Skip to main content Accessibility help
×
Hostname: page-component-f554764f5-68cz6 Total loading time: 0 Render date: 2025-04-14T21:55:07.339Z Has data issue: false hasContentIssue false

12 - Agricultural Land

from Part IV - Managing Connectivity

Published online by Cambridge University Press:  10 April 2025

Ronald Pöppl
Affiliation:
BOKU University Vienna
Anthony Parsons
Affiliation:
University of Sheffield
Saskia Keesstra
Affiliation:
Wageningen Universiteit, The Netherlands
Get access

Summary

Farming has modified the natural dynamic of soil erosion/redistribution in significant parts of landscapes, triggering high rates of soil loss and accelerating sediment connectivity. This chapter provides a review of sediment connectivity in grassland, herbaceous and woody crops from knowledge to management. The first section explores the extension of farmland at a global scale and the process of agricultural land expansion. Regarding herbaceous crops, the second section highlights the importance of cropping intensity (one or two crops per year), water supply (rainfed or irrigated), and crop rotation on the sediment-connectivity magnitude. In the section of woody crops, studies done in vineyards, olive groves and citrus orchards describe the processes of sediment connectivity with and without soil conservation practices (e.g., cover crops). The section of sediment connectivity in grasslands includes examples in alpine hillsides, valley bottom and lakes, emphasizing their role as sediment-trapping features. The last section deals with sediment dis-connectivity in farmland due to soil erosion control practices and governmental programs, with examples from Europe and China.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Abberton, M., Conant, R., & Batello, C., 2010. Grassland Carbon Sequestration: Management, Policy and Economics. Food and Agriculture of the United Nations, Rome.Google Scholar
Addis, H.K., Abera, A., & Abebaw, L., 2020. Economic benefits of soil and water conservation measures at the sub-catchment scale in the northern Highlands of Ethiopia. Progress in Physical Geography 44(2), 251266.CrossRefGoogle Scholar
Aguilera, E., Sanz-Cobena, A., Infante-Amate, J., García-Ruiz, R., Vila-Traver, J., Guzmán, G.I., González de Molina, M., Rodríguez, A., Piñero, P., & Lassaletta, L., 2021. Long-term trajectories of the C footprint of N fertilization in Mediterranean agriculture (Spain, 1860–2018). Environmental Research Letters 16, 085010.CrossRefGoogle Scholar
Amare, S., Langendoen, E., Keesstra, S., Ploeg, M.V.D., Gelagay, H., Lemma, H., & Zee, S.E.V.D., 2021. Susceptibility to gully erosion: applying random forest (RF) and frequency ratio (FR) approaches to a small catchment in Ethiopia. Water, 13(2), 216.CrossRefGoogle Scholar
Andrade, B.O., Koch, C., Boldrini, I.I., Vélez-Martin, E., Hasenack, H., Hermann, J.M., Kollmann, J., Pillar, V.D., & Overbeck, G.E., 2015. Grassland degradation and restoration: a conceptual framework of stages and thresholds illustrated by southern Brazilian grasslands. Natureza & Conservação 13, 95104.CrossRefGoogle Scholar
Armesto, J.J., Manuschevich, D., Mora, A., Smith-Ramirez, C., Rozzi, R., Abarzúa, A.M., & Marquet, P.A., 2010. From the Holocene to the Anthropocene: A historical framework for land cover change in southwestern South America in the past 15,000 years. Land Use Policy 27(2), 148160.CrossRefGoogle Scholar
Atucha, A., Merwin, I.A., Brown, M.G., Gardiazabal, F., Mena, F., Adriazola, C., & Lehmann, J., 2013. Soil erosion, runoff and nutrient losses in an avocado (Persea americana Mill) hillside orchard under different groundcover management systems. Plant Soil 368, 393406.CrossRefGoogle Scholar
Bardgett, R.D., Bullock, J.M., Lavorel, S., Manning, P., Schaffner, U., Ostle, N., Chomel, M., et al. 2021. Combatting global grassland degradation. Nature Reviews Earth & Environment 2, 720735.CrossRefGoogle Scholar
Barrena-González, J., Lozano-Parra, J., Alfonso-Torreño, A., Lozano-Fondón, C., Abdennour, M.A., Cerdà, A., & Pulido-Fernández, M., 2020. Soil erosion in Mediterranean chestnut tree plantations at risk due to climate change and land abandonment. Central European Forestry Journal 66, 8596.CrossRefGoogle Scholar
