Published online by Cambridge University Press: 28 March 2024
Emission from organic materials is usually fluorescence from decay of singlet states, but in LEDs a majority of the excited states generated are triplet states which can only decay by phosphorescence or by thermally-activated delayed fluorescence (TADF). To improve the potential maximum efficiency of LEDs, it is necessary to incorporate into the emissive material chromophores which are phosphorescent or which show TADF. The ways in which such units can be incorporated into polymers are described and compared and the device results to date and prospects for future development discussed.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.