Published online by Cambridge University Press: 14 October 2009
Assembly of macromolecules
It is of interest that many of the dominantly inherited disorders for which biochemical abnormalities have been defined involve the synthesis of normal or decreased amounts of structurally abnormal protein molecules (C. J. Epstein, 1977). Included in this group are, for example, the dysfibrinogenemias (Graham et al., 1983), some of the hemoglobinopathies associated with unstable hemoglobins (Weatherall and Clegg, 1981), several of the connective tissue defects (osteogenesis imperfecta, Ehlers-Danlos syndrome) in which abnormal collagen chains are synthesized (Byers et al., 1983; Chu et al., 1983; Prockop et al., 1983; Stolle, Myers, and Pyeritz, 1983; Wenstrup, Hunter, and Byers, 1983; Prockop and Kivirikko, 1984), red cell disorders (elliptocytosis, spherocytosis) with abnormal membranes (Coetzer and Zail, 1981; Tomaselli, John, and Lux, 1981; Wolfe et al., 1982), and, in Drosophila, a meiotic mutant with an abnormal β-tubulin (Kemphues et al., 1980). In these disorders, it is easy to visualize how a structurally abnormal subunit interferes with the formation, stability, and/or function of a multisubunit macromolecular complex (C. J. Epstein, 1977). However, in the situation of aneuploidy, we are not dealing with qualitative alterations in subunit structure but only with quantitative changes in rates of synthesis and hence, in concentrations. Can such changes result in abnormality?
It is possible to generate hypothetical examples for how a change in the concentration of one subunit in a multisubunit protein could lead to the formation of abnormal or unusual products.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.