Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T18:04:58.034Z Has data issue: false hasContentIssue false

Chapter 8 - Mapping Epileptic Networks with Scalp and Invasive EEG

Applications to Epileptogenic Zone Localization and Seizure Prediction

Published online by Cambridge University Press:  06 January 2023

Rod C. Scott
Affiliation:
University of Vermont
J. Matthew Mahoney
Affiliation:
University of Vermont
Get access

Summary

Since the early 2000s, the growing field of computational neuroscience has shown remarkable applicability in the study of epilepsy. A number of different and complementary approaches have been applied to brain signals obtained with scalp and invasive electroencephalography (EEG) to address a variety of fundamental and clinical problems. Historically, researchers have focused on overt changes in brain electrical signals, which can be detected using signal processing techniques. More recent advances have also shown that connectivity and network-level effects can provide critical information that complements the classical brain regional perspective. Thus, the modern toolkit for epilepsy electrophysiology now includes complex systems approaches such as network science (e.g., graph theory), nonlinear signal processing, information theory, and machine learning techniques. Complex systems approaches have made their contribution to our understanding of epilepsy and to the development of new tools that might improve its diagnosis and treatment.

Type
Chapter
Information
A Complex Systems Approach to Epilepsy
Concept, Practice, and Therapy
, pp. 99 - 126
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rosenow, , and , F., Lüders, H. Presurgical evaluation of epilepsy. Brain, 124(9), 1683–700, (2001).Google Scholar
Talairach, J., Bancaud, J., Szikla, G., et al. Approche nouvelle de la neurochirurgie de l’épilepsie. Méthodologie stéréotaxique et résultats thérapeutiques. 1. Introduction et historique [New approach to the neurosurgery of epilepsy. Stereotaxic methodology and therapeutic results. 1. Introduction and history]. Neurochirurgie, 20 Suppl 1, 1240 (1974).Google Scholar
Munari, C., and Bancaud, J. The role of stereo-EEG in the evaluation of partial epileptic seizures. In The Epilepsies. London: Butterworths. 1985. p. 267306.Google Scholar
Guenot, M., Isnard, J., Ryvlin, P., et al. Neurophysiological monitoring for epilepsy surgery: The Talairach SEEG method. Stereotact. Funct. Neurosurg., 77(1–4), 2932 (2001).Google Scholar
Kahane, P., Minotti, L., Hoffmann, D., Lachaux, J.-P., Ryvlin, P. Invasive EEG in the definition of the seizure onset zone: depth electrodes. Handb. Clin. Neurophysiol., 1(3), 109–33 (2003).CrossRefGoogle Scholar
Cossu, M., Cardinale, F., Castana, L., et al. Stereoelectroencephalography in the presurgical evaluation of focal epilepsy: A retrospective analysis of 215 procedures. Neurosurgery, 57(4), 706–18 (2005).Google Scholar
Engel, A. K., Moll, C. K. E., Fried, I., and Ojemann, G. A. Invasive recordings from the human brain: clinical insights and beyond. Nat. Rev. Neurosci., 6(1), 3547 (2005).Google Scholar
Cardinale, F., Cossu, M., Castana, L., et al. Stereoelectroencephalography: Surgical methodology, safety, and stereotactic application accuracy in 500 procedures. Neurosurgery., 72(3), 353–66 (2013).Google Scholar
Chauvel, P., Buser, P., Badier, J., et al. La “zone épileptogène” chez l’homme: représentation des événements intercritiques par cartes spatio-temporelles [The "epileptogenic zone" in humans: Representation of intercritical events by spatio-temporal maps]. Rev. Neurol., 143, 443–50 (1987).Google Scholar
Bancaud, J., Angelergues, R., Bernouilli, C., et al. Functional stereotaxic exploration (SEEG) of epilepsy. Electroencephalogr. Clin. Neurophysiol., 28(1), 85–6 (1970).Google Scholar
