Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T12:53:07.319Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  12 August 2022

Antony Jameson
Affiliation:
Texas A & M University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abarbanel, S. & Gottlieb, D. (1981). “Optimal time splitting for two- and three-dimensional navier-stokes equations with mixed derivatives.Journal of Computational Physics 41(1): 133.Google Scholar
Abbott, Ira H. & Von Doenhoff, A. E. (1959). Theory of Wing Sections, Including a Summary of Airfoil Data. Dover Publications.Google Scholar
Abgrall, R. (2006). “Residual distribution schemes: Current status and future trends.Computers and Fluids 35: 641669.Google Scholar
Aftosmis, M. J., Melton, J. E., & Berger, M. J. (1995). “Adaptation and surface modeling for Cartesian mesh methods.” AIAA paper 95-1725-CP, AIAA 12th Computational Fluid Dynamics Conlerence, San Diego, CA.Google Scholar
Ahlstrom, E., Gregg, R., Vassberg, J., & Jameson, A. (2000). “G-Force: The design of an unlimited class Reno racer.” AIAA paper 4341, AIAA 18th Applied Aerodynamics Conference, Denver, CO.Google Scholar
Ahrabi, B., Mavriplis, D. J., & Brazell, M. (2019). “Accelerating Newton method continuation for CFD problems.” AIAA paper 2019-0100, AIAA SciTech Meeting, San Diego, CA.Google Scholar
Allmaras, S. (1993). “Analysis of a local matrix preconditioner for the 2-D Navier-Stokes equations.” AIAA paper 93-3330, AIAA 11th Computational Fluid Dynamics Conference, Orlando, FL.Google Scholar
Allmaras, S. (1995). “Analysis of semi-implicit preconditioners for multigrid solution of the 2-D Navier-Stokes equations.” AIAA paper 95-1651, AIAA 12th Computational Fluid Dynamics Conference, San Diego, CA.Google Scholar
Allmaras, S. (1997). “Algebraic smoothing analysis of multigrid methods for the 2-D compressible Navier-Stokes equations.” AIAA paper 97-1954, AIAA 13th Computational Fluid Dynamics Conference, Snowmass, CO.Google Scholar
Alonso, J. J. & Jameson, A. (1994). “Fully-implicit time-marching aeroelastic solutions.” AIAA paper 94-0056, AIAA 32nd Aerospace Sciences Meeting, Reno, NV.Google Scholar
Alonso, J. J., Martinelli, L., & Jameson, A. (1995). “Multigrid unsteady Navier-Stokes calculations with aeroelastic applications.” AIAA paper 95-0048, AIAA 33rd Aerospace Sciences Meeting, Reno, NV.Google Scholar
Anderson, W. K. & Venkatakrishnan, V. (1997). “Aerodynamic design and optimization on unstructured grids with a continuous adjoint formulation.” AIAA paper 97-0643, AIAA 35th Aerospace Sciences Meeting, Reno, NV.Google Scholar
Anderson, W. K., Thomas, J. L., & Whitfield, D. L. (1986). “Multigrid acceleration of the flux split euler equations.” AIAA paper 86-0274, AIAA 24th Aerospace Sciences Meeting, Reno, NV.Google Scholar
Argyris, J. H. (1954a). “Energy theorems and structural analysis: A generalized discourse with applications on energy principles of structural analysis including the effects of temperature and non-Linear stress-strain relations.Aircraft Engineering and Aerospace Technology 26(11):383394.CrossRefGoogle Scholar
Argyris, J. H. (1954b). “Flexure-torsion failure of panels: A study of instability and failure of stiffened panels under compression when buckling in long wavelengths.Aircraft Engineering and Aerospace Technology 26(6):174184.Google Scholar
Argyris, J. H. (1954c). “The open tube: A study of thin-walled structures such as interspar wing cut-outs and open-section stringers.Aircraft Engineering and Aerospace Technology 26(4):102112.CrossRefGoogle Scholar
Argyris, J. H. (1960). Energy Theorems and Structural Analysis: A Generalised Discourse with Applications on Energy Principles of Structural Analysis Including the Effects of Temperature and Nonlinear Stress-Strain Relations. Butterworth.Google Scholar
Arminjon, P. & Dervieux, A. (1989). “Construction of TVD-like artificial viscosities on 2-dimensional arbitrary FEM grids.” INRIA Report 1111.Google Scholar
Arnold, D. N. (1982). “An interior penalty finite element method with discontinuous elements.SIAM Journal on Numerical Analysis 19(4):742760.Google Scholar
Ashley, H. & Landahl, M. (1985). Aerodynamics of Wings and Bodies. Dover Publications.Google Scholar
Baker, T. J. (1986). “Mesh generation by a sequence of transformations.Applied Numerical Mathematics 2:515528.Google Scholar
Bakhvalov, N. S. (1966). “On the convergence of a relaxation method with natural constraints on the elliptic operator.USSR Computational Mathematics and Mathematical Physics 6(5):101135.Google Scholar
Balan, A., May, G., & Schöberl, J. (2012). “A stable high-order spectral difference method for hyperbolic conservation laws on triangular elements.Journal of Computational Physics 231(5):23592375.CrossRefGoogle Scholar
Bardina, J., Ferziger, J. H., & Reynolds, W. C. (1980). “Improved subgrid scale models for large-eddy simulation.” AIAA paper 80-1357, AlAA 13th Fluid & Plasma Dynamics Conference, Snowmass, CO.Google Scholar
Bardina, J. & Lombard, C. K. (1987). “Three dimensional hypersonic flow simulations with the CSCM implicit upwind Navier-Stokes method.” AIAA paper 87-1114, AIAA 8th Computational Fluid Dynamics Conference, Honolulu, HI.Google Scholar
Barth, T. J. (1994). “Aspects of unstructured grids and finite volume solvers for the Euler and Navier Stokes equations.” In von Karman Institute for Fluid Dynamics Lecture Series Notes 1994-05, Brussels.Google Scholar
Barth, T. J. & Jespersen, D. C. (1989). “The design and application of upwind schemes on unstructured meshes.” AIAA paper 89-0366, AIAA 27th Aerospace Sciences Meeting, Reno, NV.Google Scholar
Bassi, F. & Rebay, S. (1997). “A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations.Journal of Computational Physics 131(2):267279.CrossRefGoogle Scholar
Bassi, F. & Rebay, S. (2000). “A high order discontinuous Galerkin method for compressible turbulent flows.” In Cockburn, Bernardo, Karniadakis, George E., & Shu, Chi-Wang (eds.), Discontinuous Galerkin Methods, pp. 7788. Springer.Google Scholar
Bauer, F., Garabedian, P., & Korn, D. (1972). “A theory of supercritical wing sections, with computer programs and examples.Lecture Notes in Economics and Mathematical Systems 66 1:8183.Google Scholar
Bayliss, A. & Turkel, E. (1982). “Far field boundary conditions for compressible flows.Journal of Computational Physics 48(2):182199.Google Scholar
Baysal, O. & Eleshaky, M. E. (1992). “Aerodynamic design optimization using sensitivity analysis and computational fluid dynamics.AIAA Journal 30(3):718725.Google Scholar
Beam, R. W. & Warming, R. F. (1976). “An implicit finite difference algorithm for hyperbolic systems in conservation form.Journal of Computational Physics 23:87110.CrossRefGoogle Scholar
Belov, A., Martinelli, L., & Jameson, A. (1995). “A new implicit algorithm with multigrid for unsteady incompressible flow calculations.” AIAA paper 95-0049, AIAA 33rd Aerospace Sciences Meeting, Reno, NV.Google Scholar
Benek, J. A., Buning, P. G., & Steger, J. L. (1985). “A 3-D chimera grid embedding technique.” AIAA paper 85-1523, AIAA 7th Computational Fluid Dynamics Conference, Cincinnati, OH.Google Scholar
Benek, J. A., Donegan, T. L., & Suhs, N. E. (1987). “Extended chimera grid embedding scheme with applications to viscous flows.” AIAA paper 87-1126, AIAA 8th Computational Fluid Dynamics Conference, Honolulu, HI.Google Scholar
Berger, M. & LeVeque, R. J. (1989). “An adaptive Cartesian mesh algorithm for the Euler equations in arbitrary geometries.” AIAA paper 89-1930.Google Scholar
Bijl, H., Carpenter, M. H., Vatsa, V. N., & Kennedy, C. A. (2002). “Implicit time integration schemes for the unsteady compressible Navier-Stokes equations: laminar flow.Journal of Computational Physics 179(1):313329.Google Scholar
Bons, N. & Martins, J. (2020). Aerostructural Wing Design Exploration with Multidisciplinary Design Optimization. Aerospace 7(118).Google Scholar
