Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T09:58:23.335Z Has data issue: false hasContentIssue false

Chapter 2 - Systems Biology Approaches to the Genetic Complexity of Epilepsy

Published online by Cambridge University Press:  06 January 2023

Rod C. Scott
Affiliation:
University of Vermont
J. Matthew Mahoney
Affiliation:
University of Vermont
Get access

Summary

The genetic underpinnings of epilepsy have come into much clearer focus over the past two decades. Advances in high-throughput molecular techniques have markedly improved our ability to identify potential therapeutic targets in epilepsy. Many of the monogenic effects identified through these methods have resulted in effective therapeutic targets for seizure amelioration [1,2,3]. Currently, around 200 definitively annotated epilepsy genes causing a range of seizure disorders and phenotypes have been identified [4]. Many more genes with putative associations with epilepsy pathways require further study [5]. The expansion of known genetic mechanisms and risk factors presents us with several benefits, including an increased pool of possible drug targets [6], genetic subtyping of seizure disorders [7], and the possibility for integrative analysis across different disorders [8,9]. However, the increasingly rich collection of genetic associations has also revealed the complexity of seizure disorders. Many mutations in different genes can converge on a similar clinical presentation [10], while different mutations in the same gene can have radically divergent outcomes [11,12]. Moreover, while robust data from twin and family studies demonstrate that common epilepsies are highly heritable [13,14], association studies have only detected risk factors that account for a small fraction of risk [15]. Thus, the data on epilepsy suggests a dichotomy. On one side, genetics is critical for describing etiology [16]. On the other side, using this information for prognosis or therapeutic development is limited by our current understanding of the complex genetic underpinnings of the disease and our analytic tools [10,17]. As a response to this complexity, researchers have started to shift toward complex systems approaches to genetics, which changes the focus from individual mutations to interactions among many mutations. The purpose of this chapter is to elaborate this ethos and present examples of this approach.

Type
Chapter
Information
A Complex Systems Approach to Epilepsy
Concept, Practice, and Therapy
, pp. 5 - 18
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kass, H. R., Winesett, S. P., Bessone, S. K., Turner, Z., and Kossoff, E. H. Use of dietary therapies amongst patients with GLUT1 deficiency syndrome. Seizure, 35, 83–7 (2016).CrossRefGoogle ScholarPubMed
Mikati, M. A., Jiang, Y. H., Carboni, M., et al. Quinidine in the treatment of KCNT1‐positive epilepsies. Ann. Neurol., 78(6), 995–9 (2015).CrossRefGoogle ScholarPubMed
Wilmshurst, J. M., Gaillard, W. D., Vinayan, K. P., et al. Summary of recommendations for the management of infantile seizures: Task Force Report for the ILAE Commission of Pediatrics. Epilepsia, 56(8), 1185–97 (2015).CrossRefGoogle ScholarPubMed
Steward, C. A., Roovers, J., Suner, M.-M., et al. Re-annotation of 191 developmental and epileptic encephalopathy-associated genes unmasks de novo variants in SCN1A. NPJ Genom. Med., 4(1), 31 (2019).Google Scholar
Wang, J., Lin, Z.-J., Liu, L., et al. Epilepsy-associated genes. Seizure, 44, 1120 (2017).Google Scholar
