Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-08T14:21:31.795Z Has data issue: false hasContentIssue false

9 - Rheometry of suspensions

Published online by Cambridge University Press:  05 December 2011

Jan Mewis
Affiliation:
Katholieke Universiteit Leuven, Belgium
Norman J. Wagner
Affiliation:
University of Delaware
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Macosko, C. W.Rheology Principles, Measurements, and ApplicationsNew YorkVCH 1994Google Scholar
Morrison, F. A.Understanding RheologyOxfordOxford University Press 2001Google Scholar
Cheng, D. C.-H.Cone-and-plate viscometry: Explicit formulae for shear stress and shear rate and the determination of inelastic thixotropic propertiesBrit J Appl Phys 17 1966 253CrossRefGoogle Scholar
Carvalho, M. S.Padmanabhan, M.Macosko, C. M.Single-point correction for parallel disks rheometryJ Rheol 38 1994 1925CrossRefGoogle Scholar
Dontula, P.Macosko, C. M.Scriven, L. E.Origins of concentric cylinders viscometryJ Rheol 49 2005 807CrossRefGoogle Scholar
Piau, J. M.Piau, M.Letter to the Editor: Comment on “Origin of concentric cylinder viscometry.” The relevance of the early days of viscosity, slip at the wall, and stability in concentric cylinder viscometryJ Rheol 49 2005 1539CrossRefGoogle Scholar
Bagley, E. B.End corrections in the capillary flow of polyethyleneJ Appl Phys 28 1957 624CrossRefGoogle Scholar
Dhont, J. K. G.Briels, W. J.Gradient and vorticity bandingRheol Acta 47 2008 257CrossRefGoogle Scholar
Olmsted, P. D.Perspectives on shear banding in complex fluidsRheol Acta 47 2008 283CrossRefGoogle Scholar
Baravian, C.Benbelkacem, G.Caton, F.Unsteady rheometry: Can we characterize weak gels with a controlled stress rheometer?Rheol Acta 46 2007 577CrossRefGoogle Scholar
Yao, N. Y.Larsen, R. J.Weitz, D. A.Probing nonlinear rheology with inertio-elastic oscillationsJ Rheol 52 2008 1013CrossRefGoogle Scholar
Laun, H. M.Bung, R.Hess, S.Rheological and small angle neutron scattering investigation of shear-induced particle structures of concentrated polymer dispersions submitted to plane Poiseuille and Couette flowJ Rheol 36 1992CrossRefGoogle Scholar
Mooney, M.Explicit formulas for slip and fluidityJ Rheol 2 1931 210CrossRefGoogle Scholar
Jastrzebski, Z. D.Entrance effects and wall effects in an extrusion rheometer during the flow of concentrated suspensionsInd Eng Chem Fund 6 1967 445CrossRefGoogle Scholar
Martin, P. J.Wilson, D. I.A critical assessment of the Jastrzebski interface condition for the capillary flow of pastes, foams and polymersChem Eng Sci 60 2005 493CrossRefGoogle Scholar
Nguyen, Y. T.Vu, T. D.Wong, H. K.Yeow, Y. L.Solving the inverse problem of capillary viscometry by Tikhonov regularisationJ Non-Newtonian Fluid Mech 87 1999 103CrossRefGoogle Scholar
Tang, H. S.Kalyon, D. M.Estimation of the parameters of Herschel-Bulkley fluid under wall slip using a combination of capillary and squeeze flow viscometersRheol Acta 43 2004 80CrossRefGoogle Scholar
Yeow, Y. L.Lee, H. K.Melvani, A. R.Mifsud, G. C.A new method of processing capillary viscometry data in the presence of wall slipJ Rheol 47 2003 337CrossRefGoogle Scholar
Tabuteau, H.Baudez, J. C.Bertrand, F.Coussot, P.Mechanical characteristics and origin of wall slip in pasty biosolidsRheol Acta 43 2004 168CrossRefGoogle Scholar
Yoshimura, A. S.Prud'homme, R. K.Wall slip corrections for Couette and parallel disk viscometersJ Rheol 32 1988 53CrossRefGoogle Scholar
Yeow, Y. L.Choon, B.Karniawan, L.Santoso, L.Obtaining the shear rate function and the slip velocity function from Couette viscometry dataJ Non-Newtonian Fluid Mech 124 2004 43CrossRefGoogle Scholar
Kalyon, D. M.Apparent slip and viscoplasticity of concentrated suspensionsJ Rheol 49 2005 621CrossRefGoogle Scholar
Yilmazer, U.Kalyon, D. M.Slip effects in capillary and parallel disk torsional flows of highly filled suspensionsJ Rheol 33 1989 1197CrossRefGoogle Scholar