Bayat, F., Monfared, A.B., Jahansooz, M.R., Esparza, E.T., Keshavarzi, A., Morera, A.G., Fernández, M.P., & Cerdà, A., 2019. Analyzing long-term soil erosion in a ridge-shaped persimmon plantation in eastern Spain by means of ISUM measurements. Catena 183, 104176.CrossRefGoogle Scholar
Becerra, A.T., Botta, G.F., Bravo, X.L., Tourn, M., Melcon, F.B., Vazquez, J., Rivero, D., Linares, P., & Nardon, G., 2010. Soil compaction distribution under tractor traffic in almond (Prunus amigdalus L.) orchard in Almería España. Soil and Tillage Research 107, 4956.CrossRefGoogle Scholar
Bilotta, G.S., Brazier, R.E., & Haygarth, P.M., 2007. The impacts of grazing animals on the quality of soils, vegetation, and surface waters in intensively managed grasslands. Advances in Agronomy 94, 237280.CrossRefGoogle Scholar
Bilotta, G.S., Brazier, R.E., Haygarth, P.M., Macleod, C.J.A., Butler, P., Granger, S., Krueger, T., Freer, J., & Quinton, J., 2008. Rethinking the contribution of drained and undrained grasslands to sediment-related water quality problems. Journal of Environmental Quality 37, 906914.CrossRefGoogle ScholarPubMed
Blanco Sepúlveda, R., & Aguilar Carrillo, A., 2015. Soil erosion and erosion thresholds in an agroforestry system of coffee (Coffea arabica) and mixed shade trees (Inga spp and Musa spp) in Northern Nicaragua. Agriculture, Ecosystems & Environment 210, 2535.CrossRefGoogle Scholar
Borrelli, P., & Panagos, P., 2020. An indicator to reflect the mitigating effect of Common Agricultural Policy on soil erosion. Land Use Policy 92, 104467.CrossRefGoogle Scholar
Borrelli, P., Robinson, D.A., Fleischer, L.R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., et al. 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications 8, 2013.CrossRefGoogle ScholarPubMed
Brazier, R.E., Bilotta, G.S., & Haygarth, P.M., 2007. A perspective on the role of lowland, agricultural grasslands in contributing to erosion and water quality problems in the UK. Earth Surface Processes and Landforms 32, 964967.CrossRefGoogle Scholar
Brown, C., Walpole, M., Simpson, L., & Tierney, M., 2011. Introduction to the UK National Ecosystem Assessment. In: The UK National Ecosystem Assessment Technical Report. UK National Ecosystem Assessment, UNEP-WCMC, Cambridge.Google Scholar
Burguet, M., Taguas, E.V., Cerdà, A., &Gómez, J.A., 2016. Soil water repellency assessment in olive groves in Southern and Eastern Spain. Catena 147, 187195.CrossRefGoogle Scholar
Buschiazzo, D.E., Zobeck, T.M., & Abascal, S.A., 2007. Wind erosion quantity and quality of an Entic Haplustoll of the semi-arid pampas of Argentina. Journal of Arid Environments 69(1), 2939.CrossRefGoogle Scholar
Calsamiglia, A., Fortesa, J., García-Comendador, J., Lucas-Borja, M.E., Calvo-Cases, A., & Estrany, J., 2018. Spatial patterns of sediment connectivity in terraced lands: Anthropogenic controls of catchment sensitivity. Land Degradation and Development 29, 11981210.CrossRefGoogle Scholar
Cao, J.J., Adamowski, J.F., Deo, R.C., Xu, X.Y., Gong, Y.F., & Feng, Q., 2019. Grassland degradation on the Qinghai-Tibetan Plateau: Reevaluation of causative factors. Rangeland Ecology & Management 72, 988995.CrossRefGoogle Scholar
Cerdà, A., Franch-Pardo, I., Novara, A., Sannigrahi, S., & Rodrigo-Comino, J., 2022. Examining the effectiveness of catch crops as a nature-based solution to mitigate surface soil and water losses as an environmental regional concern. Earth Systems and Environment 6, 2944.CrossRefGoogle Scholar
Chen, S.-K., Liu, C.-W., & Chen, Y.-R., 2012. Assessing soil erosion in a terraced paddy field using experimental measurements and universal soil loss equation. Catena 95, 131141.CrossRefGoogle Scholar
Conforti, M., Buttafuoco, G., Leone, A.P., Aucelli, P.P.C., Robustelli, G., & Scarciglia, F., 2013. Studying the relationship between water-induced soil erosion and soil organic matter using Vis–NIR spectroscopy and geomorphological analysis: A case study in southern Italy. Catena 110, 4458.CrossRefGoogle Scholar