Bartolomei, F., Chauvel, P., and Wendling, F. Epileptogenicity of brain structures in human temporal lobe epilepsy: A quantified study from intracerebral EEG. Brain, 131(7), 1818–30 (2008).Google Scholar
Cohen, M. X. Analyzing Neural Time Series Data: Theory and practice. Cambridge: MIT press. 2014.Google Scholar
Worrell, G. A., Parish, L., Cranstoun, S. D., et al. High-frequency oscillations and seizure generation in neocortical epilepsy. Brain, 127(7), 1496–506 (2004).CrossRefGoogle ScholarPubMed
Aubert, S., Wendling, F., Regis, J., et al. Local and remote epileptogenicity in focal cortical dysplasias and neurodevelopmental tumours. Brain, 132(11), 3072–86 (2009).CrossRefGoogle ScholarPubMed
David, O., Blauwblomme, T., Job, A.-S., et al. Imaging the seizure onset zone with stereo-electroencephalography. Brain, 134(10), 2898–911 (2011).Google Scholar
Geertsema, E. E., Visser, G. H., Velis, D. N., et al. Automated seizure onset zone approximation based on nonharmonic high-frequency oscillations in human interictal intracranial EEGs. Int. J. Neural. Syst., 25(05), 1550015 (2015).Google Scholar
Liu, S., Sha, Z., Sencer, A., et al. Exploring the time-frequency content of high frequency oscillations for automated identification of seizure onset zone in epilepsy. J. Neural. Eng., 13(2), 26026 (2016).CrossRefGoogle ScholarPubMed
Murphy, P. M., von Paternos, A. J., and Santaniello, S. A novel HFO-based method for unsupervised localization of the seizure onset zone in drug-resistant epilepsy. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.,. 2017, 1054–7. (2017).Google Scholar
Jefferys, J. G. R., Menendez de la Prida, L., Wendling, F., et al. Mechanisms of physiological and epileptic HFO generation. Prog. Neurobiol., 98(3), 250–64 (2012).Google Scholar
Perucca, P., Dubeau, F., and Gotman, J. Intracranial electroencephalographic seizure-onset patterns: Effect of underlying pathology. Brain, 137(1), 183–96 (2014).Google Scholar
Lagarde, S., Bonini, F., McGonigal, A., et al. Seizure-onset patterns in focal cortical dysplasia and neurodevelopmental tumors: Relationship with surgical prognosis and neuropathologic subtypes. Epilepsia, 57(9), 1426–35 (2016).Google Scholar
Singh, S., Sandy, S., and Wiebe, S. Ictal onset on intracranial EEG: Do we know it when we see it? State of the evidence. Epilepsia, 56(10), 1629–38 (2015).CrossRefGoogle ScholarPubMed
Gnatkovsky, V., Francione, S., Cardinale, F., et al. Identification of reproducible ictal patterns based on quantified frequency analysis of intracranial EEG signals. Epilepsia, 52(3), 477–88 (2011).Google Scholar
Vila-Vidal, M., Principe, A., Ley, M., et al. Detection of recurrent activation patterns across focal seizures: Application to seizure onset zone identification. Clin. Neurophysiol., 128(6), 977–85 (2017).Google Scholar
Vila-Vidal, M. Epylib v1.0, 2019. github.com/mvilavidal/Epylib, Zenodo, doi:10.5281/ZENODO.2630604CrossRefGoogle Scholar
Vila-Vidal, M., Pérez Enríquez, C., Principe, A., et al. Low entropy map of brain oscillatory activity identifies spatially localized events: A new method for automated epilepsy focus prediction. Neuroimage, 208, 707497 (2020).CrossRefGoogle ScholarPubMed
Gnatkovsky, V., de, Curtis, M., Pastori, C., et al. Biomarkers of epileptogenic zone defined by quantified stereo-EEG analysis. Epilepsia, 55(2), 296305 (2014).Google Scholar
Andrzejak, R. G., Schindler, K., and Rummel, C. Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 86(4 Pt 2), 046206 (2012)CrossRefGoogle ScholarPubMed
Andrzejak, R. G., David, O., Gnatkovsky, V., et al. Localization of epileptogenic zone on pre-surgical intracranial EEG recordings: Toward a validation of quantitative signal analysis approaches. Brain Topogr., 28(6), 832–7 (2015).Google Scholar
Bartolomei, F., Wendling, F., and Chauvel, P. The concept of an epileptogenic network in human partial epilepsies. Neurochirurgie, 54(3), 174–84 (2008).Google Scholar