King, E. A., Davis, J. W., and Degner, J. F. Are drug targets with genetic support twice as likely to be approved? Revised estimates of the impact of genetic support for drug mechanisms on the probability of drug approval. PLoS Genet., 15(12), e1008489 (2019).CrossRefGoogle ScholarPubMed
Anderson, V. E., Hauser, W. A., and Rich, S. S. Genetic heterogeneity in the epilepsies. Adv. Neurolo., 44, 5975 (1986).Google Scholar
Bachoo, R. M., Kim, R. S., Ligon, K. L., et al. Molecular diversity of astrocytes with implications for neurological disorders. Proc. Natl. Acad. Sci. USA, 101(22), 8384–9 (2004).CrossRefGoogle ScholarPubMed
Baranzini, S. E. Gene expression profiling in neurological disorders. NeuroMolecular Med., 6(1), 3151 (2004).CrossRefGoogle ScholarPubMed
Delahaye-Duriez, A., Srivastava, P., Shkura, K., et al. Rare and common epilepsies converge on a shared gene regulatory network providing opportunities for novel antiepileptic drug discovery. Genome Biol., 17(1), 245 (2016).CrossRefGoogle ScholarPubMed
Ceulemans, B. P. G. M., Claes, L. R. F., and Lagae, L. G. Clinical correlations of mutations in the SCN1A gene: From febrile seizures to severe myoclonic epilepsy in infancy. Pediatr. Neurol., 30(4), 236–43 (2004).CrossRefGoogle ScholarPubMed
Northrup, H., Krueger, D. A., Northrup, H., et al. Tuberous sclerosis complex diagnostic criteria update: Recommendations of the 2012 international tuberous sclerosis complex consensus conference. Pediatr. Neurol., 49(4), 243–54 (2013).Google Scholar
Hemminki, K., Li, X., Johansson, S.-E., Sundquist, K., and Sundquist, J. Familial Risks for Epilepsy among Siblings Based on Hospitalizations in Sweden. Neuroepidemiology, 27(2), 6773 (2006).CrossRefGoogle ScholarPubMed
Tsuboi, T., and Endo, S. Genetic studies of febrile convulsions: analysis of twin and family data. Epilepsy Res. Suppl., 4, 119–28 (1991).Google ScholarPubMed
Abou-Khalil, B., Auce, P., Avbersek, A., et al. Genome-wide mega-analysis identifies 16 loci and highlights diverse biological mechanisms in the common epilepsies. Nat. Commun., 9(1), 5269 (2018).Google Scholar
Kobow, K., Ziemann, M., Kaipananickal, H., et al. Genomic DNA methylation distinguishes subtypes of human focal cortical dysplasia. Epilepsia, 60(6), 1091–03 (2019).CrossRefGoogle ScholarPubMed
Symonds, J. D., Zuberi, S. M., and Johnson, M. R. Advances in epilepsy gene discovery and implications for epilepsy diagnosis and treatment. Curr. Opin. Neurol., 30(2), 193–99 (2017).Google Scholar
Bartha, Á., and Győrffy, B. Comprehensive outline of whole exome sequencing data analysis tools available in clinical oncology. Cancers, 11(11), 1725 (2019).Google Scholar
Deming, Y., Li, Z., Kapoor, M., et al. Genome-wide association study identifies four novel loci associated with Alzheimer’s endophenotypes and disease modifiers. Acta Neuropathol., 133(5), 839–56 (2017).CrossRefGoogle ScholarPubMed
Taylor, K. E., Chung, S. A., Graham, R. R., et al. Risk alleles for systemic lupus erythematosus in a large case-control collection and associations with clinical subphenotypes. PLoS Genet., 7(2), e1001311 (2011).Google Scholar
Amberger, J. S., Bocchini, C. A., Schiettecatte, F., Scott, A. F., and Hamosh, A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res., 43(Database issue), D789–98 (2015).Google Scholar
Landrum, M. J., Lee, J. M., Riley, G. R., et al. ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res., 42(Database issue), D980–5 (2014).CrossRefGoogle ScholarPubMed