Cucchiaro, S., Paliaga, G., Fallu, D.J., Pears, B.R., Walsh, K., Zhao, P., Van Oost, K., et al. 2021. Volume estimation of soil stored in agricultural terrace systems: A geomorphometric approach. Catena 207, 105687.CrossRefGoogle Scholar
Di Stefano, C., Ferro, V., Burguet, M., & Taguas, E.V., 2016. Testing the long term applicability of USLE-M equation at an olive orchard microcatchment in Spain. Catena 147, 7179.CrossRefGoogle Scholar
Dixon, A.P., Faber-Langendoen, D., Josse, C., Morrison, J., & Loucks, C.J., 2014. Distribution mapping of world grassland types. Journal of Biogeography 41, 20032019.CrossRefGoogle Scholar
Dong, H., Song, Y., Chen, L., Liu, H., Fu, X., & Xie, M. 2022. Soil erosion and human activities over the last 60 years revealed by magnetism, particle size and minerals of check dams sediments on the Chinese Loess Plateau. Environmental Earth Sciences 81(5), article 162.CrossRefGoogle Scholar
Dong, Q.M., Zhao, X.Q., Wu, G.L., Shi, J.J., & Ren, G.H., 2013. A review of formation mechanism and restoration measures of “black-soil-type” degraded grassland in the Qinghai-Tibetan Plateau. Environmental Earth Sciences 70, 23592370.CrossRefGoogle Scholar
Dreibelbis, F.R., 1944. A summary of soil‐moisture data useful in soil‐ and water‐conservation investigations. Eos, Transactions American Geophysical Union 25(6), 10411047.Google Scholar
Durán Zuazo, V.H., Aguilar Ruiz, J., Martínez Raya, A., & Franco Tarifa, D., 2005. Impact of erosion in the taluses of subtropical orchard terraces. Agriculture Ecosystems & Environment 107, 199210.CrossRefGoogle Scholar
Erdős, L., Ambarlı, D., Anenkhonov, O.A., Bátori, Z., Cserhalmi, D., Kiss, M., Kröel-Dulay, G., et al. 2018. The edge of two worlds: A new review and synthesis on Eurasian forest-steppes. Applied Vegetation Science 21, 345362.CrossRefGoogle Scholar
European Commission, 2014. LIFE and Soil protection. Publications Office of the European Union (2014). Luxembourg. DOI:10.2779/64447.CrossRefGoogle Scholar
European Commission, 2021. EU Soil Strategy for 2030 – Reaping the benefits of healthy soils for people, food, nature and climate. COM (2021) 699 final. Brussels, 17.11.2021.Google Scholar
European Commission, 2022. The common agricultural policy at a glance. Website: https://ec.europa.eu/info/food-farming-fisheries/key-policies/common-agricultural-policy/cap-glance_en (visited on 25 May 2022).Google Scholar
Ferreira, C.S., Veiga, A., Caetano, A., Gonzalez-Pelayo, O., Karine-Boulet, A., Abrantes, N., Keizer, J., & Ferreira, A.J., 2020. Assessment of the impact of distinct vineyard management practices on soil physico-chemical properties. Air, Soil and Water Research 13, https://doi.org/10.1177/1178622120944847.CrossRefGoogle Scholar
Findley, D.M., Acabado, S., Amano, N., Kay, A.U., Hamilton, R., Barretto-Tesoro, G., Bankoff, G., Kaplan, J.O., & Roberts, P., 2022. Land use change in a pericolonial society: Intensification and diversification in Ifugao, Philippines between 1570 and 1800 CE. Frontiers in Earth Science 10, 680926.CrossRefGoogle Scholar
Fleskens, L., & Stroosnijder, L., 2007. Is soil erosion in olive groves as bad as often claimed? Geoderma 141, 260271.CrossRefGoogle Scholar
Fressard, M., & Cossart, E., 2019. A graph theory tool for assessing structural sediment connectivity: Development and application in the Mercurey vineyards (France). Science of The Total Environment 651, 25662584.CrossRefGoogle ScholarPubMed
Fryirs, K.A., 2013. (Dis) Connectivity in catchment sediment cascades: a fresh look at the sediment delivery problem. Earth Surface Processes and Landforms 38, 3046.CrossRefGoogle Scholar
Fu, B., Wang, Y., Xu, P., & Yan, K., 2013. Mapping the flood mitigation services of ecosystems-a case study in the Upper Yangtze River Basin. Ecological Engineering 52, 238246.CrossRefGoogle Scholar
Gang, C.C., Zhou, W., Chen, Y.Z., Wang, Z.Q., Sun, Z.G., Li, J.L., Qi, J.G., & Odeh, I., 2014. Quantitative assessment of the contributions of climate change and human activities on global grassland degradation. Environmental Earth Sciences 72, 42734282.CrossRefGoogle Scholar