Sporns, O., Chialvo, D. R., Kaiser, M., and Hilgetag, C. C. Organization, development and function of complex brain networks. Trends Cogn. Sci., 8(9), 418–25 (2004).Google Scholar
van Mierlo, P., Papadopoulou, M., Carrette, E., et al. Functional brain connectivity from EEG in epilepsy: Seizure prediction and epileptogenic focus localization. Prog. Neurobiol., 121, 1935 (2014).Google Scholar
Friston, K. J. Functional and effective connectivity: A review. Brain Connect, 1(1), 1336 (2011).CrossRefGoogle ScholarPubMed
Bullmore, E., and Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci., 10(3), 186–98 (2009).Google Scholar
van Mierlo, P., Carrette, E., Hallez, H., et al. Accurate epileptogenic focus localization through time-variant functional connectivity analysis of intracranial electroencephalographic signals. Neuroimage, 56(3), 1122–33 (2011).CrossRefGoogle ScholarPubMed
Gersch, W., and Goddard, G. V. Epileptic focus location: Spectral analysis method. Science, 169(3946), 701–2 (1970).Google Scholar
Brazier, M. A. B. Spread of seizure discharges in epilepsy: Anatomical and electrophysiological considerations. Exp. Neurol., 36(2), 263–72 (1972).Google Scholar
Gotman, J. Measurement of small time differences between EEG channels: Method and application to epileptic seizure propagation. Electroencephalogr. Clin. Neurophysiol., 56(5), 501–14 (1983).Google Scholar
Lütkepohl, H. New Introduction to Multiple Time Series Analysis. Berlin: Springer Science & Business Media. 2005.Google Scholar
Baccalá, L. A., and Sameshima, K. Partial directed coherence: A new concept in neural structure determination. Biol. Cybern., 84(6), 463–74 (2001).Google Scholar
Kaminski, M. J., and Blinowska, K. J. A new method of the description of the information flow in the brain structures. Biol. Cybern., 65(3), 203–10 (1991).CrossRefGoogle ScholarPubMed
Astolfi, L., Cincotti, F., Mattia, D., et al. Tracking the time-varying cortical connectivity patterns by adaptive multivariate estimators. IEEE Trans. Biomed. Eng., 55(3), 902–13 (2008).Google Scholar
Wilke, C., Ding, Lei, and He, Bin. Estimation of time-varying connectivity patterns through the use of an adaptive directed transfer function. IEEE Trans. Biomed. Eng., 55(11), 2557–64 (2008).Google Scholar
Varotto, G., Tassi, L., Franceschetti, S., Spreafico, R., and Panzica, F. Epileptogenic networks of type II focal cortical dysplasia: A stereo-EEG study. Neuroimage., 61(3), 591–8 (2012).Google Scholar
Franaszczuk, P. J., Bergey, G. K., and Kamiński, M. J. Analysis of mesial temporal seizure onset and propagation using the directed transfer function method. Electroencephalogr. Clin. Neurophysiol., 91(6), 413–27 (1994).CrossRefGoogle ScholarPubMed
Wilke, C., van Drongelen, W., Kohrman, M., and He, B. Identification of epileptogenic foci from causal analysis of ECoG interictal spike activity. Clin. Neurophysiol., 120(8), 1449–56 (2009).Google Scholar
Kim, J. S., Im, C. H., Jung, Y. J., et al. Localization and propagation analysis of ictal source rhythm by electrocorticography. Neuroimage, 52(4), 1279–88 (2010).Google Scholar
Kim, J.-Y., Kang, H.-C., Cho, J.-H., et al. Combined use of multiple computational intracranial EEG analysis techniques for the localization of epileptogenic zones in Lennox–Gastaut syndrome. Clin. EEG Neurosci., 45(3), 169–78 (2014).Google Scholar
van Mierlo, P., Carrette, E., Hallez, H., et al. Ictal-onset localization through connectivity analysis of intracranial EEG signals in patients with refractory epilepsy. Epilepsia, 54(8), 1409–18 (2013).CrossRefGoogle ScholarPubMed
Wilke, C., Worrell, G., and He, B. Graph analysis of epileptogenic networks in human partial epilepsy. Epilepsia, 52(1), 8493 (2011).Google Scholar