Brandt, C., Hillmann, P., Noack, A., et al. The novel, catalytic mTORC1/2 inhibitor PQR620 and the PI3K/mTORC1/2 inhibitor PQR530 effectively cross the blood-brain barrier and increase seizure threshold in a mouse model of chronic epilepsy. Neuropharmacology, 140, 107–20 (2018).CrossRefGoogle Scholar
Ma, J., Yan, Z., Zhang, J., et al. A genetic predictive model for precision treatment of diffuse large B-cell lymphoma with early progression. Biomark. Res., 8(1), 33 (2020).CrossRefGoogle ScholarPubMed
Hernandez, C. C., Klassen, T. L., Jackson, L. G., et al. Deleterious rare variants reveal risk for loss of GABAA receptor function in patients with genetic epilepsy and in the general population. PLoS One, 11(9), e0162883 (2016).CrossRefGoogle ScholarPubMed
Myers, K. A., Bennett, M. F., Grinton, B. E., et al. Contribution of rare genetic variants to drug response in absence epilepsy. Epilepsy Res., 170, 106537 (2021).CrossRefGoogle ScholarPubMed
Wolking, S., Moreau, C., McCormack, M., et al. Assessing the role of rare genetic variants in drug‐resistant, non‐lesional focal epilepsy. Ann. Clin. Transl. Neurol., 8(7), 1376–87 (2021).CrossRefGoogle ScholarPubMed
Todorova, M. T., Mantis, J. G., Le, M., Kim, C. Y., and Seyfried, T. N. Genetic and environmental interactions determine seizure susceptibility in epileptic EL mice. Genes Brain Behav., 5(7), 518–27 (2006).CrossRefGoogle ScholarPubMed
Fisher, R. Statistical methods in genetics. Int. J. Epidemiol., 39(2), 329–35 (2010).Google Scholar
Fisher, R. A. The resemblance between twins, a statistical examination of Lauterbach’s measurements. Genetics, 10(6), 569–79 (1925).CrossRefGoogle ScholarPubMed
Fisher, R. A., Immer, F. R., and Tedin, O. The genetical interpretation of statistics of the third degree in the study of quantitative inheritance. Genetics, 17(2), 107–24 (1932).CrossRefGoogle Scholar
Thompson, E. A. R.A. Fisher’s contributions to genetical statistics. Biometrics, 46(4), 905–14 (1990).Google Scholar
Boyle, E. A., Li, Y. I., and Pritchard, J. K. An expanded view of complex traits: From polygenic to omnigenic. Cell, 169(7), 1177–86 (2017).Google Scholar
Wood, A. R., Esko, T., Yang, J., et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat. Genet., 46(11), 1173–86 (2014).Google Scholar
Veeramah, K. R., Johnstone, L., Karafet, T. M., et al. Exome sequencing reveals new causal mutations in children with epileptic encephalopathies. Epilepsia, 54(7), 1270–81 (2013).Google Scholar
Dibbens, L. M., Heron, S. E., and Mulley, J. C. A polygenic heterogeneity model for common epilepsies with complex genetics. Genes Brain Behav., 6(7), 593–7 (2007).CrossRefGoogle ScholarPubMed
Wang, F., Xiong, S., Wu, L., et al. A novel TSC2 missense variant associated with a variable phenotype of tuberous sclerosis complex: case report of a Chinese family. BMC Med. Genet., 19(1), 90 (2018).CrossRefGoogle ScholarPubMed
Kauffman, S. Gene regulation networks: A theory for their global structure and behaviors. Curr. Top. Dev. Biol., 6(6), 145–82 (1971).CrossRefGoogle ScholarPubMed
Shen-Orr, S. S., Milo, R., Mangan, S., and Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nat. Genet., 31(1), 64–8 (2002).Google Scholar
Yook, S. H., Oltvai, Z. N., and Barabási, A. L. Functional and topological characterization of protein interaction networks. Proteomics, 4(4), 928–42 (2004).Google Scholar
Bray, D. Intracellular signalling as a parallel distributed process. J. Theor. Biol., 143(2), 215–31 (1990).CrossRefGoogle ScholarPubMed