García-Díaz, A., Bienes, R., Sastre, B., Novara, A., Gristina, L., & Cerdà, A., 2017. Nitrogen losses in vineyards under different types of soil groundcover. A field runoff simulator approach in central Spain. Agriculture, Ecosystems & Environment 236, 256267.CrossRefGoogle Scholar
García-Ruiz, J.M., Beguería, S., Nadal-Romero, E., González-Hidalgo, J.C., Lana-Renault, N., & Sanjuán, Y., 2015. A meta-analysis of soil erosion rates across the world. Geomorphology 239, 160173.CrossRefGoogle Scholar
Glymph, L.M., 1954. Studies of sediment yields from watersheds. International Association for Hydrological Sciences Publication 36, 173191.Google Scholar
Gómez, J.A., Giráldez, J.V., & Vanwalleghem, T., 2008. Comments on “Is soil erosion in olive groves as bad as often claimed?” by L. Fleskens and L. Stroosnijder. Geoderma 147, 9395.CrossRefGoogle Scholar
Granger, S.J., Hawkins, J.M.B., Bol, R., Whitem, S.M., Naden, P., Old, G., Bilotta, G.S., Brazier, R.E., Macleod, C.J.A., & Haygarth, P.M., 2010. High temporal resolution monitoring of multiple pollutant responses in drainage from an intensively managed grassland catchment caused by a summer storm. Water, Air and Soil Pollution 205, 377393.CrossRefGoogle Scholar
Guo, Q., Hu, Z., Li, S., Li, X., Sun, X., & Yu, G., 2012. Spatial variations in aboveground net primary productivity along a climate gradient in Eurasian temperate grassland: effects of mean annual precipitation and its seasonal distribution. Global Change Biology 18, 36243631.CrossRefGoogle Scholar
Hakansson, I., & Lipiec, J., 2000. A review of the usefulness of relative bulk density values in studies of soil structure and compaction. Soil & Tillage Research 53, 7185.CrossRefGoogle Scholar
Hancock, G.R., Ovenden, M., Sharma, K., Rowlands, W., & Wells, T., 2020. Soil erosion-the impact of grazing and regrowth trees. Geoderma 361, 114102.CrossRefGoogle Scholar
Honigova, I., Vackar, D., Lorencova, E., Melichar, J., Gotzl, M., Sonderegger, G., Ouskova, V., Hosek, M., & Chobot, K., 2012. Survey on grassland ecosystem services. Report to the EEA-European Topic Centre on Biological Diversity. Nature Conservation Agency of the Czech Republic, Prague, p78.Google Scholar
Hooke, J., 2003. Coarse sediment connectivity in river channel systems: a conceptual framework and methodology. Geomorphology 56(1–2), 7994.CrossRefGoogle Scholar
INE (Instituto Nacional de Estadística), 2009. Agrarian Census 2009 Project. Madrid, Spain, 124 pages.Google Scholar
Kawai, K., Okada, M., & Ikemune, K., 1957. Studies of Cropping Systems for Soil Conservation against Erosion HI. Influences of tobacco and potato cultivation on soil erosion and conservative measures. Japanese Journal of Crop Science 26(1), 6364.CrossRefGoogle Scholar
Keesstra, S. D., Bruijnzeel, L. A., & Van Huissteden, J., 2009. Meso‐scale catchment sediment budgets: combining field surveys and modeling in the Dragonja catchment, southwest Slovenia. Earth Surface Processes and Landforms, 34(11), 15471561.CrossRefGoogle Scholar
Keesstra, S., Nunes, J. P., Saco, P., Parsons, T., Poeppl, R., Masselink, R., & Cerdà, A., 2018a. The way forward: Can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics? Science of the Total Environment, 644, 15571572.CrossRefGoogle ScholarPubMed
Keesstra, S., Nunes, J., Novara, A., Finger, D., Avelar, D., Kalantari, Z., & Cerdà, A., 2018b. The superior effect of nature based solutions in land management for enhancing ecosystem services. Science of the Total Environment, 610, 9971009.CrossRefGoogle ScholarPubMed
Khalil, M.I., Cordovil, C.M.D.S., Francaviglia, R., Beverley, H., Klumpp, K.; Koncz, P., Llorente, M., Madari, B.E., Muñoz-Rojas, M., & Nerger, R., 2021. Grasslands. In Recarbonizing Global Soils: A Technical Manual of Recommended Sustainable Soil Management; FAO, Italy, Rome, Volume 3, ISBN 978-92-5-134893-2.Google Scholar
Knapen, A., Smets, T., & Poesen, J., 2009. Flow-retarding effects of vegetation and geotextiles on soil detachment during concentrated flow. Hydrological Processes 23, 24272437.CrossRefGoogle Scholar
Kraushaar, S., Herrmann, N., Ollesch, G., Vogel, H.-J., & Siebert, C., 2014. Mound measurements – Quantifying medium-term soil erosion under olive trees in Northern Jordan. Geomorphology 213, 112.CrossRefGoogle Scholar
