Published online by Cambridge University Press: 06 July 2010
Abstract. The bias-invariant was derived from congruences of the second homology of a 2-complex modulo spherical elements and lead to distinctions of homotopy types in cases where the (abelian) fundamental group and the Euler characteristic coincide.
But, in general, the determination of the second homotopy group and of its image under the Hurewicz map are undecidable. We hence generalize the bias construction to congruences modulo H2-mages of coverings which correspond to characteristic subgroups of the fundamental group.
In the case of the commutator subgroup, we get computable invariants for distinctions of homotopy types, where it may be impossible to calculate the classical bias moduli.
EINLEITUNG
Die Unterscheidung verschiedener Homotopietypen von 2-Komplexen K, L mit gleichem, endlich abelschem π1 und minimaler Eulerscher Charakteristik durch den Unterzeichneten und Sieradski geschah durch ein Kongruenzargument modulo sphärischer Elemente in den 2. Homologiegruppen: Nicht immer gibt es eine (stetige) Abbildung K → L, die in π1 und H2 Isomorphismen induziert (Homologieäquivalenz). Allgemein kann man fragen, wann sich ein Isomorphismus von H2(π1) zu einem geometrisch induzierten Isomorphismus der 2. Homologie der Komplexe hochheben läβt und erhält die sogenannte Biasinvariante (§2), siehe Dyer und Latiolais. Für deren praktische Berechnung entsteht jedoch die Aufgabe, aus den Komplexen, beziehungsweise aus von ihnen abgelesenen π1-Präsentationen, die Untergruppe Σ2 der spharischen Zyklen in H2(K), das heiβt, das π2-Bild zu bestimmen. Tatsächlich liegt hier ein im allgemeinen unentscheidbares Problem vor.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.