Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-09T14:00:08.210Z Has data issue: false hasContentIssue false

9 - Point-particle methods for disperse flows

Published online by Cambridge University Press:  07 December 2009

Andrea Prosperetti
Affiliation:
The Johns Hopkins University
Grétar Tryggvason
Affiliation:
Worcester Polytechnic Institute, Massachusetts
Get access

Summary

In the first chapters of this book we have seen methods suitable for a first-principles simulation of the interaction between a fluid and solid objects immersed in it. The associated computational burden is considerable and it is evident that those methods cannot handle large numbers of particles. In this chapter we develop an alternative approach which, while approximate, permits the simulation of thousands, or even millions, of particles immersed in a flow. The key feature which renders this possible is that the exchanges of momentum (and also possibly mass and energy) between the particle and the surrounding fluid are modeled, rather than directly resolved. This implies an approximate representation that is based on incorporating assumptions into the development of the mathematical model.

One of the most common approaches used today to model many particle-laden flows is based on the “point-particle approximation,” i.e. the treatment of individual particles as mathematical point sources of mass, momentum, and energy. This approximation requires an examination of the assumptions and limitations inherent to this approach, aspects that are given consideration in this chapter. Point-particle methods have relatively wide application and have proven a useful tool for modeling many complex systems, especially those comprised of a very large ensemble of particles. Details of the numerical aspects inherent to point-particle treatments are highlighted.

We start by putting point-particle methods into the context established earlier in this text and, in particular, in the previous chapter.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×