Lana-Renault, N., López-Vicente, M., Nadal-Romero, E., Ojanguren, R., Llorente, J.A., Errea, P., Regüés, D., et al., 2018. Catchment based hydrology under post farmland abandonment scenarios. Geographical Research Letters 44(2), 503534.Google Scholar
Lexartza-Artza, I., & Wainwright, J., 2011. Making connections: Changing sediment sources and sinks in an upland catchment. Earth Surface Processes and Landforms 36 (8), 10901104.CrossRefGoogle Scholar
Li, X., Gao, J., Zhang, J., Wang, R., Jin, L., & Zhou, H., 2019. Adaptive strategies to overcome challenges in vegetation restoration to coalmine wasteland in a frigid alpine setting. Catena 182, 104142.CrossRefGoogle Scholar
Li, Z., Schneider, R.L., Morreale, S.J., Xie, Y., Li, C., & Li, J., 2018. Woody organic amendments for retaining soil water, improving soil properties and enhancing plant growth in desertified soils of Ningxia, China. Geoderma 310, 143152.CrossRefGoogle Scholar
Liu, H., Blagodatsky, S., Giese, M., Liu, F., Xu, J., & Cadisch, G., 2016. Impact of herbicide application on soil erosion and induced carbon loss in a rubber plantation of Southwest China. Catena 145, 180192.CrossRefGoogle Scholar
Liu, J., Milne, R.I., Cadotte, M.W., Wu, Z.Y., Provan, J., Zhu, G.F., Gao, L.M., & Li, D.Z., 2018. Protect third pole’s fragile ecosystem. Science 362, 1368.CrossRefGoogle Scholar
Liu, M., Min, L., Wu, L., Pei, H., & Shen, Y., 2022. Evaluating nitrate transport and accumulation in the deep vadose zone of the intensive agricultural region, North China Plain. Science of the Total Environment 825, 153894.CrossRefGoogle ScholarPubMed
Liu, Y., Li, S.Y., Shi, J.J., Niu, Y.L., Cui, Z., Zhang, Z.C., Wang, Y.L., Ma, Y.S., Lopez-Vicente, M., & Wu, G.L., 2022b. Effectiveness of mixed cultivated grasslands to reduce sediment concentration in runoff on hillslopes in the Qinghai-Tibetan Plateau. Geoderma 422, 115933.CrossRefGoogle Scholar
Liu, Y.F., Zhang, Z.C., Liu, Y., Cui, Z., Leite, P.A.M., Shi, J.J., Wang, Y.L., & Wu, G.L., 2022a. Shrub encroachment enhances the infiltration capacity of alpine meadows by changing the community composition and soil conditions. Catena 213,106222.CrossRefGoogle Scholar
López-Vicente, M., & Álvarez, S. 2018. Influence of DEM resolution on modelling hydrological connectivity in a complex agricultural catchment with woody crops. Earth Surface Processes and Landforms 43(7), 14031415.CrossRefGoogle Scholar
López-Vicente, M., Lana-Renault, N., García-Ruiz, J.M., & Navas, A., 2011. Assessing the potential effect of different land cover management practices on sediment yield from an abandoned farmland catchment in the Spanish Pyrenees. Journal of Soils and Sediments 11, 14401455.CrossRefGoogle Scholar
López-Vicente, M., Nadal-Romero, E., & Cammeraat, E.L.H. 2017. Hydrological connectivity does change over 70 years of abandonment and afforestation in the Spanish Pyrenees. Land Degradation & Development 28, 12981310.CrossRefGoogle Scholar
López-Vicente, M., & Navas, A., 2010. Relating soil erosion and sediment yield to geomorphic features and erosion processes at the catchment scale in the Spanish Pre-Pyrenees. Environmental Earth Sciences 61, 143158.CrossRefGoogle Scholar
López-Vicente, M., Navas, A., & Machín, J., 2008. Identifying erosive periods by using RUSLE factors in mountain fields of the Central Spanish Pyrenees. Hydrology and Earth System Sciences 12, 523535.CrossRefGoogle Scholar
Ma, Y.S., Lang, B.N., Li, Q.Y., Shi, J.J., & Dong, Q.M., 2002. Study on rehabilitating and rebuilding technologies for degenerated alpine meadow in the Changjiang and Yellow river source region. Acta Prataculturae Sinica 19, 14.Google Scholar
Martín, W.S., 2017. Nitrogen, science, and environmental change: The politics of the Green Revolution in Chile and the global nitrogen challenge. Journal of Political Ecology 24(1), 777796.CrossRefGoogle Scholar
Martínez-Raya, A., Durán-Zuazo, V.H., & Francia-Martínez, J.R., 2006. Soil erosion and runoff response to plant-cover strips on semiarid slopes (SE Spain). Land Degradation & Development 17(1), 111.CrossRefGoogle Scholar
