Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T17:58:29.092Z Has data issue: false hasContentIssue false

Chapter 7 - Neuronal Approaches to Epilepsy

Published online by Cambridge University Press:  06 January 2023

Rod C. Scott
Affiliation:
University of Vermont
J. Matthew Mahoney
Affiliation:
University of Vermont
Get access

Summary

The previous chapters have dealt with the complex adaptive nature of the genome. Similar concepts in terms of interacting elements, self-organization and adaptation can be applied at other hierarchical scales. In this chapter we will show how complex adaptive systems (CAS) concepts can be usefully applied at the level of action potential firing patterns of single neurons in terms of seizure generation and of associated morbidities.

Type
Chapter
Information
A Complex Systems Approach to Epilepsy
Concept, Practice, and Therapy
, pp. 86 - 98
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Driscoll, N., Rosch, R. E., Murphy, B. B., et al. Multimodal in vivo recording using transparent graphene microelectrodes illuminates spatiotemporal seizure dynamics at the microscale. Commun. Biol., 4, 136 (2020).CrossRefGoogle Scholar
Paquola, C., Seidlitz, J., Benkarim, O., et al. The cortical wiring scheme of hierarchical information processing. 2020. bioRxiv. 2020.01.08.899583.Google Scholar
Scott, R. C., Menendez de la Prida, L., Mahoney, J. M., et al. WONOEP APPRAISAL: The many facets of epilepsy networks. Epilepsia., 59(8), 1475–83 (2018).Google Scholar
Buzsáki, G. The brain–cognitive behavior problem: A retrospective. eNeuro. 7(4) (2020). doi:10.1523/ENEURO.0069-20.2020Google Scholar
Jun, J. J., Steinmetz, N. A., Siegle, J. H., et al. Fully integrated silicon probes for high-density recording of neural activity. Nature, 551(7679), 232–6 (2017).CrossRefGoogle ScholarPubMed
Sahasrabuddhe, K., Khan, A. A., Singh, A. P., et al. The Argo: A high channel count recording system for neural recording in vivo. J. Neural Eng., 18(1), 015002 (2020).Google Scholar
Obaid, A., Hanna, M.-E., Wu, Y.-W., et al. Massively parallel microwire arrays integrated with CMOS chips for neural recording. Sci Adv., 6(12), eaay2789 (2020).CrossRefGoogle ScholarPubMed
Carlson, D., and Carin, L. Continuing progress of spike sorting in the era of big data. Curr. Opin. Neurobiol., 55, 90–6, (2019).CrossRefGoogle ScholarPubMed
Rey, H. G., Pedreira, , and Quian Quiroga, C.. R. Past, present and future of spike sorting techniques. Brain Res. Bull., 119, 106–17 (2015).Google Scholar
Magland, J., Jun, J. J., and Lovero, E., et al. SpikeForest, reproducible web-facing ground-truth validation of automated neural spike sorters. eLife., 9, e55167 (2020).Google Scholar
Buccino, A. P., Ness, T. V., Einevoll, G. T., Cauwenberghs, G., and Hafliger, P. D. A deep learning approach for the classification of neuronal cell types. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 2018, 9991002 (2018).Google Scholar
Trainito, C., von Nicolai, C., Miller, E. K., and Siegel, M. Extracellular spike waveform dissociates four functionally distinct cell classes in primate cortex. Curr. Biol., 29(18), (2019).Google Scholar
O’Donnell, C., Gonçalves, J. T., Portera-Cailliau, C., and Sejnowski, T. J. Beyond excitation/inhibition imbalance in multidimensional models of neural circuit changes in brain disorders. Elife, 6, e26724 (2017).Google Scholar
Kreiman, G. Neural coding: Computational and biophysical perspectives. Phys. Life Rev., 1(2), 71102 (2004).CrossRefGoogle Scholar
Reinartz, S. Long-term activity dynamics of single neurons and networks. Adv. Neurobiol., 22, 331–50 (2019).Google Scholar
