Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T09:06:17.378Z Has data issue: false hasContentIssue false

21 - Monadic and Dyadic Logic

Published online by Cambridge University Press:  05 June 2012

John P. Burgess
Affiliation:
Princeton University, New Jersey
Get access

Summary

We have given in earlier chapters several different proofs of Church's theorem to the effect that first-order logic is undecidable: there is no effective procedure that applied to any first-order sentence will in a finite amount of time tell us whether or not it is valid. This negative result leaves room on the one hand for contrasting positive results, and on the other hand for sharper negative results. The most striking of the former is the Löwenheim–Behmann theorem, to the effect that the logic of monadic (one-place) predicates is decidable, even when the two-place logical predicate of identity is admitted. The most striking of the latter is the Church–Herbrand theorem that the logic of a single dyadic (two-place) predicate is undecidable. These theorems are presented in sections 21.2 and 21.3 after some general discussion of solvable and unsolvable cases of the decision problem for logic in section 21.1. While the proof of Church's theorem requires the use of considerable computability theory (the theory of recursive functions, or of Turing machines), that is not so for the proof of the Löwenheim–Behmann theorem or for the proof that Church's theorem implies the Church–Herbrand theorem. The former uses only material developed by Chapter 11. The latter uses also the elimination of function symbols and identity from section 19.4, but nothing more than this. The proofs of these two results, positive and negative, are independent of each other.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×