Mekonnen, M., Keesstra, S. D., Stroosnijder, L., Baartman, J. E., & Maroulis, J., 2015. Soil conservation through sediment trapping: a review. Land Degradation & Development, 26(6), 544556.CrossRefGoogle Scholar
Mekonnen, M., Keesstra, S.D., Baartman, J.E.M., Stroosnijder, L., & Maroulis, J., 2017. Reducing Sediment Connectivity Through man-Made and Natural Sediment Sinks in the Minizr Catchment, Northwest Ethiopia. Land Degradation & Development 28(2), 708717.CrossRefGoogle Scholar
Menzies Pluer, E.G., Schneider, R.L., Morreale, S. J., Liebig, M.A., Li, J., Li, C.X., & Walter, M.T., 2020. Returning degraded soils to productivity: An examination of the potential of coarse woody amendments for improved water retention and nutrient holding capacity. Water Air Soil Pollut 231, 15.CrossRefGoogle Scholar
Mermoz, S., Bouvet, A., Toan, T. L., & Herold, M., 2018. Impacts of the forest definitions adopted by African countries on carbon conservation. Environmental Research Letters 13, 104014.CrossRefGoogle Scholar
Meyles, E.W., Williams, A.G., Ternan, J.L., Anderson, J.M., & Dowd, J.F., 2006. The influence of grazing on vegetation, soil properties and stream discharge in a small Dartmoor catchment, southwest England, UK. Earth Surface Processes and Landforms 31, 622631.CrossRefGoogle Scholar
Monfreda, C., Ramankutty, N., & Foley, J.A., 2008. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Global Biogeochemical Cycles 22, https://doi.org/10.1029/2007GB002947.CrossRefGoogle Scholar
Montanarella, L., & Panagos, P., 2021. The relevance of sustainable soil management within the European Green Deal. Land Use Policy 100, 104950.CrossRefGoogle Scholar
Moradi, E., Rodrigo-Comino, J., Terol, E., Mora-Navarro, G., Marco da Silva, A., Daliakopoulos, I.N., Khosravi, H., Pulido Fernández, M., & Cerdà, A., 2020. Quantifying soil compaction in persimmon orchards using ISUM (improved stock unearthing method) and core sampling methods. Agriculture 10, 266.CrossRefGoogle Scholar
Morellón, M., Valero-Garcés, B., González-Sampériz, P., Vegas-Vilarrúbia, T., Rubio, E., Rieradevall, M., Delgado-Huertas, A., et al. 2011. Climate changes and human activities recorded in the sediments of Lake Estanya (NE Spain) during the Medieval Warm Period and Little Ice Age. Journal of Paleolimnology 46, 423452.CrossRefGoogle Scholar
Neto, J.P.S., De Souza, N.M., Andrello, A.C., & Appoloni, C.R., 2008. Loss and soil deposition estimate by means of the cesium 137 concentration in the Rio das Ondas Basin, BA. Soils and Rocks 31(3), 137142.CrossRefGoogle Scholar
Ning, J., Zhang, D., & Yu, Q. 2021. Quantifying the efficiency of soil conservation and optimized strategies: A case-study in a hotspot of afforestation in the Loess Plateau. Land Degradation and Development 32(3), 11141126.CrossRefGoogle Scholar
Nouaim, W., Rambourg, D., Merzouki, M., El Harti, A., & Karaoui, I., 2022. Assessing the intra-annual variability of agricultural soil losses: a RUSLE application in Nord-Pas-de-Calais, France. Journal of Water and Land Development 52, 210220.CrossRefGoogle Scholar
O’Mara, F. P., 2012. The role of grasslands in food security and climate change. Annals of Botany 110, 12631270.CrossRefGoogle ScholarPubMed
Ortíz-Rodríguez, A.J., Borselli, L., & Sarocchi, D., 2017. Flow connectivity in active volcanic areas: Use of index of connectivity in the assessment of lateral flow contribution to main streams. Catena 157, 90111.CrossRefGoogle Scholar
Panagos, P., Borrelli, P., & Poesen, J., 2019. Soil loss due to crop harvesting in the European Union: A first estimation of an underrated geomorphic process. Science of the Total Environment 664, 487498.CrossRefGoogle ScholarPubMed
Panagos, P., Borrelli, P., Poesen, J., Ballabio, C., Lugato, E., Meusburger, K., Montanarella, L., & Alewell, C., 2015a. The new assessment of soil loss by water erosion in Europe. Environmental Science & Policy 54, 438447.CrossRefGoogle Scholar
Panagos, P., Borrelli, P., & Robinson, D.A., 2015b. Common Agricultural Policy: tackling soil loss across Europe. Nature 526, 195.CrossRefGoogle ScholarPubMed