Boom, P. D. & Zingg, D. W. (2013). “High-order implicit time integration for unsteady compressible fluid flow simulation.” AIAA paper 2013-2831, AIAA 21st Computational Fluid Dynamics Conference, San Diego, CA.Google Scholar
Boris, J. P. & Book, D. L. (1973). “Flux-corrected transport. I. SHASTA, A fluid transport algorithm that works.Journal of Computational Physics 11(1):3869.Google Scholar
Boussinesq, J. (1877). Essai sur la théorie des eaux courantes. Mémoires présentés par divers savants à l’Académie des Sciences de l’Institut National de France, Tome XXIII. No. 1.Google Scholar
Brandt, A. (1977). “Multi-level adaptive solutions to boundary value problems.Mathematics of Computation 31:333390.Google Scholar
Bristeau, M.O., Pironneau, O., Glowinski, R., Periaux, J., Perrier, P., & Poirier, G. (1980). “Application of optimal control and finite element methods to the calculation of transonic flows and incompressible viscous flows.” In Proceedings of the IMA Conference on Numerical Methods in Applied Fluid Dynamics, pp. 203312. (A 82-15826 04-34) Academic Press.Google Scholar
Bristeau, M. O., Glowinski, R., Periaux, J., Perrier, P., Poirier, G., & Pironneau, O. (1981). “Transonic flow simulations by finite elements and least square methods.” In Proceedings of the 3rd International Conference on Finite Elements in Flow Problems, Banff, Alberta, pp. 1129.Google Scholar
Bristeau, M. O., Pironneau, O., Glowinski, R., Periaux, J., Perrier, P., & Poirier, G. (1985). “On the numerical solution of nonlinear problems in fluid dynamics by least squares and finite element methods (II). Application to transonic flow simulations.” In St. Doltsinis, J. (ed.), Proceedings of the 3rd International Conference on Finite Element Methods in Nonlinear Mechanics, FENOMECH 84, Stuttgart, 1984, pp. 363394, North Holland.Google Scholar
Bryson, A. E. & Y-Ho, C. (1975). Applied optimal control: Optimization, estimation and control. Hemisphere.Google Scholar
Butcher, J. C. (1964a). “Integration processes based on Radau quadrature formulas.Mathematics of Computation 18(86):233244.Google Scholar
Butcher, J. C. (1964b). “Implicit Runge-Kutta processes.Mathematics of Computation 18(85):5064.Google Scholar
Butcher, J. C. (1987). The Numerical Analysis of Ordinary Differential Equations: Runge-Kutta and General Linear Methods. Wiley-Interscience.Google Scholar
Butcher, J. C. (2003). Numerical Methods for Ordinary Differential Equations. J. Wiley Ltd.Google Scholar
Canuto, C., Hussaini, M.Y., Quarteroni, A. M., & Zang, T. A. Jr. (1988). Spectral Methods in Fluid Dynamics. Springer-Verlag.Google Scholar
Canuto, C., Hussaini, M. Y., Quarteroni, A. M., & Zang, T. A. Jr. (2007a). Spectral Methods, Evolution to Complex Geometries and Applications to Fluid Dynamic. Springer-Verlag.Google Scholar
Canuto, C., Hussaini, M. Y., Quarteroni, A. M., & Zang, T. A. Jr. (2007b). Spectral Methods, Fundamentals in Single Domains. Springer-Verlag.Google Scholar
Castonguay, P., Vincent, P. E., & Jameson, A. (2012). “A new class of high-order energy stable flux reconstruction schemes for triangular elements.Journal of Scientific Computing 51(1):224256.Google Scholar
Castonguay, P., Williams, D. M., Vincent, P. E., & Jameson, A. (2013). “Energy stable flux reconstruction schemes for advection-diffusion problems.Computer Methods in Applied Mechanics and Engineering 267:400417.Google Scholar
Castro, C., Lozano, C., Palacios, F., & Zuazua, E. (2007). “Systematic continuous adjoint approach to viscous aerodynamic design on unstructured grids.AIAA Journal 45(9):21252139.Google Scholar
Caughey, D. A. (1987). “A diagonal implicit multigrid algorithm for the Euler equations.” AIAA paper 87-453, AIAA 25th Aerospace Sciences Meeting, Reno, NV.Google Scholar
Chakravarthy, S. R. (1984). “Relaxation methods for unfactored implicit upwind schemes.” AIAA paper 84-0165, AIAA 22nd Aerospace Sciences Meeting, Reno, NV.Google Scholar
Chandrashekar, P. (2013). “Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations.Communications in Computational Physics 14(5):12521286.Google Scholar
Clough, R. W. (1960). “The finite element method in plane stress analysis.” In Proceedings of the Second ASCE Conference on Electronic Computation, Pittsburgh, PA.Google Scholar
Clough, R. W. (2004). “Early history of the finite element method from the view point of a pioneer.International Journal for Numerical Methods in Engineering 60(1):283287.Google Scholar
Cockburn, B., Hou, S., & Shu, C-W. (1990). “The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case.Mathematics of Computation 54(190):545581.Google Scholar
Cockburn, B., Lin, S-Y., & Shu, C-W. (1989). “TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems.Journal of Computational Physics 84(1):90113.Google Scholar
Cockburn, B. & Shu, C-W. (1989). “TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework.Mathematics of Computation 52(186):411435.Google Scholar
Cockburn, B. & Shu, C-W. (1998a). “The local discontinuous Galerkin method for timedependent convection-diffusion systems.SIAM Journal on Numerical Analysis 35(6):24402463.Google Scholar
Cockburn, B. & Shu, C-W. (1998b). “The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems.Journal of Computational Physics 141(2):199224.Google Scholar
Cockburn, B. & Shu, C-W. (2001). “Runge-Kutta discontinuous Galerkin methods for convection-dominated problems.Journal of Scientific Computing 16(3):173261.Google Scholar
Collatz, L. (1966). The Numerical Treatment of Differential Equations, Vol. 1. Springer, 3rd edn.Google Scholar
Cooper, G. J. & Sayfy, A. (1983). “Additive Runge-Kutta methods for stiff ordinary differential equations.Mathematics of Computation 40(161):207218.Google Scholar
Cooper, G. J. & Sayfy, A. (1980). “Additive methods for the numerical solution of ordinary differential equations.Mathematics of Computation 35(152):11591172.Google Scholar
Courant, R. (1943). “Variational methods for the solution of problems of equilibrium and vibrations.Bulletin of the American Mathematical Society 49(1):123.Google Scholar
Crandall, M. G. & Majda, A. (1980). “Monotone difference approximations for scalar conservation laws.Mathematics of Computation 34(149):121.Google Scholar
Crumpton, P. I. & Giles, M. B. (1995). “Implicit time accurate solutions on unstructured dynamic grids.” AIAA paper 95-1671, AIAA 12th Computational Fluid Dynamics Conference, San Diego, CA.Google Scholar
Dahlquist, G. (1956). “Convergence and stability in the numerical integration of ordinary differential equations.Mathematica Scandinavia 4(1):3353.Google Scholar
Dahlquist, G. (1963). “A special stability problem for linear multistep methods.BIT 3:2743.Google Scholar
Davis, P. J. (1975). Interpolation and Approximation. Dover Publications.Google Scholar
Davis, S. S. (1982). “NACA 64A010 (NASA Ames model) oscillatory pitching,AGARD report 702, AGARD, January 1982.Google Scholar
Delaunay, B. (1934). “Sur la Sphere vide.Bulletin of the Academy of Sciences of the USSR VII: Class Scil, Mat. Nat. pp. 793800.Google Scholar
Desai, M. & Ito, K. (1994). “Optimal controls of Navier-Stokes equations.SIAM Journal on Control and Optimization 32(5):14281446.Google Scholar
Deshpande, S. M., Balakrishnan, N., & Raghurama, S. V. Rao (1994). “PVU and wave-particle splitting schemes for Euler equations of gas dynamics.Sadhana 19(6):10271054.Google Scholar
Dormand, J. R. & Prince, P. J. (1980). “A family of embedded Runge-Kutta formulae.Journal of Computational and Applied Mathematics 6(1):1926.Google Scholar
Durbin, P. A. & Pettersson, B. A. Reif (2011). Statistical Theory and Modeling for Turbulent Flows. Wiley.Google Scholar
Economon, T. D., Palacios, F., Copeland, S. R., Lukaczyk, T. W., & Alonso, J. J. (2016). “SU2: An open-source suite for multiphysics simulation and design.AIAA Journal 54(3):828846.Google Scholar
Eiseman, P. R. (1979). “A multi-surface method of coordinate generation.Journal of Computational Physics 33:118150.Google Scholar