Ahrens, M. B. Zebrafish neuroscience: Using artificial neural networks to help understand brains. Curr. Biol. 29(21), R1138–40, (2019).CrossRefGoogle ScholarPubMed
Haesemeyer, M., Schier, A.F., and Engert, F. Convergent Temperature Representations in Artificial and Biological Neural Networks. Neuron, 103(6), 1123–34.e6 (2019).Google Scholar
Nir, Y., Fisch, L., Mukamel, R., et al. Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr. Biol. , 17(15), 1275–85 (2007).Google Scholar
Rich, E. L., and Wallis, J. D. Spatiotemporal dynamics of information encoding revealed in orbitofrontal high-gamma. Nat. Commun., 8(1), 1139 (2017).Google Scholar
Ray, S., Crone, N. E., Niebur, E., Franaszczuk, P. J., and Hsiao, S. S. Neural correlates of high-gamma oscillations (60–200 Hz) in macaque local field potentials and their potential implications in electrocorticography. J. Neurosci., 28(45), 11526–36 (2008).Google Scholar
Mukamel, R., Gelbard, H., Arieli, A., et al. Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex. Science, 309(5736), 951–4 (2005).Google Scholar
Leszczyński, M., Barczak, A., Kajikawa, Y., et al. Dissociation of broadband high-frequency activity and neuronal firing in the neocortex. Sci. Advances., 6(33), eabb0977 (2020).Google Scholar
Ammanuel, S. G., Kleen, J. K., Leonard, M. K., and Chang, E. F. Interictal epileptiform discharges and the quality of human intracranial neurophysiology data. Front. Hum. Neurosci., 14, 44 (2020).Google Scholar
Jacobsen, M. Point Process Theory and Applications: Marked Point and Piecewise Deterministic Processes. Basel: Birkhäuser. 2006.Google Scholar
Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P., and Brown, E. N. A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. J. Neurophysiol., 93(2), 1074–89 (2005).CrossRefGoogle ScholarPubMed
Grinstead, C. M., and Snell, J. L. Introduction to Probability. 2nd edition. Providence, RI: American Mathematical Society. 2012. p. 510.Google Scholar
Binev, P., Cohen, A., Dahmen, W., DeVore, R., Temlyakov, V. Universal algorithms for learning theory part I: Piecewise constant functions. J. Mach. Learn. Res., 6(2), 1297–321 (2005).Google Scholar
Barbieri, R., Wilson, M. A., Frank, L. M., and Brown, E. N. An analysis of hippocampal spatio-temporal representations using a Bayesian algorithm for neural spike train decoding. IEEE Trans. Neural. Syst. Rehabil. Eng., 13(2), 131–6 (2005).Google Scholar
Newman, E. L., and Hasselmo, M. E. Grid cell firing properties vary as a function of theta phase locking preferences in the rat medial entorhinal cortex. Front. Syst. Neurosci., 8, 193 (2014)CrossRefGoogle ScholarPubMed
Bose, A., and Recce, M. Phase precession and phase-locking of hippocampal pyramidal cells. Hippocampus, 11(3), 204–15 (2001).CrossRefGoogle ScholarPubMed
Buzsáki, G., Moser, E. I. Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat. Neurosci., 16(2), 130–8 (2013).Google Scholar
Kim, S., Putrino, D., Ghosh, S., and Brown, E. N. A Granger causality measure for point process models of ensemble neural spiking activity. PLoS Comput. Biol. , 7(3), e1001110 (2011).Google Scholar
Hasselmo, M. E. What is the function of hippocampal theta rhythm? – Linking behavioral data to phasic properties of field potential and unit recording data. Hippocampus, 15(7), 936–49 (2005).CrossRefGoogle ScholarPubMed
Johnson, T. D., Coleman, T. P., and Rangel, L. M. A flexible likelihood approach for predicting neural spiking activity from oscillatory phase. J. Neurosci. Methods., 311, 307–17 (2019).Google Scholar