Andrzejak, R. G., Chicharro, D., Lehnertz, K., and Mormann, F. Using bivariate signal analysis to characterize the epileptic focus: The benefit of surrogates. Phys. Rev. E, 83(4), 046203 (2011).Google Scholar
Sakkalis, V. Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput. Biol. Med., 41(12), 1110–7 (2011).Google Scholar
Panzica, F., Varotto, G., Rotondi, F., Spreafico, R., and Franceschetti, S. Identification of the epileptogenic zone from stereo-EEG signals: A connectivity-graph theory approach. Front. Neurol., 4, 175 (2013).Google Scholar
Lachaux, J. P., Rodriguez, E., Martinerie, J., and Varela, F. J. Measuring phase synchrony in brain signals. Hum. Brain Mapp., 8(4), 194208 (1999).Google Scholar
Mormann, F., Lehnertz, K., David, P. E. and Elger, C. Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Phys. D Nonlinear Phenom. 144(3–4), 358–69 (2000).Google Scholar
Stam, C. J., and Reijneveld, J. C. Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed. Phys., 1(1), 3 (2007).Google Scholar
van Diessen, E., Diederen, S. J. H., Braun, K. P. J., Jansen, F. E., and Stam, C. J. Functional and structural brain networks in epilepsy: What have we learned? Epilepsia, 54(11), 1855–65 (2013).Google Scholar
Pijn, J. P., and Lopes da Silva, F. Propagation of electrical activity: nonlinear associations and time delays between eeg signals. In Basic Mechanisms of the EEG. Boston, MA: Birkhäuser Boston. 1993. p. 4161.Google Scholar
Wendling, F., Bartolomei, F., Bellanger, J. J., and Chauvel, P. Identification de réseaux épileptogènes par modélisation et analyse non linéaire des signaux SEEG. Neurophysiol. Clin. Neurophysiol., 31(3), 139–51 (2001).Google Scholar
Wendling, F., Chauvel, P., Biraben, A., and Bartolomei, F. From intracerebral EEG signals to brain connectivity: Identification of epileptogenic networks in partial epilepsy. Front. Syst. Neurosci., 25(4), 154 (2010).Google Scholar
Balatskaya, A., Roehri, N., Lagarde, S., et al. The “Connectivity Epileptogenicity Index” (cEI), a method for mapping the different seizure onset patterns in StereoElectroEncephalography recorded seizures. Clin. Neurophysiol., 131(8), 1947–55 (2020).Google Scholar
Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379423 (1948).Google Scholar
AdTau, and Vila-Vidal, M. DI-Inference-for-Python. 2020. doi:10.5281/zenodo.4067039Google Scholar
AdTau. AdTau/DI-Inference v1.0 (v1.0). Zenodo. 2020. https://doi.org/10.5281/zenodo.4059445CrossRefGoogle Scholar
Mars, N. J. I., Thompson, P. M., and Wilkus, R. J. Spread of epileptic seizure activity in humans. Epilepsia, 26(1), 8594 (1985).Google Scholar
Sabesan, S., Good, L. B., Tsakalis, K. S., et al. Information flow and application to epileptogenic focus localization from intracranial EEG. IEEE Trans. Neural Syst. Rehabil. Eng., 17(3), 244–53 (2009).Google Scholar
Malladi, R., Kalamangalam, G., Tandon, N., and Aazhang, B. Identifying seizure onset zone from the causal connectivity inferred using directed information. IEEE J. Sel. Top. Signal. Process., 10(7), 1267–83 (2016).Google Scholar
Plummer, C., Vogrin, S. J., Woods, W. P., et al. Interictal and ictal source localization for epilepsy surgery using high-density EEG with MEG: A prospective long-term study. Brain, 142(4), 932–51 (2019).Google Scholar
van Mierlo, P., Höller, Y., Focke, N. K., and Vulliemoz, S. Network perspectives on epilepsy using EEG/MEG source connectivity. Front. Neurol., 10, 721 (2019).Google Scholar
Centeno, M., and Carmichael, D. W. Network connectivity in epilepsy: Resting state fMRI and EEG–fMRI contributions. Front,. Neurol., 5, 93 (2014).CrossRefGoogle ScholarPubMed
Lei, X., Wu, T., and Valdes-Sosa, P. Incorporating priors for EEG source imaging and connectivity analysis. Front. Neurosci., 9, 284 (2015).Google Scholar
Staljanssens, W., Strobbe, G., Van, Holen, R., et al. EEG source connectivity to localize the seizure onset zone in patients with drug resistant epilepsy. Neuroimage Clin., 16, 689–98 (2017).CrossRefGoogle ScholarPubMed
