Book contents
- Computational Grains
- Computational Grains
- Copyright page
- Contents
- Preface
- 1 Introduction
- 2 Computational Homogenization in the Micromechanics of Heterogeneous Materials
- 3 Direct Numerical Simulation of Materials Using Computational Grains
- 4 Trefftz Trial Functions for Computational Grains for Planar and 3D Problems
- 5 Computational Grains for Particulate Composites and Porous Materials
- 6 Computational Grains for Cylindrical Fiber Composites
- 7 Computational Grains for Nanocomposites
- 8 Computational Grains for Composites with Coated Inclusions
- 9 Computational Grains for Viscoelastic Composites
- 10 Computational Grains for Piezoelectric Composites/Porous Materials
- 11 Computational Grains with Embedded Microcracks in the Matrix and Inclusions
- 12 Multi-Scale Modeling of Composite Structures Using Computational Grains
- Index
- References
4 - Trefftz Trial Functions for Computational Grains for Planar and 3D Problems
Published online by Cambridge University Press: 05 October 2023
- Computational Grains
- Computational Grains
- Copyright page
- Contents
- Preface
- 1 Introduction
- 2 Computational Homogenization in the Micromechanics of Heterogeneous Materials
- 3 Direct Numerical Simulation of Materials Using Computational Grains
- 4 Trefftz Trial Functions for Computational Grains for Planar and 3D Problems
- 5 Computational Grains for Particulate Composites and Porous Materials
- 6 Computational Grains for Cylindrical Fiber Composites
- 7 Computational Grains for Nanocomposites
- 8 Computational Grains for Composites with Coated Inclusions
- 9 Computational Grains for Viscoelastic Composites
- 10 Computational Grains for Piezoelectric Composites/Porous Materials
- 11 Computational Grains with Embedded Microcracks in the Matrix and Inclusions
- 12 Multi-Scale Modeling of Composite Structures Using Computational Grains
- Index
- References
Summary
In this chapter, Trefftz trial functions which satisfy identically all the governing equations of linear elasticity in 2D and 3D problems are summarized. These Trefftz functions are later used in conjunction with boundary variational principles (since all the field equations are satisfied identically inside the Voronoi cell elements), to construct planar and 3D Computational Grains to directly model statistically equivalent representative volume elements (SERVEs) of heterogeneous materials at the microscale. In as much as the Trefftz functions are used as trial solutions, this modeling captures the correct and accurate stress solutions in the matrix, inclusions, and at their interfaces. The presented Trefftz solutions include: (1) Muskhelishvili’s complex functions for 2D problems,(2) Papkovich-Neubar solutions for 3 D problems,and (3) Harmonic functions in spherical coordinates, cylindrical coordinates, and ellipsoidal coordinates.
Keywords
- Type
- Chapter
- Information
- Computational GrainsMicromechanical Genome for Heterogeneous Materials, pp. 45 - 71Publisher: Cambridge University PressPrint publication year: 2023