Published online by Cambridge University Press: 05 December 2015
OVERVIEW
Fragmentation poses one of the greatest threats to freshwater fish biodiversity (Nilsson et al., 2005; Reidy-Liermann et al., 2012). Whereas damming of large rivers is perhaps the most obvious form of fragmentation (e.g., Nilsson et al., 2005), smaller, semipermeable barriers such as road crossings (Perkin & Gido, 2012) or water withdrawals that dry sections of a river network (Falke et al., 2011) also pose a conservation challenge. In glacial regions, lakes that are naturally connected through waterways are increasingly being isolated by summer evaporation and groundwater loss (Baki et al., 2012). Climate and land-use changes also isolate populations in headwater reaches by increasing temperatures (Rahel et al., 1996) or drying of streams (Falke et al., 2011) in downstream reaches. Finally, barriers can form when the occurrence of a species, such as a large predator, inhibits the movement of prey through a dispersal corridor (Fraser et al., 1995). This severing of connectivity in aquatic habitats affects species persistence through multiple stressors (Chapters 4 and 6) including limiting dispersal necessary to fulfil important life stages, exacerbating negative species interactions, and inhibiting recolonisation following disturbance. Barriers to movement isolate small populations leading to reduced genetic diversity (Chapter 16) and potentially compromise long-term population persistence (e.g. Wofford et al., 2005).
In this chapter, we discuss how fragmentation disrupts dispersal and migration of freshwater fishes and the long-term consequences for population diversity and stability. We begin with a global overview of the problem followed by a review of theoretical and empirical methods for quantifying the effects of fragmentation on population viability. We conclude with a discussion of conservation challenges along with future research and management recommendations. The primary tenet of our review is that persistence of species in fragmented systems is dependent on the nature of barriers to dispersal and ecological traits of species, particularly their ability to complete critical life-history stages within fragmented habitats (Figure 10.1). We often refer to the terms fragmentation, isolation and connectivity. Whereas there are instances where these might be used interchangeably, we consider fragmentation to represent habitats that have been partitioned into smaller habitats and by extension result in smaller populations. The terms connectivity and isolation refer to the ability or lack of ability, respectively, of fishes to disperse into or out of particular habitats.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.