Pellegrino, G., Hedrich, T., Chowdhury, R., et al. Source localization of the seizure onset zone from ictal EEG/MEG data. Hum. Brain Mapp., 37(7), 2528–46 (2016).Google Scholar
Ding, L., Worrell, G. A., Lagerlund, T. D., and He, B. Ictal source analysis: Localization and imaging of causal interactions in humans. Neuroimage, 34(2), 575–86 (2007).Google Scholar
Lu, Y., Yang, L., Worrell, G. A., and He, B. Seizure source imaging by means of FINE spatio-temporal dipole localization and directed transfer function in partial epilepsy patients. Clin. Neurophysiol., 123(7), 1275–83 (2012).Google Scholar
Elshoff, L., Muthuraman, M., Anwar, A. R., et al. Dynamic imaging of coherent sources reveals different network connectivity underlying the generation and perpetuation of epileptic seizures. PLoS One, 8(10), e78422 (2013).Google Scholar
Clemens, B., Puskás, S., Bessenyei, M., et al. EEG functional connectivity of the intrahemispheric cortico-cortical network of idiopathic generalized epilepsy. Epilepsy Res., 96(1), 1123 (2011).Google Scholar
Staljanssens, W., Strobbe, G., Van Holen, R., et al. Seizure onset zone localization from ictal high-density EEG in refractory focal epilepsy. Brain Topogr., 30(2), 257–71 (2017).Google Scholar
Mormann, F., Andrzejak, R. G., Elger, C. E., and Lehnertz, K. Seizure prediction: The long and winding road. Brain, 130, 314–33 (2007).Google Scholar
Hughes, J., Devinsky, O., Feldmann, E., and Bromfield, E. Premonitory symptoms in epilepsy. Seizure, 2(3), 201–3 (1993).Google Scholar
Schulze-Bonhage, A., Kurth, C., Carius, A., Steinhoff, B. J., and Mayer, T. Seizure anticipation by patients with focal and generalized epilepsy: A multicentre assessment of premonitory symptoms. Epilepsy Res., 70(1), 83–8 (2006).Google Scholar
Khambhati, A. N., Bassett, D. S., Oommen, B. S., et al. Recurring functional interactions predict network architecture of interictal and ictal states in neocortical epilepsy. eNeuro, 4(1), ENEURO.0091–16.2017 (2017).CrossRefGoogle ScholarPubMed
Tauste Campo, A., Principe, A., Ley, M., Rocamora, R., and Deco, G. Degenerate time-dependent network dynamics anticipate seizures in human epileptic brain. PLoS Biol., 16(4), e2002580 (2018).Google Scholar
Iasemidis, L. D., Shiau, Deng-Shan., Chaovalitwongse, W., et al. Adaptive epileptic seizure prediction system. IEEE Trans, Biomed. Eng., 50(5), 616–27 (2003).Google Scholar
Viglione, S S., and Walsh, G. O. Proceedings: Epileptic seizure prediction. Electroencephalogr. Clin. Neurophysiol., 39(4), 435–6 (1975).Google Scholar
Lange, H. H., Lieb, J. P., Engel, J., and Crandall, P. H. Temporo-spatial patterns of pre-ictal spike activity in human temporal lobe epilepsy. Electroencephalogr. Clin. Neurophysiol., 56(6), 543–55 (1983).Google Scholar
Iasemidis, L. D., Sackellares, J. C., Zaveri, H. P., and Williams, W. J. Phase space topography and the Lyapunov exponent of electrocorticograms in partial seizures. Brain Topogr., 2(3), 187201 (1990).Google Scholar
Lehnertz, K., and Elger, C. E. Can Epileptic Seizures be Predicted? Evidence from Nonlinear Time Series Analysis of Brain Electrical Activity. Phys. Rev. Lett., 80(22), 5019–22 (1998).Google Scholar
Le Van Quyen, M., Soss, J., Navarro, V., et al. Preictal state identification by synchronization changes in long-term intracranial EEG recordings. Clin. Neurophysiol., 116(3), 559–68 (2005).CrossRefGoogle ScholarPubMed
Mormann, F., Kreuz, T., Andrzejak, R. G., et al. Epileptic seizures are preceded by a decrease in synchronization. Epilepsy Res., 53(3), 173–85 (2003).Google Scholar
da Silva, F. L., Blanes, W., Kalitzin, SN., et al. Epilepsies as dynamical diseases of brain systems: Basic models of the transition between normal and epileptic activity. Epilepsia, 44(s12), 7283 (2003).Google Scholar
