Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-08T13:13:41.223Z Has data issue: false hasContentIssue false

11 - Advanced topics

Published online by Cambridge University Press:  05 December 2011

Jan Mewis
Affiliation:
Katholieke Universiteit Leuven, Belgium
Norman J. Wagner
Affiliation:
University of Delaware
Get access

Summary

This chapter introduces some advanced methods of colloid rheology that focus primarily on determining fundamental properties of colloidal systems and, in some cases, on creating new colloidally based materials and devices. The advanced rheological techniques included here are stress jumps and superposition rheometry. Furthermore, microrheological techniques are introduced by Eric Furst (University of Delaware), whereby probes can be used to interrogate materials at the colloidal level. Such methods open up a rich field of investigation for testing colloidal micromechanics, as well as creating new colloid-based devices.

The second part of this chapter provides a first look into the expansive field of electrorheological and magnetorheological fluids, whereby a second applied field (electrical or magnetic) is used simultaneously with a flow field to create useful devices from suspensions. Finally, a brief introduction to colloids at interfaces is provided by Jan Vermant (Katholieke Universiteit Leuven), in which colloidal forces specific to surfaces lead to new and useful colloidal structures, which are being probed by novel surface rheological methods. These vignettes provide an introduction to a rich and rapidly evolving literature within the context of colloid rheology as presented in this monograph.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mackay, M. ELiang, C. HHalley, P. JInstrument effects on stress jump measurementsRheol Acta 31 1992 481CrossRefGoogle Scholar
Dullaert, KMewis, JStress jumps on weakly flocculated dispersions: Steady state and transient resultsJ Colloid Interface Sci 287 2005 542CrossRefGoogle ScholarPubMed
Simmons, J. MA servo-controlled rheometer for measurement of dynamic modulus of viscoelastic liquidsJ Sci Instr 43 12 1966CrossRefGoogle Scholar
Mewis, JBiebaut, GShear thickening in steady and superposition flows: Effect of particle interaction forcesJ Rheol 45 2001 799CrossRefGoogle Scholar
Dhont, J. K. GWagner, N. JSuperposition rheologyPhys Rev E 63 2001CrossRefGoogle ScholarPubMed
Mewis, JSchoukens, GMechanical spectroscopy of colloidal dispersionsFaraday Discuss 65 1978 58CrossRefGoogle Scholar
Mobuchon, CCarreau, P. JHeuzey, M.-CReddy, N. KVermant, JAnisotropy of nonaqueous layered silicate suspensions subjected to shear flowJ Rheol 53 2009 517CrossRefGoogle Scholar
Freundlich, HSeifriz, WUeber die Elastiziitaet von Solen und GelenZ Phys Chem 104 1923 233Google Scholar
Heilbronn, AEine neue Methode zur Bestimmung der Viskositaet lebender ProtoplastenJahrb Wiss Bot 61 1922 284Google Scholar
Mason, T. GWeitz, D. AOptical measurements of frequency-dependent linear viscoelastic moduli of complex fluidsPhys Rev Lett 74 1995 1250CrossRefGoogle ScholarPubMed
Banchio, A. JNaegele, GBergenholtz, JViscoelasticity and generalized Stokes-Einstein relations of colloidal dispersionsJ Chem Phys 111 1999 8721CrossRefGoogle Scholar
Horn, F. MRichtering, WBergenholtz, JWillenbacher, NWagner, N. JHydrodynamic and colloidal interactions in concentrated charge-stabilized disperisonsJ Colloid Interface Sci 225 2000 166CrossRefGoogle Scholar
Meyer, AMarshall, ABush, B. GFurst, E. MLaser tweezer microrheology of a colloidal suspensionsJ Rheol 50 2006 77CrossRefGoogle Scholar
Sriram, IDePuit, RSquires, T. MFurst, E. MSmall amplitude active oscillatory microrheology of a colloidal suspensionJ Rheol 53 2009 357CrossRefGoogle Scholar
Squires, T. MBrady, J. FA simple paradigm for active and nonlinear microrheologyPhys Fluids 17 2005CrossRefGoogle Scholar
Squires, T. MNonlinear microrheology: Bulk stresses versus direct interactionsLangmuir 24 2008 1147CrossRefGoogle ScholarPubMed
Sriram, IMeyer, AFurst, E. MActive microrheology of a colloidal suspension in the direct colision limitPhys Fluids 22 2010CrossRefGoogle Scholar
