327.CrossRefGoogle Scholar
Zachariades, C., Strathie-Korrubel, L. W., & Kluge, R. L. (1999) The South African programme on the biological control of Chromolaena odorata (L.) King and Robinson (Asteraceae) using insects. African Entomology Memoir No. 189102.Google Scholar
Zachariades, C., Von Senger, I., & Barker, N. P. (2004) Evidence for a northern Caribbean origin for the southern African biotype of Chromolaena odorata. In: Proceedings of the 6th International Workshop on Biological Control and Management of Chromolaena odorata (eds Day, M. D. & McFadyen, R. C.), pp. 2527. ACIAR Technical Reports No. 55, Cairns, Australia.Google Scholar
Zachariades, C., Day, M., Muniappan, R., & Reddy, G. V. P. (2009) Chromolaena odorata (L.) King and Robinson (Asteraceae). In: Biological control of tropical weeds using arthropods (eds Muniappan, R., Reddy, G. V. P., & Raman, A.), pp. 130160. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Zachariades, C., Strathie, L. W., Retief, E., & Dube, N. (2011) Progress towards the biological control of Chromolaena odorata (L.) R. M. King and H. Rob. (Asteraceae) in South Africa. African Entomology 19: 282302.CrossRefGoogle Scholar
Zachariades, C., van Rensburg, S.J., & Witt, A. B. R. (2013) Recent spread and new records of Chromolaena odorata in Africa. In: Proceedings of the Eighth International Workshop on Biological Control and Management of Chromolaena odorata and other Eupatorieae (eds Zachariades, C., Strathie, L. W., Day, M. D., & Muniappan, R.), pp. 2027. ARC-PPRI, Pretoria.Google Scholar

16.7 References

Bakker, E. S., Gill, J. L.,Johnson, C. N., et al. (2016) Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proceedings of the National Academy of Sciences of the USA 113: 847855.CrossRefGoogle ScholarPubMed
Barnosky, A. D., Lindsey, E. L., Villavicencio, N. A., et al. (2015) Variable impact of late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proceedings of the National Academy of Sciences of the USA 113: 856861.CrossRefGoogle ScholarPubMed
Bond, W.J. (2016a) Ancient grasslands at risk. Science 351: 120122.CrossRefGoogle ScholarPubMed
Bond, W.J. (2016b) Response to seeing the grasslands through the trees. Science 351: 10361037.CrossRefGoogle ScholarPubMed
Brault, M.-O., Mysak, L. A., Matthews, H. D., & Simmons, C. T. (2013) Assessing the impact of late Pleistocene megafaunal extinctions on global vegetation and climate. Climate of the Past 9: 17611771.CrossRefGoogle Scholar
Caughley, G. (1983) Dynamics of large mammals and their relevance to culling. In: Management of large mammals in African conservation areas (ed. Owen-Smith, R. N.), pp. 115126. Haum, Pretoria.Google Scholar
Charles-Dominique, T., Staver, A. C., Midgley, G. F., & Bond, W.J. (2015) Functional differentiation of biomes in an African savanna/forest mosaic. South African Journal of Botany 101: 8290.CrossRefGoogle Scholar
Corlett, R. T. (2015) The Anthropocene concept in ecology and conservation. Trends in Ecology & Evolution 30: 3641.CrossRefGoogle ScholarPubMed
Crisp, M. D., Arroyo, M. T. K., Cook, L. G., et al. (2009) Phylogenetic biome conservatism on a global scale. Nature 458: 754756.CrossRefGoogle ScholarPubMed
Crutzen, P.J. & Stoermer, E. F. (2000) The ‘Anthropocene’. IGBP Newsletter 41: 1718.Google Scholar
De Wit, S., Anderson, J., Kumar, C., et al. (2016) Seeing the grasslands through the trees. Science 351: 1036.CrossRefGoogle Scholar
Doughty, C. E., Wolf, A., & Field, C. B. (2010) Biophysical feedbacks between the Pleistocene megafauna extinction and climate: the first human-induced global warming? Geophysical Research Letters 37: L15703.CrossRefGoogle Scholar
Doughty, C. E., Wolf, A., & Malhi, Y. (2013) The legacy of the Pleistocene megafauna extinctions on nutrient availability in Amazonia. Nature Geoscience 6: 761764.CrossRefGoogle Scholar
Doughty, C. E., Faurhy, S., & Svenning, J.-C. (2015a) The impact of megafauna extinctions on savanna woody cover in South America. Ecography 39: 213222.CrossRefGoogle Scholar
Doughty, C. E., Roman, J., Faurby, S., et al. (2015b) Global nutrient transport in a world of giants. Proceedings of the National Academy of Sciences of the USA 113: 868873.CrossRefGoogle Scholar
Ellis, E. C. (2015) Ecology in an Anthropocene biosphere. Ecological Monographs 85: 287332.CrossRefGoogle Scholar
Ezemvelo KZN Wildlife (2011) Integrated Management Plan: Hluhluwe-iMfolozi Park, South Africa. Ezemvelo KZN Wildlife, Pietermaritzburg.Google Scholar
Feely, J. M., (1980) Did Iron Age man have a role in the history of Zululand's wilderness landscapes? South African Journal of Science 76: 150152.Google Scholar
Ferreira, S. M., Botha, J. M. & Emmett, M. C. (2012) Anthropogenic influences on conservation values of white rhinoceros. PLoS ONE 7: e45989.CrossRefGoogle ScholarPubMed
