Book contents
- Computational Design of Engineering Materials
- Computational Design of Engineering Materials
- Copyright page
- Dedication
- Contents
- Foreword
- Preface
- Acknowledgments
- 1 Introduction
- 2 Fundamentals of Atomistic Simulation Methods
- 3 Fundamentals of Mesoscale Simulation Methods
- 4 Fundamentals of Crystal Plasticity Finite Element Method
- 5 Fundamentals of Computational Thermodynamics and the CALPHAD Method
- 6 Fundamentals of Thermophysical Properties
- 7 Case Studies on Steel Design
- 8 Case Studies on Light Alloy Design
- 9 Case Studies on Superalloy Design
- 10 Case Studies on Cemented Carbide Design
- 11 Case Studies on Hard Coating Design
- 12 Case Studies on Energy Materials Design
- 13 Summary and Future Development of Materials Design
- Book part
- Index
- Plate Section (PDF Only)
- References
13 - Summary and Future Development of Materials Design
Published online by Cambridge University Press: 29 June 2023
- Computational Design of Engineering Materials
- Computational Design of Engineering Materials
- Copyright page
- Dedication
- Contents
- Foreword
- Preface
- Acknowledgments
- 1 Introduction
- 2 Fundamentals of Atomistic Simulation Methods
- 3 Fundamentals of Mesoscale Simulation Methods
- 4 Fundamentals of Crystal Plasticity Finite Element Method
- 5 Fundamentals of Computational Thermodynamics and the CALPHAD Method
- 6 Fundamentals of Thermophysical Properties
- 7 Case Studies on Steel Design
- 8 Case Studies on Light Alloy Design
- 9 Case Studies on Superalloy Design
- 10 Case Studies on Cemented Carbide Design
- 11 Case Studies on Hard Coating Design
- 12 Case Studies on Energy Materials Design
- 13 Summary and Future Development of Materials Design
- Book part
- Index
- Plate Section (PDF Only)
- References
Summary
Chapter 13 starts with brief summary of Chapters 1–12. Subsequently, to show that the strategy described in this book is valid for design of other materials, computational designs for other four materials (Mo2BC thin film, Cu3Sn interconnect material, slag/metal/gas LD-converter steel process, and slag recycling) were highlighted. In view of the need for establishing more quantitative relationships among four cornerstones (composition/processing-structure–properties–performance) in materials science and engineering as well as advancing product design methods, several future orientations and challenges for computational design of engineering materials are suggested. These are (1) advancement of models and approaches for more quantitative simulation in materials design, such as interfacial thermodynamics, thermodynamics under external fields, and a more quantitative phase-field model; (2) the need for scientific databases and materials informatics; (3) enhanced simulation software packages; and (4) concurrent design of materials and products (CDMP). Finally, the correlations among ICME, MGI, and CDMP are discussed.
Keywords
- Type
- Chapter
- Information
- Computational Design of Engineering MaterialsFundamentals and Case Studies, pp. 433 - 456Publisher: Cambridge University PressPrint publication year: 2023