Elliot, J. & Peraire, J. (1996). “Practical 3D aerodynamic design and optimization using unstructured meshes.” AIAA paper 96-4710, 6th AIAA/NASA/USAF Multidisciplinary and Optimization Symposium, Seattle, WA.Google Scholar
Engquist, B. & Majda, A. (1977). “Absorbing boundary conditions for numerical simulation of waves.Proceedings of the National Academy of Sciences 74(5):17651766.Google Scholar
Engquist, B. & Osher, S. (1981). “One-sided difference approximations for nonlinear conservation laws.Mathematics of Computation 36(154):321351.CrossRefGoogle Scholar
Eriksson, L. E. (1982). “Generation of boundary-conforming grids around wing-body configurations using transfinite interpolation.AIAA Journal 20:13131320.Google Scholar
Favre, A. J. (1965). “Review on space-time correlations in turbulent fluids.Journal of Applied Mechanics 32(2):241257.CrossRefGoogle Scholar
Fedorenko, R. P. (1964). “The speed of convergence of one iterative process.USSR Computational Mathematics and Mathematical Physics 4:227235.Google Scholar
Fehlberg, E. (1969). “Low-order classical Runge-Kutta formulas with stepsize control and their application to some heat transfer problems.” Technical Report NASA-TR-R-315, NASA Technical Report, NASA Marshall Space Flight Center; Huntsville, AL.Google Scholar
Fisher, T. C. & Carpenter, M. H. (2013). “High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains.Journal of Computational Physics 252: 518557.Google Scholar
Gaitonde, D. V. & Visbal, M. R. (1998). “High-order schemes for Navier-Stokes equations: Algorithm and implementation into FDL3DI.” Technical Report AFRL-VA-WP-TR-1998-3060, Air Force Research Laboratory, Wright-Patterson AFB.Google Scholar
Garabedian, P. R. (1956). “Estimation of the relaxation factor for small mesh size.Mathematical Tables and Other Aids to Computation pp. 183185.Google Scholar
Germano, M. (1986a). “Differential filters for the large eddy numerical simulation of turbulent flows.Physics of Fluids 29(6):17551757.Google Scholar
Germano, M. (1986b). “Differential filters of elliptic type.Physics of Fluids 29(6):17571758.Google Scholar
Germano, M., Piomelli, U., Moin, P., & Cabot, W. H. (1991). “A dynamic subgrid-scale eddy viscosity model.Physics of Fluids A: Fluid Dynamics (1989-1993) 3(7):17601765.Google Scholar
Giles, M., Drela, M., & Thompkins, W. T. (1985). “Newton solution of direct and inverse transonic Euler equations.” AIAA paper 85-1530, Cincinnati.Google Scholar
Glauert, H. (1926). The Elements of Aerofoil and Airscrew Theory. Cambridge University Press.Google Scholar
Godunov, S. K. (1959). “A difference method for the numerical calculation of discontinuous solutions of hydrodynamic equations.Matematicheskii Sbornik 47:271306. Translated as JPRS 7225 by U.S. Dept. of Commerce, 1960.Google Scholar
Gottlieb, D. & Orszag, S. A. (1977). Numerical Analysis of Spectral Methods. Society for Industrial and Applied Mathematics.Google Scholar
Gottlieb, S., Ketcheson, D. I., & Shu, C-W. (2009). “High order strong stability preserving time discretizations.Journal of Scientific Computing 38(3):251289.Google Scholar
Gottlieb, S., Ketcheson, D. I., & Shu, C-W. (2011). Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations. World Scientific.Google Scholar
Gottlieb, S. & Shu, C-W. (1998). “Total variation diminishing Runge-Kutta schemes.Mathematics of Computation of the American Mathematical Society 67(221):7385.Google Scholar
Gottlieb, S., Shu, C-W., & Tadmor, E. (2001). “Strong stability-preserving high-order time discretization methods.SIAM Review 43(1):89112.Google Scholar
Gourlay, A. R. & Mitchell, A. R. (1966). “A stable implicit difference scheme for hyperbolic systems in two space variables.Numerische Mathematik 8:367375.Google Scholar
Guermond, J-L., Pasquetti, R., & Popov, B. (2011). “Entropy viscosity method for nonlinear conservation laws.Journal of Computational Physics 230(11):42484267.Google Scholar
Gustaffson, B., Kreiss, H-O., & Oliger, J. (2013). Time-Dependent Problems and Difference Methods. John Wiley & Sons, Ltd.Google Scholar
Gustafsson, B. (1975). “The convergence rate for difference approximations to mixed initial boundary value problems.Mathematics of Computation 29(130):396406.Google Scholar
Gustafsson, B., Kreiss, H-O., & Sundström, A. (1972). “Stability theory of difference approximations for mixed initial boundary value problems. II.Mathematics of Computation 26(119):649686.Google Scholar
Haase, W., Chaput, E., Elsholz, E., Leschziner, M. A., & Mueller, U. R. (1997). ECARP: European Computational Aerodynamics Research Project: Validation of CFD Codes and Assessment of Turbulence Models, Vol. 58. Friedr Vieweg & Sohn Verlagsgesellschaft.Google Scholar
Hackbusch, W. (1978). “On the multi-grid method applied to difference equations.Computing 20:291306.Google Scholar
Hall, M. G. (1985). “Cell vertex multigrid schemes for solution of the Euler equations.” In Morton, K. W. & Baines, M. J. (eds.), IMA Conference on Numerical Methods for Fluid Dynamics, University Reading, pp. 303345. Oxford University Press.Google Scholar
Harten, A. (1983). “High resolution schemes for hyperbolic conservation laws.Journal of Computational Physics 49:357393.Google Scholar
Harten, A., Engquist, B., Osher, S., & Chakravarthy, S. R. (1987). “Uniformly high order accurate essentially non-oscillatory schemes, III.Journal of Computational Physics 71(2):231303.Google Scholar
Harten, A., Hyman, J. M., Lax, P. D., & Keyfitz, B. (1976). “On finite-difference approximations and entropy conditions for shocks.Communications on Pure and Applied Mathematics 29(3):297322.Google Scholar
Harten, A., Lax, P. D., & Van, B. Leer (1983). “On upstream differencing and Godunov-type schemes for hyperbolic conservation laws.SIAM Review 25:3561.Google Scholar
Hayes, W. D. (1947). Linearized supersonic flow. Ph.D. thesis, California Institute of Technology.Google Scholar
Hemker, P. W. & Spekreijse, S. P. (1984). “Multigrid solution of the steady Euler equations.” In Proceedings of the Oberwolfach Meeting on Multigrid Methods.Google Scholar
Henrici, P. (1962). Discrete Variable Methods in Ordinary Differential Equations, Vol. 1. Wiley.Google Scholar
Hess, J. L. & Smith, A. M. O. (1962). “Calculation of the non-lifting potential flow about arbitrary three dimensional bodies.Douglas Aircraft Report, ES 40622.Google Scholar
Hesthaven, J. S., Gottlieb, S., & Gottlieb, D. (2007). Spectral Methods for Time-Dependent Problems, vol. 21. Cambridge University Press.Google Scholar
Hesthaven, J. S. & Warburton, T. (2008). Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, Vol. 54. Springer.Google Scholar
Hicken, J. E. & Zingg, D. W. (2008). “Parallel Newton-Krylov solver for the Euler equations discretized using simultaneous approximation terms.AIAA Journal 46(11):27732786.Google Scholar
Hicks, R. M. & Henne, P. A. (1979). “Wing design by numerical optimization.” AIAA paper 79-0080, AIAA 17th Aerospace Sciences Meeting, New Orleans, LA.Google Scholar
Hicks, R. M., Murman, E. M., & Vanderplaats, G. N. (1974). “An assessment of airfoil design by numerical optimization.” NASA TM X-3092, NASA Ames Research Center, Moffett Field, CA.Google Scholar
Huan, J. C. & Modi, V. (1994). “Optimum design for drag minimizing bodies in incompressible flow.Inverse Problems in Engineering 1:125.Google Scholar
Hughes, T. J. R., Franca, L. P., & Mallet, M. (1986a). “A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics.Computer Methods in Applied Mechanics and Engineering 54(2):223234.Google Scholar
Hughes, T. J. R., Mallet, M., & Akira, M. (1986b). “A new finite element formulation for computational fluid dynamics: II. Beyond SUPG.Computer Methods in Applied Mechanics and Engineering 54(3):341355.Google Scholar
Hunt, B. (1980). “The mathematical basis and numerical principles of the boundary integral method for incompressible potential flow over 3-D aerodynamic configurations.Numerical Methods in Applied Fluid Dynamics pp. 39135.Google Scholar