Paninski, L. Maximum likelihood estimation of cascade point-process neural encoding models. Network, 15(4), 243–62 (2004).Google Scholar
Brown, E. N., Barbieri, R., Ventura, V., Kass, R. E., and Frank, L. M. The time-rescaling theorem and its application to neural spike train data analysis. Neural Comput., 14(2), 325–46 (2002).CrossRefGoogle ScholarPubMed
Zoltowski, D. M., and Pillow, J. W. Scaling the Poisson GLM to massive neural datasets through polynomial approximations. Adv. Neural Inf. Process Syst., 31, 3517–27 (2018).Google Scholar
Chari, A., Thornton, R. C., Tisdall, M. M., and Scott, R. C. Microelectrode recordings in human epilepsy: A case for clinical translation. Brain Commun., 2(2), fcaa082 (2020).CrossRefGoogle ScholarPubMed
Trevelyan, A. J., Muldoon, S. F., Merricks, E. M., Racca, C., and Staley, K. J. The role of inhibition in epileptic networks. J. Clin. Neurophysiol., 32(3), 227–34 (2015).Google Scholar
Schevon, C.A., Weiss, S.A., McKhann, G., et al. Evidence of an inhibitory restraint of seizure activity in humans. Nat. Commun., 3(1), 1060 (2012).Google Scholar
Truccolo, W., Donoghue, J. A., Hochberg, L. R., et al. Single-neuron dynamics in human focal epilepsy. Nat. Neurosci., 14(5), 635–41 (2011).Google Scholar
Merricks, E. M., Smith, E. H., McKhann, G. M., et al. Single unit action potentials in humans and the effect of seizure activity. Brain, 138(Pt 10), 2891–906 (2015).Google Scholar
Merricks, E. M., Smith, E. H., Emerson, R. G., et al. Neuronal firing and waveform alterations through ictal recruitment in humans. J. Neurosci., 41(4), 766–79 (2021).Google Scholar
McCormick, D. A., and Contreras, D. On the cellular and network bases of epileptic seizures. Annu. Rev. Physiol., 63, 815–46 (2001).Google Scholar
Köhling, R., D’Antuono, M., Benini, R., de, Guzman, P., and Avoli, M. Hypersynchronous ictal onset in the perirhinal cortex results from dynamic weakening in inhibition. Neurobiol. Dis., 87, 110 (2016).CrossRefGoogle ScholarPubMed
Trevelyan, A. J., Sussillo, D., Watson, B. O., and Yuste, R. Modular Propagation of Epileptiform Activity: Evidence for an Inhibitory Veto in Neocortex. J. Neurosci., 26(48), 12447–55 (2006).Google Scholar
Weiss, S. A., Staba, R., Bragin, A., et al. Interneurons and principal cell firing in human limbic areas at focal seizure onset. Neurobiol. Dis., 124, 183–8 (2019).Google Scholar
Kandrács, Á., Hofer, K. T., Tóth, K., et al. Presence of synchrony-generating hubs in the human epileptic neocortex. J. Physiol., 597(23), 5639–70 (2019).CrossRefGoogle ScholarPubMed
Köhling, R. Translational perspectives: Interneurones start seizures. J. Physiol., 597(23), 5525–6 (2019).Google Scholar
Avoli, M., and de Curtis, M. GABAergic synchronization in the limbic system and its role in the generation of epileptiform activity. Prog. Neurobiol., 95(2), 104–32 (2011).Google Scholar
Elahian, B., Lado, N.E., Mankin, E., et al. Low-voltage fast seizures in humans begin with increased interneuron firing. Ann. Neurol., 84(4), 588600 (2018).Google Scholar
Weiss, S. A., Banks, G. P., McKhann, G. M., et al. Ictal high frequency oscillations distinguish two types of seizure territories in humans. Brain, 136(Pt 12), 3796–808 (2013).Google Scholar
Timofeev, I., and Steriade, M. Neocortical seizures: Initiation, development and cessation. Neurosci., 123(2), 299336 (2004).Google Scholar
Cammarota, M., Losi, G., Chiavegato, A., Zonta, M., and Carmignoto, G. Fast spiking interneuron control of seizure propagation in a cortical slice model of focal epilepsy. J. Physiol., 591(4), 807–22 (2013).CrossRefGoogle Scholar