Bray, D. (1995). Protein molecules as computational elements in living cells. Nature, 376(6538), 307–12.CrossRefGoogle ScholarPubMed
Alon, U. Introduction to Systems Biology: Design Principles of Biological Circuits, 1st ed. New York: Chapman & Hall/CRC. 2006.Google Scholar
Barabási, A.-L., and Albert, R. Emergence of scaling in random networks. Science, 286(5439), 509–12 (1999).CrossRefGoogle ScholarPubMed
Broido, A. D., and Clauset, A. Scale-free networks are rare. Nat. Commun., 10(1), 1017 (2019).CrossRefGoogle ScholarPubMed
Smith, H. B., Kim, H., and Walker, S. I. Scarcity of scale-free topology is universal across biochemical networks. Sci. Rep., 11(1), 6542 (2021).CrossRefGoogle ScholarPubMed
Milo, R., Shen-Orr, S., Itzkovitz, S., et al. Network motifs: Simple building blocks of complex networks. Science, 298(5594), 824–7 (2002).Google Scholar
Moore, J. H., and Williams, S. M. Epistasis and its implications for personal genetics. Am. J. Hum. Genet., 85(3), 309–20 (2009).CrossRefGoogle ScholarPubMed
Visser, J. A. G. M. de, Cooper, T. F., and Elena, S. F. The causes of epistasis. Proc. R. Soc. B, 278(1725), 173624 (2011).CrossRefGoogle ScholarPubMed
Kinghorn, B. P. The nature of 2-locus epistatic interactions in animals: evidence from Sewall Wright’s guinea pig data. Theor. Appl. Genet., 73(4), 595604 (1987).CrossRefGoogle ScholarPubMed
Avery, L., and Wasserman, S. Ordering gene function: The interpretation of epistasis in regulatory hierarchies. Trends Genet., 8(9), 312–6 (1992).Google Scholar
Forsberg, S. K. G., Bloom, J. S., Sadhu, M. J., Kruglyak, L., and Carlborg, Ö. Accounting for genetic interactions improves modeling of individual quantitative trait phenotypes in yeast. Nat. Genet., 49(4), 497503 (2017).Google Scholar
Lehner, B. Molecular mechanisms of epistasis within and between genes. Trends Genet., 27(8), 323–31 (2011).CrossRefGoogle ScholarPubMed
Tyler, A. L., Donahue, L. R., Churchill, G. A., and Carter, G. W. Weak epistasis generally stabilizes phenotypes in a mouse intercross. PLoS Genet., 12(2), e1005805 (2016).Google Scholar
Carter, A. J. R., Hermisson, J., and Hansen, T. F. The role of epistatic gene interactions in the response to selection and the evolution of evolvability. Theor. Popul. Biol., 68(3), 179–96 (2005).Google Scholar
Hill, W. G., Goddard, M. E., and Visscher, P. M. Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet., 4(2), e1000008 (2008).Google Scholar
Campbell, R. F., McGrath, P. T., and Paaby, A. B. Analysis of epistasis in natural traits using model organisms. Trends Genet., 34(11), 883–98 (2018).Google Scholar
Tyler, A. L., Lu, W., Hendrick, J. J., Philip, V. M., and Carter, G. W. CAPE: An R Package for Combined Analysis of Pleiotropy and Epistasis. PLoS Comput. Biol., 9(10), e1003270 (2013).Google Scholar
Zhu, S., and Fang, G. MatrixEpistasis: Ultrafast, exhaustive epistasis scan for quantitative traits with covariate adjustment. Bioinformatics, 34(14), 2341–8 (2018).Google Scholar
Pedruzzi, G., and Rouzine, I. M. An evolution-based high-fidelity method of epistasis measurement: Theory and application to influenza. PLoS Pathog., 17(6), e1009669 (2021).Google Scholar
Slim, L., Chatelain, C., Azencott, C.-A., and Vert, J.-P. Novel methods for epistasis detection in genome-wide association studies. PLoS ONE, 15(11), e0242927 (2020).Google Scholar
Johnson, M. R., Behmoaras, J., Bottolo, L., et al. Systems genetics identifies Sestrin 3 as a regulator of a proconvulsant gene network in human epileptic hippocampus. Nat. Commun., 6(1), 6031 (2015).Google Scholar