Barnes, H. A.The yield stress: A review of “panta rhei” – everything flows?J Non-Newtonian Fluid Mech 81 1999 133CrossRefGoogle Scholar
Kobelev, V.Schweizer, K. S.Dynamic yielding, shear thinning, and stress rheology of polymer-particle suspensions and gelsJ Chem Phys 123 2005CrossRefGoogle ScholarPubMed
Fuchs, M.Cates, M. E.Theory of nonlinear rheology and yielding of dense colloidal suspensionsPhys Rev Lett 89 2002 248304CrossRefGoogle ScholarPubMed
Chow, M. K.Zukoski, C. F.Nonequilibrium behavior of dense suspensions of uniform particles: Volume fraction and size dependence of rheology and microstructureJ Rheol 39 1995 33CrossRefGoogle Scholar
Trouton, F. T.On the coefficient of viscous traction and its relation to that of viscosityProc R Soc A 77 1906 426CrossRefGoogle Scholar
Liddell, P. V.Boger, D. V.Yield stress measurements with the vaneJ Non-Newtonian Fluid Mech 63 1996 235CrossRefGoogle Scholar
Mason, T. G.Bibette, J.Weitz, D. A.Yielding and flow of monodisperse emulsionsJ Colloid Interface Sci 179 1996 439CrossRefGoogle Scholar
Nguyen, Q. D.Boger, D. V.Direct yield stress measurement with the vane methodJ Rheol 29 1985 335Google Scholar
Barnes, H. A.Nguyen, Q. D.Rotating vane rheometry: A reviewJ Non-Newtonian Fluid Mech 98 2001 1CrossRefGoogle Scholar
Yoshimura, A. S.Prud'homme, R. K.Princen, H. M.Kiss, A. D.A comparison of techniques for measuring yield stressesJ Rheol 31 1987 699CrossRefGoogle Scholar
Yang, M.-C.Scriven, L. E.Macosko, C. M.Some rheological measurements on magnetic iron oxide suspensions in silicone oilJ Rheol 30 1986 1015CrossRefGoogle Scholar
Walls, H. J.Caines, S. B.Sanchez, A. M.Khan, S. A.Yield stress and wall slip phenomena in colloidal silica gelsJ Rheol 47 2003 847CrossRefGoogle Scholar
Uhlherr, P. H. T.Guo, J.Tiu, C.Zhang, X. M.Zhou, J. Z. Q.Fang, T. N.The shear-induced solid-liquid transition in yield stress materials with chemically different structuresJ Non-Newtonian Fluid Mech 125 2005 101CrossRefGoogle Scholar
Shih, W. Y.Shih, W.-H.Aksay, A.Elastic and yield behavior of strongly flocculated colloidsJ Am Ceram Soc 82 1999 616CrossRefGoogle Scholar
Sollich, P.Rheological constitutive equation for a model of soft glassy materialsPhys Rev E 58 1998 738CrossRefGoogle Scholar
Pham, K. N.Petekedis, G.Vlassopoulos, D.Egelhaaf, S. U.Pusey, P. N.Poon, W. C. K.Yielding of colloidal glassesEurophys Lett 75 2006 624CrossRefGoogle Scholar
Rehbinder, P.Coagulation and thixotropic structuresDisc Faraday Soc 18 1954 151CrossRefGoogle Scholar
Meeten, G. H.Yield stress of structured fluids measured by squeeze flowRheol Acta 39 2000 399CrossRefGoogle Scholar
Nguyen, Q. D.Boger, D. V.Yield stress measurements for concentrated suspensionsJ Rheol 27 1983 321Google Scholar
Stickland, A. D.Buscall, R.Whither compressional rheology?J Non-Newtonian Fluid Mech 157 2009 151CrossRefGoogle Scholar
Miller, K. T.Melant, R. M.Zukoski, C. F.Comparison of the compressive yield response of aggregated suspensions: Pressure filtration, centrifugation, and osmotic consolidationJ Am Ceram Soc 79 1996 2545CrossRefGoogle Scholar
de Kretser, R. G.Boger, D. V.Scales, P. J.Compressive rheology: An overviewBinding, D. M.Walters, K.Rheology Reviews 2003GlasgowBritish Society of Rheology 2003 125Google Scholar
Green, M. D.Eberl, M.Landman, K. A.Compressive yield stress of flocculated suspensions: Determination via experimentAIChE J 42 1996 2308CrossRefGoogle Scholar
Raghavan, S.Khan, S. A.Shear-induced microstructural changes in flocculated suspensions of fumed silicaJ Rheol 39 1995 1311CrossRefGoogle Scholar
Schoukens, G.Spaull, A. J. B.Mewis, J.Time-dependent viscoelastic spectra of some thixotropic dispersionsKlason, C.Kubát, J.Proceedings of the 7th International Congress on Rheology, Gothenburg, 1976StockholmSwedish Society of Rheology 1976 498Google Scholar
Takano, M.The rheological properties of concentrated suspensions: III. Dynamic properties and their correlations with stationary flow propertiesBull Chem Soc Jap 37 1964 78CrossRefGoogle Scholar