Huynh, H. T. (2007). “A flux reconstruction approach to high-order schemes including discontinuous Galerkin methods.” AIAA paper 2007-4079, AIAA 18th Computational Fluid Dynamics Conference, Miami, FL.Google Scholar
Huynh, H. T. (2009). “A reconstruction approach to high-order schemes including discontinuous Galerkin for diffusion.” AIAA paper 2009-403, AIAA 47th Aerospace Sciences Meeting, Orlando, FL.Google Scholar
Iserles, A. (1982). “Order stars and a saturation theorem for first-order hyperbolics.IMA Journal of Numerical Analysis 2(1):4961.Google Scholar
Jameson, A. (1974). “Iterative solution of transonic flows over airfoils and wings, including flows at mach 1.Communications on Pure and Applied Mathematics 27:283309.Google Scholar
Jameson, A. (1978). “Remarks on the calculation of transonic potential flow by a finite volume method.” In Proceedings of the Conference on Computational Methods in Fluid Dynamics, Institute of Mathematics and Applications.Google Scholar
Jameson, A. (1979). “Acceleration of it’s transonic potential flow calculations on arbitrary meshes by the multiple grid method.” AIAA paper 79-1458, AIAA 4th Computational Fluid Dynamics Conference, Williamsburg, VA.Google Scholar
Jameson, A. (1983). “Solution of the Euler equations by a multigrid method.Applied Mathematics and Computation 13:327356.Google Scholar
Jameson, A. (1984). “A non-oscillatory shock capturing scheme using flux limited dissipation.” Lectures in Applied Mathematics, Engquist, B. E., Osher, S., and Sommerville, R. C. J., (eds.), A.M.S., Part 1, 22:345370, 1985.Google Scholar
Jameson, A. (1986a). “Multigrid algorithms for compressible flow calculations.” In Hackbusch, W. & Trottenberg, U. (eds.), Lecture Notes in Mathematics, vol. 1228, pp. 166201. Springer-Verlag.Google Scholar
Jameson, A. (1986b). “A vertex based multigrid algorithm for three-dimensional compressible flow calculations.” In Tezduar, T. E. & Hughes, T. J. R. (eds.), Numerical Methods for Compressible Flow - Finite Difference, Element And Volume Techniques. ASME Publication AMD 78.Google Scholar
Jameson, A. (1988). “Aerodynamic design via control theory.Journal of Scientific Computing 3:233260.Google Scholar
Jameson, A. (1989). “Computational aerodynamics for aircraft design.Science 245(4916): 361371.Google Scholar
Jameson, A. (1990). “Automatic design of transonic airfoils to reduce the shock induced pressure drag.” In Proceedings of the 31st Israel Annual Conference on Aviation and Aeronautics, Tel Aviv, pp. 517. Citeseer.Google Scholar
Jameson, A. (1991). “Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings.” AIAA paper 91-1596, AIAA 10th Computational Fluid Dynamics Conference, Honolulu, HI.Google Scholar
Jameson, A. (1993). “Artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence in transonic and hypersonic flows.” AIAA paper 93-3359, AIAA 11th Computational Fluid Dynamics Conference, Orlando, FL.Google Scholar
Jameson, A. (1994). “Optimum aerodynamic design via boundary control.” AGARD FDP/Von Karman Institute Lecture Notes on Optimum Design Methods in Aerodynamics. AGARD Report 803, pages 3-1 to 3-33, 1994.Google Scholar
Jameson, A. (1995a). “Analysis and design of numerical schemes for gas dynamics 1, artificial diffusion, upwind biasing, limiters and their effect on multigrid convergence.International Journal of Computational Fluid Dynamics 4:171218.Google Scholar
Jameson, A. (1995b). “Analysis and design of numerical schemes for gas dynamics 2, artificial diffusion and discrete shock structure.International Journal of Computational Fluid Dynamics 5:138.Google Scholar
Jameson, A. (1995c). “Optimum aerodynamic design using the control theory.Computational Fluid Dynamics Review pp. 495528.Google Scholar
Jameson, A. (1997). “Reengineering the design process through computation.” AIAA paper 97-0641, AIAA 35th Aerospace Sciences Meeting and Exibit, Reno, NV.Google Scholar
Jameson, A. (2008). “The construction of discretely conservative finite volume schemes that also globally conserve energy or entropy.Journal of Scientific Computing 34(2):152187.Google Scholar
Jameson, A. (2010). “A proof of the stability of the spectral difference method for all orders of accuracy.Journal of Scientific Computing 45(1-3):348358.Google Scholar
Jameson, A. (2017a). “Evaluation of fully implicit Runge-Kutta schemes for unsteady flow calculations.Journal of Scientific Computing 73(2):819852.Google Scholar
Jameson, A. (2017b). “Origins and further development of the Jameson-Schmidt-Turkel scheme.AIAA Journal 55(5):14871510.Google Scholar
Jameson, A. & Alonso, J. J. (1996). “Automatic aerodynamic optimization on distributed memory architectures.” AIAA paper 96-0409, AIAA 34th Aerospace Sciences Meeting and Exhibit, Reno, NV.Google Scholar
Jameson, A. & Baker, T. J. (1983). “Solution of the Euler equations for complex configurations.Proceedings of the AIAA 6th Computational Fluid Dynamics Conference, Denver, CO. pp. 293302.Google Scholar
Jameson, A., Baker, T. J., & Weatherill, N. P. (1986). “Calculation of inviscid transonic flow over a complete aircraft.” AIAA paper 86-0103, AIAA 24th Aerospace Sciences Meeting, Reno, NV.Google Scholar
Jameson, A. & Caughey, D. A. (1977). “A finite volume method for transonic potential flow calculations.” In Proceedings of the AIAA 3rd Computational Fluid Dynamics Conference, pp. 3554, Albuquerque, NM.Google Scholar
Jameson, A. & Caughey, D. A. (2001). “How many steps are required to solve the Euler equations of steady, compressible flow: In search of a fast solution algorithm.” AIAA paper 2001-2673, AIAA 15th Computational Fluid Dynamics Conference, Anaheim, CA.Google Scholar
Jameson, A. & Kim, S. (2003). “Reduction of the adjoint gradient formulas for aerodynamic shape optimization.AIAA Journal 41(11):21142129.Google Scholar
Jameson, A. & Lax, P. D. (1986). “Conditions for the construction of multipoint total variation diminishing schemes.Applied Numerical Mathematics 2:335345.Google Scholar
Jameson, A., Martinelli, L., & Pierce, N. A. (1998). “Optimum aerodynamic design using the Navier-Stokes equations.Theoretical and Computational Fluid Dynamics 10(1-4): 213237.Google Scholar
Jameson, A. & Mavriplis, D. J. (1987). “Multigrid solution of the Euler equations on unstructured and adaptive grids.” In McCormick, S. (ed.), Multigrid Methods, Theory, Applications and Supercomputing. Lecture Notes in Pure and Applied Mathematics, vol. 110, pp. 413430.Google Scholar
Jameson, A., Pierce, N., & Martinelli, L. (1997). “Optimum aerodynamic design using the Navier-Stokes equations.” AIAA paper 97-0101.Google Scholar
Jameson, A., Schmidt, W., & Turkel, E. (1981). “Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time stepping schemes.” AIAA paper 1981-1259, 14th AIAA Fluid and Plasma Dynamics Conference, Palo Alto, CA.Google Scholar
Jameson, A. & Turkel, E. (1981). “Implicit schemes and LU decompositions.Mathematics of Computation 37(156):385397.Google Scholar
Jayaram, M. & Jameson, A. (1988). “Multigrid solution of the Navier-Stokes equations for flow over wings.” AIAA paper 88-0705, AIAA 26th Aerospace Sciences Meeting, Reno, NV.Google Scholar
Jiang, G-S. & Shu, C-W. (1996). “Efficient implementation of weighted ENO schemes.Journal of Computational Physics 126(1):202228.Google Scholar
Jothiprasad, G., Mavriplis, D. J., & Caughey, D. A. (2003). “Higher-order time integration schemes for the unsteady Navier-Stokes equations on unstructured meshes.Journal of Computational Physics 191(2):542566.Google Scholar
Katz, A. & Jameson, A. (2009). “Multicloud: Multigrid convergence with a meshless operator.Journal of Computational Physics 228(14):52375250.Google Scholar
Ketcheson, D. I., Macdonald, C. B., & Gottlieb, S. (2009). “Optimal implicit strong stability preserving Runge-Kutta methods.Applied Numerical Mathematics 59(2):373392.Google Scholar