Preston, G. A., & Weinberger, D. R. (2005). Intermediate phenotypes in schizophrenia: a selective review. Dialogues Clin. Neurosci., 7(2), 165–79.CrossRefGoogle ScholarPubMed
Johnson, M. R., Shkura, K., Langley, S. R., et al. Systems genetics identifies a convergent gene network for cognition and neurodevelopmental disease. Nat. Neurosci., 19(2), 223–32 (2016).CrossRefGoogle ScholarPubMed
Califano, A., Butte, A. J., Friend, S., Ideker, T., and Schadt, E. Leveraging models of cell regulation and GWAS data in integrative network-based association studies. Nat. Genet., 44(8), 841–7 (2012).Google Scholar
Carter, H., Hofree, M., and Ideker, T. Genotype to phenotype via network analysis. Curr. Opin. Genet. Dev., 23(6), 611–21 (2013).Google Scholar
Cowen, L., Ideker, T., Raphael, B. J., and Sharan, R. Network propagation: A universal amplifier of genetic associations. Nat. Rev. Genet., 18(9), 551–62 (2017).CrossRefGoogle ScholarPubMed
Greene, C. S., Krishnan, A., Wong, A. K., et al. Understanding multicellular function and disease with human tissue-specific networks. Nat. Genet., 47(6), 569–76 (2015).Google Scholar
Ideker, T., Ozier, O., Schwikowski, B., and Siegel, A. F. Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics, 18(suppl 1), S233–40 (2002).Google Scholar
Mitra, K., Carvunis, A.-R., Ramesh, S. K., and Ideker, T. Integrative approaches for finding modular structure in biological networks. Nat. Rev. Genet., 14(10), 719–32 (2013).Google Scholar
Yao, X., Jingwen, Y., Kefei, L., et al. Tissue-specific network-based genome wide study of amygdala imaging phenotypes to identify functional interaction modules. Bioinformatics, 33(20), 3250–7 (2017).Google Scholar
Brabec, J. L., Lara, M. K., Tyler, A. L., and Mahoney, J. M. System-level analysis of Alzheimer’s disease prioritizes candidate genes for neurodegeneration. Front. Genet., 12, 625246 (2021).CrossRefGoogle ScholarPubMed
Chang, S., Fang, K., Zhang, K., and Wang, J. Network-based analysis of schizophrenia genome-wide association data to detect the joint functional association signals. PLoS One, 10(7), e0133404 (2015).CrossRefGoogle ScholarPubMed
Krishnan, A., Zhang, R., Yao, V., et al. Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder. Nat. Neurosci., 19(11), 1454–62 (2016).CrossRefGoogle ScholarPubMed
Silver, L. M. Mouse Genetics, New York: Oxford University Press. 1995.Google Scholar
Yoshiki, A., and Moriwaki, K. Mouse phenome research: Implications of genetic background. ILAR J., 47(2), 94102 (2006).Google Scholar
Chesler, E. J. Out of the bottleneck: The diversity outcross and collaborative cross mouse populations in behavioral genetics research. Mamm. Genome, 25(1), 311 (2014).Google Scholar
Peirce, J. L., Lu, L., Gu, J., Silver, L. M., and Williams, R. W. A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet., 5(1), 7 (2004).Google Scholar
Miner, L. L., and Marley, R. J. Chromosomal mapping of loci influencing sensitivity to cocaine-induced seizures in BXD recombinant inbred strains of mice. Psychopharmacology, 117(1), 62–6 (1995).Google Scholar
Neumann, P. E., and Collins, R. L. Genetic dissection of susceptibility to audiogenic seizures in inbred mice. Proc. Natl. Acad. Sci., 88(12), 5408–12 (1991).Google Scholar
Philip, V. M., Duvvuru, S., Gomero, B., et al. High-throughput behavioral phenotyping in the expanded panel of BXD recombinant inbred strains. Genes Brain Behav., 9(2), 129–59 (2010).Google Scholar