Onogi, S.Non-linear behavior of viscoelastic materials: I. Disperse systems of polystyrene solution and carbon blackTrans Soc Rheol 14 1970 275CrossRefGoogle Scholar
Wilhelm, M.Fourier-transform rheologyMacromol Mater Eng 287 2002 833.0.CO;2-B>CrossRefGoogle Scholar
Klein, C. O.Spiess, H. W.Calin, A.Balan, C.Wilhelm, M.Separation of the nonlinear oscillatory response into a superposition of linear, strain hardening, strain softening, and wall slip responseMacromolecules 40 2007 4250CrossRefGoogle Scholar
Doraiswamy, D.Mujumbar, A. N.Tsao, I.Beris, A. N.Danforth, S. C.Metzner, A. B.The Cox-Merz rule extended: A rheological model for concentrated suspensions and other materials with a yield stressJ Rheol 35 1991CrossRefGoogle Scholar
Lonetti, B.Kohlbrecher, J.Willner, L.Dhont, J. K. G.Lettinga, M. P.Dynamic response of block copolymer wormlike micelles to shear flowJ Phys: Condens Matter 20 2008Google Scholar
Mujumbar, A.Beris, A. N.Metzner, A. B.Transient phenomena in thixotropic systemsJ Non-Newtonian Fluid Mech 102 2002 157CrossRefGoogle Scholar
Ewoldt, R. H.Hosoi, A. E.McKinley, G. H.New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shearJ Rheol 52 2008 1427CrossRefGoogle Scholar
Hyun, K.Wilhelm, M.Klein, C. O.A review of nonlinear oscillatory shear tests: analysis and application of large amplitude oscillatory shear (LAOS)Prog Poly Sci 2011CrossRefGoogle Scholar
Navier, C. L.Sur, M. H.Les lois du mouvement des fluidesMém Acad Roy Sci Inst France 6 1827 386Google Scholar
Seth, J. R.Cloître, M.Bonnecaze, R. T.Influence of short-range forces on wall-slip in microgel pastesJ Rheol 52 2008 1241CrossRefGoogle Scholar
Martin, P. J.Wilson, D. I.Bonnett, P. E.Rheological study of a talc-based paste for extrusion-granulationJ Eur Ceram Soc 24 2004 3155CrossRefGoogle Scholar
Benbow, J.Bridgwater, J.Paste Flow and ExtrusionOxfordClarendon Press 1993Google Scholar
Meeker, S. P.Bonnecaze, R. T.Cloître, M.Slip and flow in pastes of soft particles: Direct observation and rheologyJ Rheol 48 2004 1295CrossRefGoogle Scholar
Powell, R. L.Experimental techniques for multiphase flowsPhys Fluids 20 2008CrossRefGoogle Scholar
Buscall, R.McGowan, J. I.Morton-Jones, A. J.The rheology of concentrated dispersions of weakly attracting colloidal particles with and without wall slipJ Rheol 37 1993 621CrossRefGoogle Scholar
Russel, W. B.Grant, M. C.Distinguishing between dynamic yielding and wall slip in a weakly flocculated colloidal dispersionColloids Surf A 161 2000 271CrossRefGoogle Scholar
Reiner, M.Slippage in a non-Newtonian liquidJ Rheol 2 1931 337CrossRefGoogle Scholar
Brochard, F.de Gennes, P. G.Shear-dependent slippage at a polymer solid interfaceLangmuir 8 1992 3033CrossRefGoogle Scholar
Leger, L.Hervet, H.Massey, G.Durliat, E.Wall slip in polymer meltsJ Phys: Condens Matter 9 1997 7719Google Scholar
Buscall, R.Letter to the Editor: Wall slip in dispersion rheologyJ Rheol 54 2010 1177CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Rheometry of suspensions
  • Jan Mewis, Katholieke Universiteit Leuven, Belgium, Norman J. Wagner, University of Delaware
  • Book: Colloidal Suspension Rheology
  • Online publication: 05 December 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977978.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Rheometry of suspensions
  • Jan Mewis, Katholieke Universiteit Leuven, Belgium, Norman J. Wagner, University of Delaware
  • Book: Colloidal Suspension Rheology
  • Online publication: 05 December 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977978.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Rheometry of suspensions
  • Jan Mewis, Katholieke Universiteit Leuven, Belgium, Norman J. Wagner, University of Delaware
  • Book: Colloidal Suspension Rheology
  • Online publication: 05 December 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977978.012
Available formats
×