Kinmark, I. P. E. (1984). “One step integration methods with large stability limits for hyperbolic partial differential equations.” In Vichnevetsky, R. & Stepleman, R. S. (eds.), Advances in Computer Methods for Partial Differential Equations, vol. V, pp. 345349, IMACS.Google Scholar
Knoll, D. A. & Keyes, D. E. (2004). “Jacobian-free Newton-Krylov methods: A survey of approaches and applications.Journal of Computational Physics 193(2):357397.Google Scholar
Kolmogorov, A. (1941a). “The local structure of turbulence in incompressible viscous fluid for very large Reynolds’ numbers.” In Doklady Akademiia Nauk SSSR, vol. 30, pp. 301305.Google Scholar
Kolmogorov, A. (1941b). “The logarithmically normal law of distribution of dimensions of particles when broken into small parts.” In Doklady Akademiia Nauk SSSR, vol. 30, pp. 301305.Google Scholar
Kopriva, D. A. & Kolias, J. H. (1996). “A conservative staggered-grid Chebyshev multidomain method for compressible flows.Journal of Computational Physics 125(1):244261.Google Scholar
Kreiss, H-O. (1968). “Stability theory of difference approximations for mixed initial boundary value problems. I.Mathematics of Computation 22(119):703714.Google Scholar
Kreiss, H-O. & Oliger, J. (1973). Methods for the approximate solution of time dependent problems. Global Atmospheric Research Programme (Publication Series No. 10).Google Scholar
Kroll, N. & Fassbender, J. K. (2006). MEGAFLOW - Numerical Flow Simulation for Aircraft Design: Results of the second phase of the German CFD initiative MEGAFLOW, presented during its closing symposium at DLR, Braunschweig, Germany, December 10 and 11, 2002. Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Springer.Google Scholar
Kuya, Y., Totani, K., & Kawai, S. (2018). “Kinetic energy and entropy preserving schemes for compressible flows by split convective forms.Journal of Computational Physics 375: 823853.Google Scholar
Lallemand, M. H. & Dervieux, A. (1987). “A multigrid finite-element method for solving the two-dimensional Euler equations.” In McCormick, S. F. (ed.), Proceedings of the Third Copper Mountain Conference on Multigrid Methods, Lecture Notes in Pure and Applied Mathematics, pp. 337363, Copper Mountain.Google Scholar
Lamb, H. & Caflisch, R. (1993). Hydrodynamics. Cambridge Mathematical Library. Cambridge University Press.Google Scholar
Lambert, J. D. (1991). Numerical Methods for Ordinary Differential Systems: The Initial Value Problem. John Wiley & Sons.Google Scholar
Landsberg, A. M., Boris, J. P., Sandberg, W., & Young, T. R. (1993). “Naval ship superstructure design: Complex three-dimensional flows using an efficient, parallel method.High Performance Computing 1993: Grand Challenges in Computer Simulation.Google Scholar
Launder, B. E., Reece, G. J., & Rodi, W. (1975). “Progress in the development of a Reynolds-stress turbulence closure.Journal of Fluid Mechanics 68(03):537566.Google Scholar
Lax, P. D. & Richtmyer, R. D. (1956). “Survey of the stability of linear finite difference equations.Communications on Pure and Applied Mathematics 9(2):267293.Google Scholar
Lax, P. D. & Wendroff, B. (1960). “Systems of conservation laws.Communications on Pure and Applied Mathematics 13:217237.Google Scholar
Lele, S. K. (1992). “Compact finite difference schemes with spectral-like resolution.Journal of Computational Physics 103(1):1642.Google Scholar
Leonard, A. (1974). “Energy cascade in large-eddy simulations of turbulent fluid flows.” In Turbulent Diffusion in Environmental Pollution, vol. 1, pp. 237248.Google Scholar
Leschziner, M. A. (2003). Turbulence Modeling for Aeronautical Flows. VKI Lecture Series, Von Karman Institute for Fluid Dynamics.Google Scholar
Liepmann, H. W. & Roshko, A. (1957). Elements of Gas Dynamics. John Wiley & Sons.Google Scholar
Lighthill, M. J. (1945). “A new method of two dimensional aerodynamic design.” Rand M 1111, Aeronautical Research Council.Google Scholar
Lilly, D. K. (1968). “Models of cloud-topped mixed layers under a strong inversion.Quarterly Journal of the Royal Meteorological Society 94(401):292309.Google Scholar
Lions, J. L. (1971). Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag. Translated by Mitter, S. K..Google Scholar
Liou, M-S. (1996). “A Sequel to AUSM: AUSM+.Journal of Computational Physics 129(2):364382.Google Scholar
Liou, M-S. (2006). “A sequel to AUSM, Part II: AUSM-up for all speeds.Journal of Computational Physics 214(1):137170.Google Scholar
Liou, M-S. (2011). “Open problems in numerical fluxes: Proposed resolutions.” AIAA paper 3055, AIAA 20th Computational Fluid Dynamics Conference, Honolulu, HI.Google Scholar
Liou, M-S. (2012). “Unresolved problems by shock capturing: Taming the overheating problem.7th International Conference on Computational Fluid Dynamics pp. 20122203.Google Scholar
Liou, M-S. & Steffen, C. J. (1993). “A New flux splitting scheme.Journal of Computational Physics 107:2339.Google Scholar
Liu, F. & Jameson, A. (1992). “Multigrid Navier-Stokes calculations for three-dimensional cascades.” AIAA paper 92-0190, AIAA 30th Aerospace Sciences Meeting, Reno, NV.Google Scholar
Liu, X-D., Osher, S., & Chan, T. (1994). “Weighted essentially non-oscillatory schemes.Journal of Computational Physics 115(1):200212.Google Scholar
Liu, Y., Vinokur, M., & Wang, Z. J. (2006). “Spectral difference method for unstructured grids I: basic formulation.Journal of Computational Physics 216(2):780801.Google Scholar
Löhner, R. (2008). Applied Computational Fluid Dynamics Techniques: An Introduction Based on Finite Element Methods. Wiley.Google Scholar
Löhner, R., Morgan, K., Peraire, J., & Vahdati, M. (1987). “Finite element flux-corrected transport (FEM-FCT) for the Euler and Navier-Stokes equations.International Journal for Numerical Methods in Fluids 7(10):10931109.Google Scholar
Löhner, R. & Parikh, P. (1988). “Generation of three-dimensional grids by the advancing front method.International Journal for Numerical Methods in Fluids 8(10):11351149.Google Scholar
Lozano, C. (2012). “Adjoint viscous sensitivity derivatives with a reduced gradient formulation.AIAA Journal 50(1):203214.Google Scholar
Lozano, C. (2019). “Watch your adjoints! Lack of mesh convergence in inviscid adjoint solutions.AIAA Journal 57(9):39914006.Google Scholar
Lytton, C. C. (1987). “Solution of the Euler equations for transonic flow over a lifting aerofoil-the Bernoulli formulation (Roe/Lytton method).Journal of Computational Physics 73(2):395431.Google Scholar
MacCormack, R. W. (1969). “The effect of viscosity in hyper-velocity impact cratering.” AIAA paper 69-354.Google Scholar
MacCormack, R. W. (1985). “Current status of numerical solutions of the Navier-Stokes Equations.” AIAA paper 85-0032, AIAA 23rd Aerospace Sciences Meeting, Reno, NV.Google Scholar
MacCormack, R. W. (1997). “A new implicit algorithm for fluid flow.” AIAA paper 97-2100, AIAA 13th Computational Fluid Dynamics Conference, Snowmass, CO.Google Scholar
MacCormack, R. W. & Paullay, A. J. (1972). “Computational efficiency achieved by time splitting of finite difference operators.” AIAA paper 72-154, AIAA 33rd Aerospace Sciences Meeting.Google Scholar
Mader, C. A., Kenway, G. K. W., Yildirim, A., & Martins, J. R. R. A. (2020). “ADflow: An open-source computational fluid dynamics solver for aerodynamic and multidisciplinary optimization.Journal of Aerospace Information Systems pp. 120.Google Scholar
Martinelli, L. (1987). Calculations of Viscous Flows with a Multigrid Method. Ph.D. thesis. Princeton University, Princeton, N.J.Google Scholar
Martinelli, L. & Jameson, A. (1988). “Validation of a multigrid method for the Reynolds-averaged equations.” AIAA paper 88-0414, AIAA 26th Aerospace Sciences Meeting, Reno, NV.Google Scholar
Martinelli, L., Jameson, A., & Malfa, E. (1992). “Numerical simulation of three-dimensional vortex flows over delta wing configurations.” In Napolitano, M. & Solbetta, F. (eds.), Proceedings of the 13th International Confrence on Numerical Methods in Fluid Dynamics, pp. 534538, Rome. Springer Verlag, 1993.Google Scholar