Wakana, S., Sugaya, E., Naramoto, F., et al. Gene mapping of SEZ group genes and determination of pentylenetetrazol susceptible quantitative trait loci in the mouse chromosome. Brain Res., 857(1–2), 286–90. (2000).Google Scholar
Ferraro, T. N., Golden, G. T., Smith, G. G., et al. Mapping murine loci for seizure response to kainic acid. Mamm. Genome, 8(3), 200–8 (1997).Google Scholar
Ferraro, T. N., Golden, G. T., Smith, G. G., et al. Fine mapping of a seizure susceptibility locus on mouse chromosome 1: Nomination of Kcnj10 as a causative gene. Mamm. Genome, 15(4), 239–51 (2004).Google Scholar
Mozhui, K., Ciobanu, D. C., Schikorski, T., et al. Dissection of a QTL hotspot on mouse distal chromosome 1 that modulates neurobehavioral phenotypes and gene expression. PLoS Genet., 4(11), e1000260 (2008).Google Scholar
Buono, R. J., Lohoff, F. W., Sander, T., et al. Association between variation in the human KCNJ10 potassium ion channel gene and seizure susceptibility. Epilepsy Res., 58(2–3), 175–83 (2004).CrossRefGoogle ScholarPubMed
Lenzen, K. P., Heils, A., Lorenz, S., et al. Supportive evidence for an allelic association of the human KCNJ10 potassium channel gene with idiopathic generalized epilepsy. Epilepsy Res., 63(2–3), 113–8 (2005).CrossRefGoogle ScholarPubMed
Reichold, M., Zdebik, A. A., Lieberer, E., et al. KCNJ10 gene mutations causing EAST syndrome (epilepsy, ataxia, sensorineural deafness, and tubulopathy) disrupt channel function. Proc. Natl. Acad. Sci., 107(32), 14490–5 (2010).Google Scholar
Bennett, B. J., Farber, C. R., Orozco, L., et al. A high-resolution association mapping panel for the dissection of complex traits in mice. Genome Res., 20(2), 281–90 (2010).Google Scholar
Ghazalpour, A., Rau, C. D., Farber, C. R., et al. Hybrid mouse diversity panel: a panel of inbred mouse strains suitable for analysis of complex genetic traits. Mamm. Genome, 23(9–10), 680–92 (2012).Google Scholar
Ferland, R. J., Smith, J., Papandrea, D., et al. Multidimensional genetic analysis of repeated seizures in the hybrid mouse diversity panel reveals a novel epileptogenesis susceptibility locus. G3 (Bethseda), 7(8), 2545–58 (2017).Google Scholar
Threadgill, D. W., Miller, D. R., Churchill, G. A., and Villena, F. P.-M. de. The collaborative cross: A recombinant inbred mouse population for the systems genetic era. ILAR J., 52(1), 2431 (2011).Google Scholar
Srivastava, A., Morgan, A. P., Najarian, M. L., et al. Genomes of the mouse collaborative cross. Genetics, 206(2), 537–56 (2017).CrossRefGoogle ScholarPubMed
Gu, B., Shorter, J. R., Williams, L. H., et al. Collaborative Cross mice reveal extreme epilepsy phenotypes and genetic loci for seizure susceptibility. Epilepsia, 61(9), 2010–21 (2020).Google Scholar
Tyler, A. L., McGarr, T. C., Beyer, B. J., Frankel, W. N., and Carter, G. W. A genetic interaction network model of a complex neurological disease. Genes Brain Behav., 13(8), 831–40 (2014).Google Scholar
Duan, Q., Flynn, C., Niepel, M., et al. LINCS Canvas Browser: Interactive web app to query, browse and interrogate LINCS L1000 gene expression signatures. Nucleic Acids Res., 42(Web Server issue), W449–60 (2014).Google Scholar
Lamb, J., Crawford, E. D., Peck, D., et al. The connectivity map: Using gene-expression signatures to connect small molecules, genes, and disease. Science, 313(5795), 1929–35 (2006).Google Scholar