Parr, C.L., Lehmann, C.E.R., Bond, W.J., Hoffmann, W.A., & Andersen, A.N., 2014. Tropical grassy biomes: misunderstood, neglected, and under threat. Trends in Ecology & Evolution 29, 205213.CrossRefGoogle ScholarPubMed
Parsons, A.J., Wainwright, J., Brazier, R.E., & Powell, D.M., 2006. Is sediment delivery a fallacy? Earth Surface Processes and Landforms 31(10), 13251328.CrossRefGoogle Scholar
Pereira, H.C., Hosegood, P.H., & Dagg, M., 1967. Effects of tied ridges, terraces and grass leys on a lateritic soil in Kenya. Experimental Agriculture 3(2), 8998.CrossRefGoogle Scholar
Pijl, A., Tosoni, M., Roder, G., Sofia, G., & Tarolli, P., 2019a. Design of terrace drainage networks using UAV-based high-resolution topographic data. Water 11, 814.CrossRefGoogle Scholar
Pijl, A., Barneveld, P., Mauri, L., Borsato, E., Grigolato, S., & Tarolli, P., 2019b. Impact of mechanisation on soil loss in terraced vineyard landscapes. Cuadernos de Investigación Geográfica 45, 287308.CrossRefGoogle Scholar
Pilon, C., MooreJr., P.A., Pote, D.H., Pennington, J.H., Martin, J.W., Brauer, D.K., Raper, R.L., Dabney, S.M., & Lee, J. 2017. Long-term effects of grazing management and buffer strips on soil erosion from pastures. Journal of Environmental Quality 46(2), 364372.CrossRefGoogle ScholarPubMed
Poesen, J., 2018. Soil erosion in the Anthropocene: Research needs. Earth Surface Processes and Landforms 43(1), 6484.CrossRefGoogle Scholar
Poesen, J., Nachtergaele, J., Verstraeten, G., & Valentin, C., 2003. Gully erosion and environmental change: importance and research needs. Catena 50, 91133.CrossRefGoogle Scholar
Poeppl, R.E., Keiler, M., von Elverfeldt, K., Zweimueller, I., & Glade, T., 2012. The influence of riparian vegetation cover on diffuse lateral sediment connectivity and biogeomorphic processes in a medium‐sized agricultural catchment, Austria. Geografiska Annaler: Series A, Physical Geography 94(4), 511529.CrossRefGoogle Scholar
Rodrigo-Comino, J., 2018. Five decades of soil erosion research in “terroir.” The State-of-the-Art. Earth-Science Reviews 179, 436447.CrossRefGoogle Scholar
Rodrigo-Comino, J., Keesstra, S.D., & Cerdà, A., 2018. Connectivity assessment in Mediterranean vineyards using improved stock unearthing method, LiDAR and soil erosion field surveys. Earth Surface Processes and Landforms 43, 21932206.CrossRefGoogle Scholar
Rodrigo-Comino, J., Keshavarzi, A., Zeraatpisheh, M., Gyasi-Agyei, Y., & Cerdà, A., 2019. Determining the best ISUM (Improved stock unearthing Method) sampling point number to model long-term soil transport and micro-topographical changes in vineyards. Computers and Electronics in Agriculture 159, 147156.CrossRefGoogle Scholar
Rodrigo-Comino, J., Lucas Borja, M., Bertalan, L., & Cerdà, A., 2020. Integrating in situ measurements of an index of connectivity to assess soil erosion processes in vineyards. Hydrological Sciences Journal 65(4), 671679.CrossRefGoogle Scholar
Rodrigo-Comino, J., Senciales, J.M., Ramos, M.C., Martínez-Casasnovas, J.A., Lasanta, T., Brevik, E.C., Ries, J.B., & Ruiz Sinoga, J.D., 2017. Understanding soil erosion processes in Mediterranean sloping vineyards (Montes de Málaga, Spain). Geoderma 296, 4759.CrossRefGoogle Scholar
Saha, D., & Kukal, S.S., 2015. Soil structural stability and water retention characteristics under different land uses of degraded lower Himalayas of North-west India. Land Degradation and Development 26, 263271.CrossRefGoogle Scholar
Schultz, R.C., Collettil, J.P., Isenhart, T.M., Simpkins, W.W., Mize, C.W., & Thompson, M.L. 1995. Design and placement of a multi-species riparian buffer strip system. Agroforestry Systems 29, 201226.CrossRefGoogle Scholar
Schwertmann, U., Rickson, R.J., & Auerswald, K., 1989. Soil erosion protection measures in Europe. In: Proceedings of the European Community Workshop on Soil Erosion Protection. Freising, Germany, May 24–26, 1988. ISBN: 978-3-510-65384-3. 216 pages.Google Scholar
Shoobridge, D.W., 1951. Mechanical clearing and ground preparation for softwood plantations in the Australian capital territory. Australian Forestry 15(2), 105109.CrossRefGoogle Scholar