Mattsson, K. (2003). “Boundary procedures for summation-by-parts operators.Journal of Scientific Computing 18(1):133153.Google Scholar
Mavriplis, D. J. (2019). Progress in CFD Discretizations, Algorithms and Solvers for Aerodynamic Flows. AIAA paper 2019-2944, AIAA Aviation Forum, Dallas, TX.Google Scholar
Mavriplis, D. J. & Jameson, A. (1990). “Multigrid solution of the Navier-Stokes equations on triangular meshes.AIAA Journal 28(8):14151425.Google Scholar
Mavriplis, D. J. & Long, M. (2014). “NSU3D results for the Fourth AIAA Drag Prediction Workshop.Journal of Aircraft 51(4):11611171.Google Scholar
Mavriplis, D. J. & Martinelli, L. (1991). “Multigrid solution of compressible turbulent flow on unstructured meshes using a two-equation model.” AIAA paper 91-0237, AIAA 29th Aerospace Sciences Meeting, Reno, NV.Google Scholar
Mavriplis, D. J. & Venkatakrishnan, V. (1996). “A 3D agglomeration multigrid solver for the Reynolds-averaged Navier-Stokes equations on unstructured meshes.International Journal of Numerical Methods in Fluids 23:118.Google Scholar
May, G. & Jameson, A. (2005). “Unstructured algorithms for inviscid and viscous flows embedded in a unified solver architecture, Flo3xx.” AIAA paper 2005-0318, AIAA 43rd Aerospace Sciences Meeting & Exhibit, Reno, NV.Google Scholar
McMullen, M. S. (2003). The application of non-linear frequency domain methods to the Euler and Navier–Stokes equations. Ph.D. thesis, Stanford University.Google Scholar
McMullen, M. S., Jameson, A., & Alonso, J. J. (2002). “Application of a non-linear frequency domain solver to the Euler and Navier-Stokes equations.” AIAA paper 2002-0120, AIAA 40th Aerospace Sciences Meeting and Exhibit, Reno, NV.Google Scholar
Meijerink, J. A. & van der Vorst, H. A. (1977). “An iterative solution method for linear systems of which the coefficient matrix is a symmetric M -matrix.Mathematics of Computation 31(137):148162.Google Scholar
Melson, N. D., Sanetrik, M. D., & Atkins, H. L. (1993). “Time-accurate Navier-Stokes calculations with multigrid acceleration.” In Proceedings of the Sixth Copper Mountain Conference on Multigrid Methods, Copper Mountain.Google Scholar
Melton, J. E., Pandya, S. A., & Steger, J. L. (1993). “3D Euler flow solutions using unstructured cartesian and prismatic grids.” AIAA paper 93-0331, Reno, NV.Google Scholar
Millikan, C. B. (1938). “A critical discussion of turbulent flows in channels and circular tubes.” In Proc. 5th International Congress of Applied Mechanics, vol. 386.Google Scholar
Morawetz, C. S. (1956). “On the non-existence of continuous transonic flows past profiles I.Communications on Pure and Applied Mathematics 9(1):4568.Google Scholar
Mulder, W. A. (1989). “A new multigrid approach to convection problems.Journal of Computational Physics 83:303323.Google Scholar
Mulder, W. A. (1992). “A high-resolution Euler solver based on multigrid, semi-coarsening, and defect correction.Journal of Computational Physics 100:91104.Google Scholar
Murman, E. M. (1974). “Analysis of embedded shock waves calculated by relaxation methods.AIAA Journal 12:626633.Google Scholar
Murman, E. M. & Cole, J. D. (1971). “Calculation of plane steady transonic flows.AIAA Journal 9:114121.Google Scholar
Ni, R. H. (1982). “A multiple grid scheme for solving the Euler equations.AIAA Journal 20:15651571.Google Scholar
Nicolaides, R. A. (1975). “On multiple grid and related techniques for solving discrete elliptic systems.Journal of Computational Physics 19(4):418431.Google Scholar
Oliger, J. & Sundstrom, A. (1978). “Theoretical and practical aspects of some initial boundary value problems in fluid dynamics.SIAM Journal on Applied Mathematics 35(3):419446.Google Scholar
Orszag, S. A. & Israeli, M. (1974). “Numerical simulation of viscous incompressible flows.Annual Review of Fluid Mechanics 6(1):281318.Google Scholar
Osher, S. (1984). “Riemann solvers, the entropy condition, and difference approximations.SIAM Journal on Numerical Analysis 121:217235.Google Scholar
Ou, K., Liang, C., & Jameson, A. (2010). “A high-order spectral difference method for the Navier-Stokes equations on unstructured moving deformable grids.” AIAA paper 2010-541, 48th AIAA Aerospace Sciences Meeting, Orlando, FL.Google Scholar
Ou, K., Liang, C., Premasuthan, S., & Jameson, A. (2009). “High-order spectral difference simulation of laminar compressible flow over two counter-rotating cylinders.” AIAA paper 2009-3956, AIAA 27th Applied Aerodynamics Conference, San Antonio, TX.Google Scholar
Parthasarathy, V., Kallinderis, Y., & Nakajima, K. (1995). “A hybrid adaptation method and directional viscous multigrid with prismatic-tetrahedral meshes.” AIAA paper 95-0670, AIAA 33rd Aerospace Sciences Meeting, Reno, NV.Google Scholar
Patankar, S. V. & Spalding, D. B. (1972). “A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows.International Journal of Heat and Mass Transfer 15(10):17871806.Google Scholar
Peraire, J., Peiro, J., Formaggia, L., Morgan, K., & Zienkiewicz, O. C. (1988). “Finite element Euler computations in three dimensions.International Journal for Numerical Methods in Engineering 26(10):21352159.Google Scholar
Peraire, J., Peirö, J., & Morgan, K. (1992). “A 3D finite-element multigrid solver for the Euler equations.” AIAA paper 92-0449, AIAA 30th Aerospace Sciences Conference, Reno, NV.Google Scholar
Peraire, J. & Persson, P-O. (2008). “The Compact Discontinuous Galerkin (CDG) method for elliptic problems.SIAM Journal on Scientific Computing 30(4):18061824.Google Scholar
Persson, P-O., Willis, D. J, & Peraire, J. (2010). “The numerical simulation of flapping wings at low Reynolds numbers.” AIAA paper 2010-724, AIAA 48th Aerospace Sciences Meeting, Orlando, FL.Google Scholar
Pierce, N. A. & Giles, M. B. (1997). “Preconditioning compressible flow calculations on stretched meshes.Journal of Computational Physics 136:425445.Google Scholar
Pierce, N. A., Giles, M. B., Jameson, A., & Martinelli, L. (1997). “Accelerating three-dimensional Navier-Stokes calculations.” AIAA paper 97-1953, AIAA 13th Computational Fluid Dynamics Conference, Snowmass, CO.Google Scholar
Pironneau, O. (1984). Optimal Shape Design for Elliptic Systems. Springer-Verlag.Google Scholar
Pope, S. B. (2000). Turbulent Flows. Cambridge University Press.Google Scholar
Powell, M. J. D. (1981). Approximation Theory and Methods. Cambridge University Press.Google Scholar
Prandtl, L. (1904). “Über flüssigkeitsbewegung bei sehr kleiner reibung (On fluid motion with very small friction).” In Proceedings of 3rd International Mathematics Congress, Heidelberg.Google Scholar
Prandtl, L. (1925). “Bericht über untersuchungen zur ausgebildeten turbulenz.Zeitschrift für Angewandte Mathematik und Mechanik 5(2):136139.Google Scholar
Prandtl, L. & Tietjens, O. G. (1957). Applied Hydro and Aeromechanics, vol. 1. Dover Publications.Google Scholar
Premasuthan, S., Liang, C., Jameson, A., & Wang, Z. J. (2009). “p-multigrid spectral difference method for viscous compressible flow using 2D quadrilateral meshes.” AIAA paper 2009-950, AIAA 47th Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, Orlando, FL.Google Scholar
Pueyo, A. & Zingg, D. W. (1998). “Efficient Newton-Krylov solver for aerodynamic computations.AIAA Journal 36(11):19911997.Google Scholar
Pulliam, T. H. (2011). “High order accurate finite-difference methods: As seen in OVERFLOW.” AIAA paper 2011-3851, AIAA 20th Computational Fluid Dynamics Conference, Honolulu, HI.Google Scholar
Pulliam, T. H. & Steger, J. L. (1985). “Recent improvements in efficiency, accuracy and convergence for implicit approximate factorization algorithms.” AIAA paper 85-0360, AIAA 23rd Aerospace Sciences Meeting, Reno, NV.Google Scholar
Quirk, J. J. (1994). “A contribution to the great Riemann solver debate.International Journal for Numerical Methods in Fluids 18:555574.Google Scholar