Mirza, N., Sills, G. J., Pirmohamed, M., and Marson, A. G. Identifying new antiepileptic drugs through genomics-based drug repurposing. Hum. Mol. Genet., 26(3), 527–37 (2017).Google Scholar
Sun, Q., Zhang, Y., Huang, J., et al. DPP4 regulates the inflammatory response in a rat model of febrile seizures. Biomed. Mater. Eng., 28(s1), S139–52 (2017).Google Scholar
Liu, Y., Hou, B., Zhang, Y., et al. Anticonvulsant agent DPP4 inhibitor sitagliptin downregulates CXCR3/RAGE pathway on seizure models. Exp. Neurol., 307, 90–8 (2018).Google Scholar
Olsen, T. K., and Baryawno, N. Introduction to single‐cell RNA sequencing. Curr. Protoc. Mol. Biol., 122(1), e57 (2018).Google Scholar
Rusk, N. Spatial RNA mapping. Nat. Methods, 16(9), 803 (2019).Google Scholar
Argelaguet, R., Velten, B., Arnol, D., et al. Multi‐omics factor analysis – A framework for unsupervised integration of multi‐omics data sets. Mol. Syst. Biol., 14(6), e8124 (2018).Google Scholar
Shen, D., Wu, G., and Suk, H.-I. Deep learning in medical image analysis. Annu, Rev. Biomed. Eng., 19(1), 221–48 (2017).CrossRefGoogle ScholarPubMed
Kubach, J., Muhlebner‐Fahrngruber, A., Soylemezoglu, F., et al. Same same but different: A Web‐based deep learning application revealed classifying features for the histopathologic distinction of cortical malformations. Epilepsia, 61(3), 421–32 (2020).Google Scholar
Shoeb, A., Edwards, H., Connolly, J., et al. Patient-specific seizure onset detection. Epilepsy Behav., 5(4), 483–98 (2004).Google Scholar
Auriel, E., Landov, H., Blatt, I., et al. Quality of life in seizure-free patients with epilepsy on monotherapy. Epilepsy Behav., 14(1), 130–3 (2009).CrossRefGoogle ScholarPubMed
Meneses, R. F., Pais-Ribeiro, J. L., Silva, A. M. da, and Giovagnoli, A. R. Neuropsychological predictors of quality of life in focal epilepsy. Seizure, 18(5), 313–9 (2009).Google Scholar
Naimo, G. D., Guarnaccia, M., Sprovieri, T., et al. A systems biology approach for personalized medicine in refractory epilepsy. Int.J. Mol. Sci., 20(15), 3717 (2019).CrossRefGoogle ScholarPubMed
Perucca, P., and Perucca, E. Identifying mutations in epilepsy genes: Impact on treatment selection. Epilepsy Res., 152, 1830 (2019).Google Scholar
Ikeda, M., Saito, T., Kanazawa, T., and Iwata, N. Polygenic risk score as clinical utility in psychiatry: a clinical viewpoint. J. Hum. Genet., 66(1), 5360 (2021).Google Scholar
Martin, A. R., Daly, M. J., Robinson, E. B., Hyman, S. E., and Neale, B. M. Predicting polygenic risk of psychiatric disorders. Biol. Psychiatry, 86(2), 97109 (2018).Google Scholar
Neumann, A., Jolicoeur‐Martineau, A., Szekely, E., et al. Combined polygenic risk scores of different psychiatric traits predict general and specific psychopathology in childhood. J. Child Psychol. Psychiatry. (2021). doi:10.1111/jcpp.13501Google Scholar
Coffey, K. R., Marx, R. G., and Neumaier, J. F. DeepSqueak: A deep learning-based system for detection and analysis of ultrasonic vocalizations. Neuropsychopharmacology, 44(5), 859–68 (2019).Google Scholar
Mathis, A., Mamidanna, P., Cury, K. M., et al. DeepLabCut: Markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci., 21(9), 1281–9 (2018).Google Scholar
Geuther, B. Q., Peer, A., He, H., et al. Action detection using a neural network elucidates the genetics of mouse grooming behavior. ELife, 10, e63207 (2021).Google Scholar
Gharagozloo, M., Amrani, A., Wittingstall, K., Hamilton-Wright, A., and Gris, D. Machine learning in modeling of mouse behavior. Front. Neurosci., 15, 700253 (2021).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×