Parrish, R. R., Codadu, N. K., Scott, C. M.-G., and Trevelyan, A. J. Feedforward inhibition ahead of ictal wavefronts is provided by both parvalbumin- and somatostatin-expressing interneurons. J. Physiol., 597(8), 2297–314 (2019).Google Scholar
Lambrecq, V., Lehongre, K., Adam, C., et al. Single-unit activities during the transition to seizures in deep mesial structures. Ann. Neurol., 82(6), 1022–8 (2017).CrossRefGoogle ScholarPubMed
Bower, M. R., Stead, M., Meyer, F. B., Marsh, W. R., and Worrell, G. A. Spatiotemporal neuronal correlates of seizure generation in focal epilepsy. Epilepsia, 53(5), 807–16 (2012).CrossRefGoogle ScholarPubMed
Weiss, S. A., Lemesiou, A., Connors, R., et al. Seizure localization using ictal phase-locked high gamma: A retrospective surgical outcome study. Neurology, 84(23), 2320–8 (2015).Google Scholar
Eissa, T. L., Tryba, A. K., Marcuccilli, C. J., et al. Multiscale aspects of generation of high-gamma activity during seizures in human neocortex. eNeuro, 3(2), ENEURO.0141–15.2016 (2016).Google Scholar
Hunt, R. F., and Baraban, S. C. Interneuron transplantation as a treatment for epilepsy. Cold Spring Harb. Perspect. Med., 5(12), a022376 (2015).Google Scholar
Harward, S. C., and Southwell, D. G. Interneuron transplantation: A prospective surgical therapy for medically refractory epilepsy. Neurosurg. Focus, 48(4):E18 (2020).CrossRefGoogle ScholarPubMed
Assaf, F., and Schiller, Y. The antiepileptic and ictogenic effects of optogenetic neurostimulation of PV-expressing interneurons. J. Neurophysiol., 116(4), 1694–704 (2016).CrossRefGoogle ScholarPubMed
Weiss, S. A., Alvarado‐Rojas, C., Bragin, A., et al. Ictal onset patterns of local field potentials, high frequency oscillations, and unit activity in human mesial temporal lobe epilepsy. Epilepsia, 57(1), 111–21 (2016).Google Scholar
Young, J. C., Nasser, H. M., Casillas-Espinosa, P. M., et al. Multiunit cluster firing patterns of piriform cortex and mediodorsal thalamus in absence epilepsy. Epilepsy Behav., 97, 229–43 (2019).Google Scholar
Fisher, R. S., Acevedo, C., Arzimanoglou, A., et al. ILAE official report: A practical clinical definition of epilepsy. Epilepsia, 55(4), 475–82 (2014).Google Scholar
Dehghani, N., Peyrache, A., Telenczuk, B., et al. Dynamic balance of excitation and inhibition in human and monkey neocortex. Sci. Rep., 6(1), 23176 (2016).Google Scholar
Meisel, C., Storch, A., Hallmeyer-Elgner, S., Bullmore, E., and Gross, T. Failure of adaptive self-organized criticality during epileptic seizure attacks. PLoS Comput. Biol., 8(1), e1002312 (2012).CrossRefGoogle ScholarPubMed
Hahn, G., Ponce-Alvarez, A., Monier, C., et al. Spontaneous cortical activity is transiently poised close to criticality. PLoS Comput. Biol., 13(5), e1005543 (2017).Google Scholar
Beggs, J. M., and Plenz, D. Neuronal avalanches in neocortical circuits. J. Neurosci., 23(35), 11167–77 (2003).Google Scholar
Bravo-Martínez, J., Rivera, A. L., Toledo-Roy, J. C., et al. Dynamical phase transition in spike neuronal firing patterns of hippocampal cells. Biochem. Biophys. Res. Commun., 516(4), 1216–21 (2019).Google Scholar
Suzuki, J., Ozawa, N., Murashima, Y. L., Shinba, T., and Yoshii, M. Neuronal activity in the parietal cortex of EL and DDY mice. Brain Res., 1460, 6372 (2012).Google Scholar
Meisel, C. Antiepileptic drugs induce subcritical dynamics in human cortical networks. (2019) arXiv:190413026 [q-bio]Google Scholar
Wang, L., Liu, Y.-H., Huang, Y.-G., and Chen, L.-W. Time-course of neuronal death in the mouse pilocarpine model of chronic epilepsy using Fluoro-Jade C staining. Brain Res., 1241, 157–67 (2008).CrossRefGoogle ScholarPubMed