Radespiel, R., Rossow, C., & Swanson, R. C. (1989). “An efficient cell-vertex multigrid scheme for the three-dimensional Navier-Stokes equations.” In Proceedings of the AIAA 9th Computational Fluid Dynamics Conference, pp. 249260, Buffalo, NY. AIAA paper 89-1953-CP.Google Scholar
Ray, D. & Chandrashekar, P. (2013). “Entropy stable schems for compressible Euler equations.International Journal of Numerical Analysis and Modeling, Series B 4(4):335352.Google Scholar
Reed, W. H. & Hill, T. R. (1973). “Triangular mesh methods for the neutron transport equation.Los Alamos Report LA-UR-73-479.Google Scholar
Reuther, J., Alonso, J. J., Vassberg, J. C., Jameson, A., & Martinelli, L. (1997). “An efficient multiblock method for aerodynamic analysis and design on distributed memory systems.” AIAA paper 97-1893, AIAA 13th Computational Fluid Dynamics Conference.Google Scholar
Reuther, J. J., Jameson, A., Alonso, J. J., Rimllnger, M. J., & Saunders, D. (1999). “Constrained multipoint aerodynamic shape optimization using an adjoint formulation and parallel computers, part 2.Journal ofAircraft 36(1):6174.Google Scholar
Richardson, L. F. (1911). “The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam.Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character 210:307357.Google Scholar
Richardson, L. F. (1922). Weather Prediction by Numerical Process. Cambridge University.Google Scholar
Richtmyer, R. D. & Morton, K. W. (1994). Difference Methods for Initial-Value Problems. Krieger Publishing Co., 2nd edn.Google Scholar
Rieger, H. & Jameson, A. (1988). “Solution of steady three-dimensional compressible Euler and Navier-Stokes equations by and implicit LU scheme.” AIAA paper 88-0619, AIAA 26th Aerospace Sciences Meeting, Reno, NV.Google Scholar
Rizzi, A. & Viviand, H. (1981). “Numerical methods for the computation of inviscid transonic flows with shock waves.” In Proceedings of the GAMM workshop, Stockholm.Google Scholar
Roberts, T. W. (1990). “The behavior of flux difference splitting schemes near slowly moving shock waves.Journal of Computational Physics 90(1):141160.Google Scholar
Roe, P. L. (1981). “Approximate Riemann solvers, parameter vectors, and difference schemes.Journal of Computational Physics 43(2):357372.Google Scholar
Rossow, C-C. (2007). “Efficient computation of compressible and incompressible flows.Journal of Computational Physics 220(2):879899.Google Scholar
Rubbert, P. E. (1998). “The Boeing airplanes that have benefited from Antony Jameson’s CFD technology.” In Caughey, D. A. & Hafez, M. M. (eds.), Frontiers of Computational Fluid Dynamics 1998. World Scientific Publishing Company Incorporated.Google Scholar
Rubbert, P. E. & Saaris, G. R. (1968). “A general three-dimensional potential flow method applied to V/STOL aerodynamics.” SAE paper 680304.Google Scholar
Rusanov, V. Vasil’evich (1961). “Calculation of interaction of non-steady shock waves with obstacles.USSR Computational Mathematics and Mathematical Physics pp. 267279.Google Scholar
Ruuth, S. J. & Spiteri, R. J. (2002). “Two barriers on strong-stability-preserving time discretization methods.Journal of Scientific Computing 17(1-4):211220.Google Scholar
Saad, Y. & Schultz, M. H. (1986). “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems.SIAM Journal on Scientific and Statistical Computing 7(3):856869.Google Scholar
Sagaut, P. (2002). Large Eddy Simulation for Incompressible Flows. Springer.Google Scholar
Samant, S. S., Bussoletti, J. E., Johnson, F. T., Burkhart, R. H., Everson, B. L., Melvin, R. G., Young, D. P., Erickson, L. L., & Madson, M. D. (1987). “TRANAIR: A computer code for transonic analyses of arbitrary configurations.” AIAA paper 87-0034.Google Scholar
Sawada, K. & Takanashi, S. (1987). “A numerical investigation on wing/nacelle interferences of USB configuration.” AIAA paper 87-0455, AIAA 25th Aerospace Sciences Meeting, Reno, NV.Google Scholar
Schlichting, H. (1933). “Laminare strahlausbreitung.ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 13(4):260263.Google Scholar
Schlichting, H. & Gersten, K. (1999). Boundary Layer Theory. Springer.Google Scholar
Sheshadri, A. & Jameson, A. (2016). “On the stability of the flux reconstruction schemes on quadrilateral elements for the linear advection equation.Journal of Scientific Computing 67(2):769790.Google Scholar
Shu, C-W. & Osher, S. (1988). “Efficient implementation of essentially non-oscillatory shockcapturing schemes.Journal of Computational Physics 77:439471.Google Scholar
Smagorinsky, J. (1963). “General circulation experiments with the primitive equations: I. The basic experiment.Monthly Weather Review 91(3):99164.Google Scholar
Smith, R. E. (1983). “Three-dimensional algebraic mesh generation.” In Proceedings of the AIAA 6th Computational Fluid Dynamics Conference, Danvers, MA. AIAA paper 83-1904.Google Scholar
Smith, W. A. & Weiss, J. M. (1995). “Preconditioning applied to variable and constant density flows.AIAA Journal 33(11):20502057.Google Scholar
Sod, G. A. (1978). “A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws.Journal of Computational Physics 27(1):131.Google Scholar
Sorenson, R. L. (1986). “Elliptic generation of compressible three-dimensional grids about realistic aircraft.” In Hauser, J. & Taylor, C. (eds.), International Conference on Numerical Grid Generation in Computational Fluid Dynamics, Landshut.Google Scholar
Sorenson, R. L. (1988). “Three-dimensional elliptic grid generation for an F-16.” In Steger, J. L. & Thompson, J. F. (eds.), Three-Dimensional Grid Generation for Complex Configurations: Recent Progress. AGARDograph.Google Scholar
South, J. C. & Brandt, A. (1976). “Application of a multi-level grid method to transonic flow calculations.” In Adamson, T. C. & Platzer, M. F. (eds.), Proc. of Workshop on Transonic Flow Problems in Turbomachinery, pp. 180206. Hemisphere, 1977.Google Scholar
Southwell, R. V. (1946). Relaxation Methods in Theoretical Physics. Clarendon Press.Google Scholar
Spekreijse, S. P. (1987). “Multigrid solution of monotone second-order discretizations of hyperbolic conservation laws.Mathematics of Computation 49:135155.Google Scholar
Spiteri, R. J. & Ruuth, S. J. (2002). “A new class of optimal high-order strong-stability-preserving time discretization methods.SIAM Journal on Numerical Analysis 40(2):469491.Google Scholar
Steger, J. L. & Chaussee, D. S. (1980). “Generation of body-fitted coordinates using hyperbolic partial differential equations.SIAM Journal on Scientific & Statistical Computing 1: 431437.Google Scholar
Steger, J. L. & Warming, R. F. (1981). “Flux vector splitting of the inviscid gas dynamic equations with applications to finite difference methods.Journal of Computational Physics 40:263293.Google Scholar
Subbareddy, P. K. & Candler, G. V. (2009). “A fully discrete, kinetic energy consistent finite-volume scheme for compressible flows.Journal of Computational Physics 228(5): 13471364.Google Scholar
Swanson, R. C., Turkel, E., & Rossow, C-C. (2007). “Convergence acceleration of Runge-Kutta schemes for solving the Navier-Stokes equations.Journal of Computational Physics 224(1):365388.Google Scholar
Ta’asan, S., Kuruvila, G., & Salas, M. D. (1992). “Aerodynamic design and optimization in one shot.” AIAA paper 92-005, AIAA 30th Aerospace Sciences Meeting, Reno, NV.Google Scholar
Tatsumi, S., Martinelli, L., & Jameson, A. (1995). “A new high resolution scheme for compressible viscous flows with shocks.” AIAA paper 95-0466, 33rd Aerospace Sciences Meeting, Reno, NV.Google Scholar
Theodorsen, T. (1931). “Theory of wing sections of arbitary shape.NACA TR-411.Google Scholar
Thompson, J. F., Thames, F. C., & Mastin, C. W. (1974). “Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary twodimensional bodies.Journal of Computational Physics 15:299319.Google Scholar
Thompson, J. F., Warsi, Z. U. A., & Mastin, C. W. (1982). “Boundary-fitted coordinate systems for numerical solution of partial differential equations: A review.Journal of Computational Physics 47:1108.Google Scholar