Stehle, S., Dabrowski, J.M., Bangert, U., & Schulz, R. 2016. Erosion rills offset the efficacy of vegetated buffer strips to mitigate pesticide exposure in surface waters. Science of The Total Environment 545–546, 171183.CrossRefGoogle ScholarPubMed
Straffelini, E., Cucchiaro, S., & Tarolli, P. 2021. Mapping potential surface ponding in agriculture using UAV-SfM. Earth Surface Processes and Landforms 46, 19261940.CrossRefGoogle Scholar
Sun, L., Liu, Y.F., Wang, X.T., Liu, Y., & Wu, G.L., 2022. Soil nutrient loss by gully erosion on sloping alpine steppe in the northern Qinghai-Tibetan Plateau. Catena 208, 105763.CrossRefGoogle Scholar
Suttie, J.M. Reynolds, S.G., & Batello, C., 2005. Grasslands of the World. FAO, Italy, Rome.Google Scholar
Taguas, E.V., Ayuso, J.L., Pérez, R., Giráldez, J.V., & Gómez, J.A., 2013. Intra and inter-annual variability of runoff and sediment yield of an olive micro-catchment with soil protection by natural ground cover in Southern Spain. Geoderma 206, 4962.CrossRefGoogle Scholar
Taguas, E.V., Yuan, Y., Licciardello, F., & Gómez, J.A., 2015. Curve numbers for olive orchard catchments: case study in Southern Spain. Journal of Irrigation and Drainage Engineering 141, 05015003.CrossRefGoogle Scholar
Tarolli, P. 2018. Agricultural terraces special issue preface. Land Degradation & Development 29(10), 35443548.CrossRefGoogle Scholar
Thornes, J.B., 2007. Modelling soil erosion by grazing: recent developments and new approaches. Geographical Research 45, 1326.CrossRefGoogle Scholar
Vercruysse, K., & Grabowski, R.C., 2019. Temporal variation in suspended sediment transport: linking sediment sources and hydro‐meteorological drivers. Earth Surface Processes and Landforms 44, 25872599.CrossRefGoogle Scholar
Verheijen, F.G.A., Jones, R.J.A., Rickson, R.J., & Smith, C.J., 2009. Tolerable versus actual soil erosion rates in Europe. Earth-Science Reviews 94, 2338.CrossRefGoogle Scholar
Vicente-Vicente, J.L., García-Ruiz, R., Francaviglia, R., Aguilera, E., & Smith, P., 2016. Soil carbon sequestration rates under Mediterranean woody crops using recommended management practices: A meta-analysis. Agriculture, Ecosystems & Environment 235, 204214.CrossRefGoogle Scholar
Wang, G.X., Hu, H.C., Li, G.S., & Li, N., 2009. Impacts of changes in vegetation cover on soil water heat coupling in an alpine meadow of the Qinghai-Tibet Plateau, China. Hydrology and Earth System Sciences 13, 327341.Google Scholar
White, R., Murray, S., & Rohweder, M., 2000. Pilot analysis of global ecosystems: grassland ecosystems. World Resources Institute, Washington, DC.Google Scholar
Wilsey, B.J., 2018. The Biology of Grasslands. Oxford University Press, Oxford.CrossRefGoogle Scholar
Wohl, E., Brierley, G., Cadol, D., Coulthard, T.J., Covino, T., Fryirs, K.A., Grant, G., et al. 2019. Connectivity as an emergent property of geomorphic systems. Earth Surface Processes and Landforms 44(1), 426.CrossRefGoogle Scholar
Wu, G.L., Liu, Z.H., Zhang, L., Hu, T.M., & Chen, J.M., 2010. Effects of artificial grassland establishment on soil nutrients and carbon properties in a black-soil-type degraded grassland. Plant Soil 333, 469479.CrossRefGoogle Scholar
Xu, C., Jiang, Y., Su, Z., Liu, Y., & Lyu, J. 2022. Assessing the impacts of Grain-for-Green Programme on ecosystem services in Jinghe River basin, China. Ecological Indicators 137, article 108757.CrossRefGoogle Scholar
Yang, K., Zhao, Y., & Gao, L. 2022. Biocrust succession improves soil aggregate stability of subsurface after “Grain for Green” Project in the Hilly Loess Plateau, China. Soil and Tillage Research 217, article 105290.CrossRefGoogle Scholar
Ye, Y.-G., Chen, G.-J., & Fan, F., 2003. Impacts of the “Grain for Green” project on rural communities in the Upper Min River Basin, Sichuan, China. Mountain Research and Development 23(4), 345352.Google Scholar
Zhou, W., Guo, Z., Chen, J., Jiang, J., Hui, D., Wang, X., Sheng, J., et al. 2019. Direct seeding for rice production increased soil erosion and phosphorus runoff losses in subtropical China. Science of The Total Environment 695, 133845.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×