Hao, TElectrorheological suspensionsAdv Colloid Interface Sci 97 2002 1CrossRefGoogle ScholarPubMed
Klingenberg, D. JMagnetorheology: Applications and challengesAIChE J 47 2001 246CrossRefGoogle Scholar
Parthasarathy, MKlingenberg, D. JElectrorheology: Mechanisms and modelsMater Sci Eng Reports R17 1996 57CrossRefGoogle Scholar
Rankin, P. JGinder, J. MKlingenberg, D. JElectro- and magneto-rheologyCurr Opin Colloid Interface Sci 3 1998 373CrossRefGoogle Scholar
Zhao, X. PYin, J. BAdvances in electrorheological fluids based on inorganic dielectric materialsJ Ind Eng Chem 12 2006 184Google Scholar
Gast, A. PZukoski, C. FElectrorheological fluids as colloidal suspensionsAdv Colloid Interface Sci 30 1989 153CrossRefGoogle Scholar
Rosensweig, R. EFerrohydrodynamicsMineola, NYDover Publications 1997Google Scholar
Larson, R. GThe Structure and Rheology of Complex FluidsNew YorkOxford University Press 1999Google Scholar
Wen, W. JHuang, X. XYang, S. HLu, K. QSheng, PThe giant electrorheological effect in suspensions of nanoparticlesNat Mater 2 2003 727CrossRefGoogle ScholarPubMed
Klingenberg, D. JZukoski, C. FStudies on the steady-shear behavior of electrorheological suspensionsLangmuir 6 1990 15CrossRefGoogle Scholar
Dassanayake, UFraden, Svan Blaaderen, AStructure of electrorheological fluidsJ Chem Phys 112 2000 3851CrossRefGoogle Scholar
Brandt, P. CIvlev, A. VMorfil, G. ESolid phases in electro- and magnetorheological systemsJ Chem Phys 130 2009 204513.CrossRefGoogle ScholarPubMed
Asami, KCharacterization of heterogeneous systems by dielectric spectroscopyProg Polym Sci 27 2002 1617CrossRefGoogle Scholar
Mittal, MLele, P. PKaler, E. WFurst, E. MPolarization and interactions of colloidal particles in ac electric fieldsJ Chem Phys 129 2008CrossRefGoogle ScholarPubMed
Wen, W. JHuang, X. XSheng, PElectrorheological fluids: Structures and mechanismsSoft Matter 4 2008 200CrossRefGoogle Scholar
Ma, HWen, WTam, W. YSheng, PDielectric electrorheological fluids: Theory and experimentAdv Phys 52 2003 343CrossRefGoogle Scholar
Bonnecaze, R. TBrady, J. FDynamic simulation of an electrorheological fluidJ Chem Phys 96 1992 2183CrossRefGoogle Scholar
Clercx, H. J. HBossis, GMany-body electrostatic interactions in electrorheological fluidsPhys Rev E 48 1993 2721CrossRefGoogle ScholarPubMed
Foulc, J. NAtten, PFelici, NMacroscopic model of interaction between particles in an electrorheological fluidJ Electrostat 33 1994 103CrossRefGoogle Scholar
Davis, L. CTime-dependent and nonlinear effects in electrorheological fluidsJ Chem Phys 81 1997 1985Google Scholar
Choi, H. JCho, M. SKim, J. WKim, C. AJhon, M. SA yield stress scaling function for electrorheological fluidsAppl Phys Lett 78 2001 3806CrossRefGoogle Scholar
Marshall, LZukoski, C. FGoodwin, J. WEffects of electric fields on the rheology of non-aqueous concentrated suspensionsJ Chem Soc, Faraday Trans 1. 85 1989 2785CrossRefGoogle Scholar
Parthasarathy, MAhn, K. HBelognia, B. MKlingenberg, D. JThe role of suspension structure in the dynamic response of electrorheological suspensionsInt J Mod Phys B 8 1994 2789CrossRefGoogle Scholar
Martin, J. EAdolf, DHalsey, T. CElectrorheology of a model colloidal fluidJ Colloid Interface Sci 187 1994 437CrossRefGoogle Scholar
Tsuda, KTakeda, YOgura, HOtsubo, YElectrorheological behavior of whisker suspensions under oscillatory shearColloids Surf A 299 2007 262CrossRefGoogle Scholar
Laun, H. MGabriel, CMeasurement modes of the response time of a magnetorheological fluid (MRF) for changing magnetic flux densityRheol Acta 46 2007 665CrossRefGoogle Scholar
Lopéz-Lopéz, M. TKuzhir, PBossis, GMagnetorheology of fiber suspensions: I. ExperimentalJ Rheol 53 2009 115CrossRefGoogle Scholar
Ginder, J. MDavis, L. CElie, L. DBullough, W. AProceedings of the 5th International Conference on ER Fluids, MR Suspensions and Associated TechnologySingaporeWorld Scientific 1995Google Scholar
Klingenberg, D. JUlicny, J. CGolden, M. AMason numbers for magnetorheologyJ Rheol 51 2007 883CrossRefGoogle Scholar