Gill, J. L. (2014) Ecological impacts of the late Quaternary megaherbivore extinctions. New Phytologist 201: 11631169.CrossRefGoogle ScholarPubMed
Gillson, L. (2015) Evidence of a tipping point in a southern African savanna? Ecological Complexity 21: 7886.CrossRefGoogle Scholar
Hall, M. (1984) Prehistoric farming in the Mfolozi and Hluhluwe valleys of southeast Africa: an archaeo-botanical survey.Journal of Archaeological Science 11: 223235.CrossRefGoogle Scholar
Hoffmann, W. A., Geiger, E. L., Gotsch, S. G., et al. (2012) Ecological thresholds at the savanna–forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecology Letters 15: 759768.CrossRefGoogle ScholarPubMed
Jewell, P. A., Holt, S., & Hart, D. (1981) Problems in management of locally abundant wild mammals. Academic Press, New York.Google Scholar
Kerley, G. I. H., Landman, M., Kruger, L., et al. (2008). Effects of elephants on ecosystems and biodiversity. In: Elephant management: a scientific assessment for South Africa (eds Scholes, R. J. & Mennell, K. G.), pp. 84145. Wits University Press, Johannesburg.Google Scholar
Kuijper, D. P. J., te Beest, M., Churski, M., & Cromsigt, J. P. G. M. (2015) Bottom-up and top-down forces shaping wooded ecosystems: lessons from a cross-biome comparison. In: Trophic ecology: bottom-up and top-down interactions across aquatic and terrestrial systems (eds Hanley, T. C. & La Pierre, K. J.), pp. 107133. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Laestadius, L., Maginnis, S., Minnemeyer, S., et al. (2011) Mapping opportunities for forest landscape restoration. Unasylva 238: 4748.Google Scholar
Lock, J. M. (1972) The effect of hippopotamus grazing in grasslands. Journal of Ecology 60: 445467.CrossRefGoogle Scholar
Mahli, Y., Doughty, C. E., Galetti, M., et al. (2016) Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proceedings of the National Academy of Sciences of the USA 113: 838846.Google Scholar
McCracken, D. P. (2008) Saving the Zululand wilderness: an early struggle for nature conservation. Jacana Media, Johannesburg.Google Scholar
Moncrieff, G. R., Bond, W.J., & Higgins, S. I. (2016) Revising the biome concept for understanding and predicting global change impacts.Journal of Biogeography 46: 863873.CrossRefGoogle Scholar
Owen-Smith, N. (1973) The behavioural ecology of the white rhinoceros. PhD thesis, University of Wisconsin, USA.Google Scholar
Owen-Smith, N. (1987) Pleistocene extinctions: the pivotal role of megaherbivores. Paleobiology 13: 351362.CrossRefGoogle Scholar
Owen-Smith, N. (1988) Megaherbivores: the influence of very large body size on ecology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Owen-Smith, N. (2013) Megaherbivores. In: Encyclopedia of biodiversity (ed. Levin, S. A.), pp. 223239. Academic Press, Waltham, MA.Google Scholar
Penner, D. (1970) Archaeological survey in Zululand game reserves. Unpublished report, Natal Parks Board, Pietermaritzburg.Google Scholar
Player, I. C. (1997) Zululand wilderness: shadow and soul. David Philip, Cape Town.Google Scholar
Potter, H. B. B. (1941) Report of Zululand Game Reserve and Parks Committee province of Natal – report of game conservator (Capt. Potter) for 1941.Journal of the Society for the Preservation of the Fauna of the Empire 43: 3541.Google Scholar
Ratnam, J., Bond, W.J., Fensham, R.J., et al. (2011) When is a ‘forest' a savanna, and why does it matter? Global Ecology and Biogeography 20: 653660.CrossRefGoogle Scholar
Smith, F. A., Doughty, C. E., Malhi, Y., Svenning, J.-C. & Terborgh, J. (2016) Megafauna in the Earth system. Ecography 39: 99108.CrossRefGoogle Scholar
Staver, A. C., Archibald, S., & Levin, S. A. (2011) The global extent and determinants of savanna and forest as alternative biome states. Science 334: 230232.CrossRefGoogle ScholarPubMed
Vaughan-Kirby, F. (1916) Game and game preservation in Zululand. South African Journal of Science 13: 375396.Google Scholar
Veldman, J. W., Buisson, E., Durigan, G., et al. (2015a) Toward an old-growth concept for grasslands, savannas, and woodlands. Frontiers in Ecology and the Environment 13: 154162.CrossRefGoogle Scholar
Veldman, J. W., Overbeck, G. E., Negreiros, D., et al. (2015b) Where tree planting and forest expansion are bad for biodiversity and ecosystem services. BioScience 65: 10111018.CrossRefGoogle Scholar
Veldman, J. W., Overbeck, G., Negreiros, D., et al. (2015c) Tyranny of trees in global climate change mitigation. Science 347: 484485.CrossRefGoogle Scholar
Walker, B. H., Emslie, R. H., Owen-Smith, R. N., & Scholes, R. J. (1987) To cull or not to cull: lessons from a southern African drought. Journal of Applied Ecology 24: 381401.CrossRefGoogle Scholar
Zimov, S. A., Chuprinun, V. I., Oreshko, A., et al. (1995) Steppe–tundra transition: a herbivore-driven biome shift at the end of the Pleistocene. American Naturalist 146: 765794.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×