Toro, E. F. (2009). Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer.Google Scholar
Toro, E. F., Spruce, M., & Speares, W. (1994). “Restoration of the contact surface in the HLL-Riemann solver.Shock Waves 4(1):2534.Google Scholar
Turkel, E. (1987). “Preconditioned methods for solving the incompressible and low speed equations.Journal of Computational Physics 72:277298.Google Scholar
Turner, M. J., Clough, R. W., Martin, H. C., & Topp, L. J. (1956). “Stiffness and deflection analysis of complex structures.Journal of the Aeronautical Sciences 23(6):805823.Google Scholar
Van, E. R. Driest (2012). “On turbulent flow near a wall.Journal of the Aeronautical Sciences (Institute of the Aeronautical Sciences) 23(11).Google Scholar
Van Dyke, M. (1964). Perturbation Methods in Fluid Mechanics. Academic Press.Google Scholar
Van Dyke, M. (1973). “Towards the ultimate conservative difference scheme I. The quest of monotonicity.” In Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics, pp. 163168. Springer.Google Scholar
Van Dyke, M. (1974). “Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second order scheme.Journal of Computational Physics 14:361370.Google Scholar
Van Dyke, M. (1977a). “Towards the ultimate conservative difference scheme III. Upstreamcentered finite-difference schemes for ideal compressible flow.Journal of Computational Physics 23(3):263275.Google Scholar
Van Dyke, M. (1977b). “Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection.Journal of Computational Physics 23(3):276299.Google Scholar
Van Dyke, M. (1979). “Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method.Journal of Computational Physics 32(1):101136.Google Scholar
Van Dyke, M., Lee, W. T., & Roe, P. L. (1991). “Characteristic time stepping or local preconditioning of the Euler equations.” AIAA paper 91-1552, AIAA 10th Computational Fluid Dynamics Conference, Honolulu, HI.Google Scholar
Varga, R. S. (2000). “Alternating-direction implicit iterative methods.” In Matrix Iterative Analysis, pp. 235274. Springer.Google Scholar
Vassberg, J. C. (1997). “A fast surface-panel method capable of solving million-element problems.” AIAA paper 1997-0168, AIAA 35th Aerospace Sciences Meeting, Reno, NV.Google Scholar
Vassberg, J. C. & Jameson, A. (2010). “In pursuit of grid convergence for two-dimensional Euler solutions.Journal of Aircraft 47(4):11521166.Google Scholar
Venkatakrishnan, V. (1988). “Newton solution of inviscid and viscous problems.” AIAA paper 88-0413, AIAA 26th Aerospace Sciences Meeting, Reno, NV.Google Scholar
Venkatakrishnan, V. (1996). “A perspective on unstructured grid flow solvers.AIAA Journal 34:533547.Google Scholar
Venkatakrishnan, V. & Mavriplis, D. J. (1996). “Implicit method for the computation of unsteady flows on unstructured grids.Journal of Computational Physics 127:380397.Google Scholar
Veuillot, J. P. & Viviand, H. (1979). “Pseudo-unsteady method for the computation of transonic potential flows.AIAA Journal 17:691692.Google Scholar
Vijayasundaram, G (1986). “Transonic flow simulations using an upstream centered scheme of Godunov in finite elements.Journal of Computational Physics 63(2):416433.Google Scholar
Vincent, P. E., Castonguay, P., & Jameson, A. (2011). “A new class of high-order energy stable flux reconstruction schemes.Journal of Scientific Computing 47(1):5072.Google Scholar
Vincent, P. E. & Jameson, A. (2011). “Facilitating the adoption of unstructured high-order methods amongst a wider community of fluid dynamicists.Mathematical Modelling of Natural Phenomena 6(3):97140.Google Scholar
Von Kármán, T. (1930). “Mechanische änlichkeit und turbulenz.Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1930: 5876.Google Scholar
Voronoi, G. (1908). “Nouvelles applications des parametres continus a la theorie des formes quadratiques. Deuxieme memoire: Recherches sur les parallelloedres primitifs.Journal für die reine und angewandte Mathematik 134:198287.Google Scholar
Wachspress, E. L. (1963). “Extended application of alternating direction implicit iteration model problem theory.Journal of the Society for Industrial & Applied Mathematics 11(4): 9941016.Google Scholar
Wang, Z. J. (2002). “Spectral (finite) volume method for conservation laws on unstructured grids. basic formulation: Basic formulation.Journal of Computational Physics 178(1):210251.Google Scholar
Wang, Z. J. (2007). “High-order methods for the Euler and Navier-Stokes equations on unstructured grids.Progress in Aerospace Sciences 43(1):141.Google Scholar
Wang, Z. J. & Gao, H. (2009). “A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids.Journal of Computational Physics 228(21):81618186.Google Scholar
Warming, R. F., Beam, R. M., & Hyett, B. J. (1975). “Diagonalization and simultaneous symmetrization of the gas-dynamic matrices.Mathematics of Computation 29(132):10371045.Google Scholar
Weatherill, N. P. & Forsey, C. A. (1985). “Grid generation and flow calculations for aircraft geometries.Journal of Aircraft 22:855860.Google Scholar
Whitcomb, R. T. (1956). “A study of the zero lift drag-rise characteristics of wing-body combinations near the speed of sound.” NACA Report TR 1273.Google Scholar
Whitcomb, R. T. (1974). “Review of NASA supercritical airfoils.” In 9th ICAS Congress, no. 74-10, Haifa.Google Scholar
Whitcomb, R. T. (1976). “A design approach and selected wind-tunnel results at high subsonic speeds for wing-tip mounted winglets.” NASA Technical Note D-8260.Google Scholar
Wilcox, D. C. (2006). Turbulence Modeling for CFD, vol. 3. DCW industries La Cañada, CA.Google Scholar
Williams, D. M., Castonguay, P., Vincent, P. E., & Jameson, A. (2013). “Energy stable flux reconstruction schemes for advection-diffusion problems on triangles.Journal of Computational Physics 250:5376.Google Scholar
Williams, D. M. & Jameson, A. (2014). “Energy stable flux reconstruction schemes for advection-diffusion problems on tetrahedra.Journal of Scientific Computing 59:721759.Google Scholar
Witherden, F. D. & Jameson, A. (2018). “On the spectrum of the Steger-Warming flux-vector splitting scheme.International Journal for Numerical Methods in Fluids 87(12):601606.Google Scholar
Witherden, F. D., Jameson, A., & Zingg, D. W. (2017). “Chapter 11 - The design of steady state schemes for computational aerodynamics.” In Abgrall, R. & Shu, C-W. (eds.), Handbook of Numerical Methods for Hyperbolic Problems, vol. 18 of Handbook of Numerical Analysis, pp. 303349. Elsevier.Google Scholar
Yee, H. C. (1985). “On symmetric and upwind TVD schemes.” In Proceedings of the 6th GAMM Conference on Numerical Methods in Fluid Mechanics, Göttingen.Google Scholar
Yoon, S. & Jameson, A. (1987). “Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations.” AIAA paper 87-0600, AIAA 25th Aerospace Sciences Meeting, Reno, NV.Google Scholar
Young, D. M. (2003). Iterative Solution of Large Linear Systems. Dover Publications.Google Scholar
Zienkiewicz, O. C. (1995). “Origins, milestones and directions of the finite element method-A personal view.Archives of Computational Methods in Engineering 2(1):148.Google Scholar
Zienkiewicz, O. C. (2004). “The birth of the finite element method and of computational mechanics.International Journal for Numerical Methods in Engineering 60(1):310.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Antony Jameson, Texas A & M University
  • Book: Computational Aerodynamics
  • Online publication: 12 August 2022
  • Chapter DOI: https://doi.org/10.1017/9781108943345.024
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Antony Jameson, Texas A & M University
  • Book: Computational Aerodynamics
  • Online publication: 12 August 2022
  • Chapter DOI: https://doi.org/10.1017/9781108943345.024
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Antony Jameson, Texas A & M University
  • Book: Computational Aerodynamics
  • Online publication: 12 August 2022
  • Chapter DOI: https://doi.org/10.1017/9781108943345.024
Available formats
×