Stief, F., Zuschratter, W., Hartmann, K., Schmitz, D., and Draguhn, A. Enhanced synaptic excitation-inhibition ratio in hippocampal interneurons of rats with temporal lobe epilepsy. Eur. J. Neurosci., 25(2), 519–28 (2007).Google Scholar
Alvarado-Rojas, C., Lehongre, K., Bagdasaryan, J., et al. Single-unit activities during epileptic discharges in the human hippocampal formation. Front. Comput. Neurosci., 7, 140 (2013).Google Scholar
Sabolek, H. R., Swiercz, W. B., Lillis, K. P., et al. A candidate mechanism underlying the variance of interictal spike propagation. J. Neurosci., 32(9), 3009–21 (2012).Google Scholar
Jacobs, J., Staba, R., Asano, E., et al. High-frequency oscillations (HFOs) in clinical epilepsy. Prog. Neurobiol., 98(3), 302–15 (2012).Google Scholar
Frauscher, B., Bartolomei, F., Kobayashi, K., et al. High-frequency oscillations: The state of clinical research. Epilepsia, 58(8), 1316–29 (2017).Google Scholar
Trevelyan, A. J. The Direct Relationship between Inhibitory Currents and Local Field Potentials. J. Neurosci., 29(48), 15299–307 (2009).Google Scholar
Jirsa, V. K., Stacey, W.C ., Quilichini, P. P., Ivanov, A. I., and Bernard, C. On the nature of seizure dynamics. Brain, 137(8), 2210–30 (2014).Google Scholar
Houssaini, K. E., Bernard, C., and Jirsa, V. K. The Epileptor model: A systematic mathematical analysis linked to the dynamics of seizures, refractory status epilepticus, and depolarization block. eNeuro, 7(2), ENEURO.0485–18.2019 (2020).Google Scholar
Pillow, J. W., Schlens, J., Paninski, L. et al. Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454 (7207), 995–9 (2008).Google Scholar
Zhou, Jun-Li, Shatskikh, T. N., Liu, X., and Holmes, G. L. Impaired single cell firing and long-term potentiation parallels memory impairment following recurrent seizures. Euro. J. Neurosci., 25(12), 3667–77 (2007).CrossRefGoogle ScholarPubMed
Lenck-Santini, P.-P., and Holmes, G.L. Altered phase precession and compression of temporal sequences by place cells in epileptic rats. J. Neurosci., 28(19), 5053–62 (2008).Google Scholar
Hernan, A. E., Mahoney, J. M., Curry, W., et al. Environmental enrichment normalizes hippocampal timing coding in a malformed hippocampus. PLoS One, 13(2), e0191488 (2018).Google Scholar
Hernan, A. E., Mahoney, J. M., Curry, W., Mawe, S., and Scott, R. C. Fine spike timing in hippocampal-prefrontal ensembles predicts poor encoding and underlies behavioral performance in healthy and malformed brains. Cereb. Cortex, 31(1), 147–58 (2020).Google Scholar
Bui, A. D., Nguyen, T. M., Limouse, C., et al. Dentate gyrus mossy cells control spontaneous convulsive seizures and spatial memory. Science, 359(6377), 787–90 (2018).Google Scholar
Goyal, A., Miller, J., Watrous, A. J., et al. Electrical stimulation in hippocampus and entorhinal cortex impairs spatial and temporal memory. J. Neurosci., 38(19), 4471–81 (2018).Google Scholar
Ezzyat, Y., Kragel, J. E., Burke, J. F., et al. Direct brain stimulation modulates encoding states and memory performance in humans. Curr. Biol., 27(9), 1251–8 (2017).Google Scholar
Ezzyat, Y., Wanda, P. A., Levy, D. F., et al. Closed-loop stimulation of temporal cortex rescues functional networks and improves memory. Nat. Commun., 9(1), 365 (2018).Google Scholar
Topalovic, U., Aghajan, Z. M., Villaroman, D., et al. Wireless programmable recording and stimulation of deep brain activity in freely moving humans. Neuron., 108(2), 322334.e9 (2020).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×