Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T12:34:25.749Z Has data issue: false hasContentIssue false

10 - Using Machine Learning Algorithms to Detect Election Fraud

from PART 2 - computational social science applications

Published online by Cambridge University Press:  05 March 2016

Ines Levin
Affiliation:
University of Georgia
Julia Pomares
Affiliation:
Centro de Implementacion de Politicas Publicas para la Equidad y el Crecimiento (CIPPEC)
R. Michael Alvarez
Affiliation:
California Institute of Technology
R. Michael Alvarez
Affiliation:
California Institute of Technology
Get access

Summary

INTRODUCTION

For more than a decade, increased scrutiny has been placed on the administration and integrity of democratic elections throughout the world (Levin and Alvarez 2012). The surge of interest in electoral integrity seems to be fueled by a number of different factors: an increase in the number of nations conducting elections, more concerns about election administration and voting technology, the increased use of social media, and a growing number of scholars throughout the world who are interested in the study of integrity and the possible manipulation of elections (Alvarez, Hall, and Hyde 2008).

Although there are many ways that the integrity of elections can be assessed – for example, by studying the opinions of voters about their confidence in the conduct of elections (Alvarez, Atkeson, and Hall 2012) or through election monitoring (Bjornlund 2004; Hyde 2007, 2011; Kelley 2013) – many methodologists, statisticians and computer scientists have contributed to the new and growing literature on “election forensics”. This body of research involves the development of a growing suite of tools – some as simple as looking at the distributions of variables, such as turnout in an election, and others that use more complex multivariate statistical models – to sift through observational data from elections to detect anomalies or outliers as potential indicators for election fraud and manipulation (Levin et al. 2009; Alvarez et al. 2014).

The literature on election forensics now has advanced a somewhat dizzying array of methods for detecting election anomalies, without providing guidance for when particular methods might best be utilized by analysts. That is, when is it best to look for anomalies in distributions of voter turnout? When should digit tests (such as Benford's Law) be applied? What about the use of regression models to detect outliers, either in single or multiple contests? How much statistical power do distributional tests have in common settings where you want to try to detect election outliers? These questions have motivated some of our recent research and have led us to consider the use of new techniques, such as machine learning, for the detection of election manipulation in nations like Venezuela (Alvarez et al. 2014).

Machine learning procedures use statistical tools to find patterns in the data that reveal new and relevant information that may prove useful for performing an action or task.

Type
Chapter
Information
Computational Social Science
Discovery and Prediction
, pp. 266 - 294
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×