Jirsa, V. K., Stacey, W. C., Quilichini, P. P., Ivanov, A. I., and Bernard, C. On the nature of seizure dynamics. Brain, 137(8), 2210–30 (2014).Google Scholar
Stam, C. J. Modern network science of neurological disorders. Nat. Rev. Neurosci., 15(10), 683–95 (2014).Google Scholar
Ponten, S. C., Bartolomei, F., and Stam, C. J. Small-world networks and epilepsy: Graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures. Clin. Neurophysiol., 118(4), 918–27 (2007).Google Scholar
Kramer, M. A., Kolaczyk, E. D., and Kirsch, H. E. Emergent network topology at seizure onset in humans. Epilepsy Res., 79(2–3), 173–86 (2008).CrossRefGoogle ScholarPubMed
Geier, C., Lehnertz, K., and Bialonski, S. Time-dependent degree-degree correlations in epileptic brain networks: From assortative to dissortative mixing. Front. Hum. Neurosci., 20(9), 462 (2015).Google Scholar
Takahashi, H., Takahashi, S., Kanzaki, R., and Kawai, K. State-dependent precursors of seizures in correlation-based functional networks of electrocorticograms of patients with temporal lobe epilepsy. Neurol. Sci., 33(6), 1355–64 (2012).Google Scholar
Khambhati, A. N., Bassett, D. S., Oommen, B. S., et al. Recurring functional interactions predict network architecture of interictal and ictal states in neocortical epilepsy. eNeuro, 4(1), ENEURO.0091–16.2017 (2017).Google Scholar
Karoly, P. J., Ung, H., Grayden, D. B., et al. The circadian profile of epilepsy improves seizure forecasting. Brain, 140(8), 2169–82 (2017).Google Scholar
Cook, M. J., O’Brien, T. J., Berkovic, S. F., et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol., 12(6), 563–71 (2013).Google Scholar
Park, Y., Luo, L., Parhi, K. K., and Netoff, T. Seizure prediction with spectral power of EEG using cost-sensitive support vector machines. Epilepsia, 52(10), 1761–70 (2011).Google Scholar
Gadhoumi, K., Lina, J.-M., Mormann, F., and Gotman, J. Seizure prediction for therapeutic devices: A review. J. Neurosci. Methods, 260, 270–82 (2016).Google Scholar
Freestone, D. R., Karoly, P. J., and Cook, M. J. A forward-looking review of seizure prediction. Curr. Opin. Neurol., 30(2), 167–73 (2017).Google Scholar
Kiral-Kornek, I., Roy, S., Nurse, E., et al. Epileptic seizure prediction using big data and deep learning: Toward a mobile system. EBioMedicine, 1(27), 103–11 (2018).Google Scholar
Brinkmann, B. H., Wagenaar, J., Abbot, D., et al. Crowdsourcing reproducible seizure forecasting in human and canine epilepsy. Brain, 139(6), 1713–22 (2016).Google Scholar
Beniczky, S., Karoly, P., Nurse, E., Ryvlin, P., and Cook, M. Machine learning and wearable devices of the future. Epilepsia, 62(Suppl. 2), S116–24 (2021).Google Scholar
Acharya, U. R., Hagiwara, Y., and Adeli, H. Automated seizure prediction. Epilepsy Behav., 88, 251–61 (2018).CrossRefGoogle ScholarPubMed
Smith, G. C., and Stacey, W. C. Graph theory for EEG: Can we learn to trust another black box? Brain, 142(12), 3663–6 (2019).Google Scholar
Kini, L. G., Bernabei, J. M., Mikhail, F., et al. Virtual resection predicts surgical outcome for drug-resistant epilepsy. Brain, 142(12), 3892–905 (2019).Google Scholar
Mtui, E., Gruener, G., and Dockery, P. Chapter 30. Electroencephalography. In Fitzgerald’s Clinical Neuroanatomy and Neuroscience. 7th ed. Philadelphia: Elsevier. 2016. p. 289–97.Google Scholar
Javidan, M. Electroencephalography in mesial temporal lobe epilepsy: A review. Epilepsy Res. Treat., 2012, 117 (2012).Google Scholar
Lindsay, K. W., Bone, I., and Fuller, G. Section, IV. Localised neurological disease and its management: A. Intracranial. In Neurology and Neurosurgery Illustrated. 5th ed. Churchill Livingstone; 2011. p. 217388.Google Scholar
Granger, C. W. J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 424 (1969).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×