Zubarev, A. YIskakova, L. YOn the theory of rheological properties of magnetic suspensionsPhysica A 382 2007 378CrossRefGoogle Scholar
Kuzhir, PLopéz-Lopéz, M. TBossis, GMagnetorheology of fiber suspensions: II. TheoryJ Rheol 53 2009 127CrossRefGoogle Scholar
Binks, B. PParticles as surfactants: Similarities and differencesCurr Opin Colloid Interface Sci 7 2002 21CrossRefGoogle Scholar
Reynaert, SMoldenaers, PVermant, JControl over colloidal aggregation in monolayers of latex particles at the oil-water interfaceLangmuir 22 2006 4936CrossRefGoogle ScholarPubMed
Hoekstra, HVermant, JMewis, JFuller, G. GFlow-induced anisotropy and reversible aggregation in two-dimensional suspensionsLangmuir 19 2003 9134CrossRefGoogle Scholar
Stancik, E. JGavranovic, G. TWidenbrandt, M. J. OLaschitz, A. TVermant, JFuller, G. GStructure and dynamics of particle monolayers at a liquid-liquid interface subjected to shear flowFaraday Discuss 123 2003 145CrossRefGoogle Scholar
Cicuta, PStancik, E. JFuller, G. GShearing or compressing a soft glass in 2D: Time-concentration superpositionPhys Rev Lett 90 2003CrossRefGoogle ScholarPubMed
Reynaert, SMoldenaers, PVermant, JInterfacial rheology of stable and weakly aggregated two-dimensional suspensionsPhys Chem Chem Phys 9 2007 6463CrossRefGoogle ScholarPubMed
Aveyard, RBinks, B. PClint, J. HEmulsions stabilised solely by colloidal particlesAdv Colloid Interface Sci 100 2003 503CrossRefGoogle Scholar
Binks, B. PMurakami, RPhase inversion of particle-stabilized materials from foams to dry waterNat Mater 5 2006 865CrossRefGoogle ScholarPubMed
Cates, M. EClegg, P. SBigels, a new class of soft materialsSoft Matter 4 2008 2132CrossRefGoogle Scholar
Binks, B. PHorozov, T. MColloidal Particles At Liquid InterfacesCambridgeCambridge University Press, 2006CrossRefGoogle Scholar
Aussillous, PQuere, DLiquid marblesNature 411 2001 924CrossRefGoogle ScholarPubMed
Subramaniam, A. BAbkarian, MMahadevan, LStone, HMechanics of interfacial composite materialsLangmuir 24 2006 10204CrossRefGoogle Scholar
Georgieva, DCagna, ALangevin, DLink between surface elasticity and foam stabilitySoft Matter 5 2009 2063CrossRefGoogle Scholar
Georgieva, DSchmitt, VLeal-Calderon, FLangevin, DOn the possible role of surface elasticity in emulsion stabilityLangmuir 25 2009 5565CrossRefGoogle ScholarPubMed
Madivala, BVandebril, SFransaer, JVermant, JExploiting particle shape in solid stabilized emulsions stabilitySoft Matter 5 2009 1717CrossRefGoogle Scholar
Madivala, BFransaer, JVermant, JFuller, G. GSelf-assembly and rheology of ellipsoidal particles at interfacesLangmuir 25 2009 2718CrossRefGoogle ScholarPubMed
Pieranski, PTwo-dimensional interfacial colloidal crystalsPhys Rev Lett 45 1980 569CrossRefGoogle Scholar
Hurd, A. JThe electrostatic interaction between interfacial colloidal particlesJ Phys A: Math Gen 18 1985 1055CrossRefGoogle Scholar
Oettel, MDietrich, SColloidal interactions at fluid interfacesLangmuir 24 2008 1425CrossRefGoogle ScholarPubMed
Masschaele, KPark, B. JFurst, E. MFransaer, JVermant, J 105 2010
Park, B. JPantina, J. PFurst, E. MOettel, MVermant, JDirect measurements of the effects of salt and surfactant on interaction forces between colloidal particles at oil water interfacesLangmuir 24 2008 1686CrossRefGoogle Scholar
Kralchevsky, P. ANagayama, KCapillary interactions between particles bound to interfaces, liquid films and biomembranesAdv Colloid Interface Sci 85 2 2000CrossRefGoogle ScholarPubMed
Stamou, DDuschl, CJohannsmann, DLong-range attraction between colloidal spheres at the air-water interface: The consequences of an irregular meniscusPhys Rev E 62 2000 5263CrossRefGoogle Scholar
Scriven, L. EDynamics of a fluid interface: Equation of motion for Newtonian surfaceChem Eng Sci 12 1960 98CrossRefGoogle Scholar
Edwards, D. ABrenner, HWasan, D. TInterfacial Transport Processes and RheologyStoneham, MAButterworth-Heinemann 1991Google Scholar
Reynaert, SBrooks, C. FMoldenaers, PVermant, JFuller, G. GAnalysis of the magnetic rod interfacial stress rheometerJ Rheol 52 2008 261CrossRefGoogle Scholar
Brooks, C. FFuller, G. GFranck, C. WRobertson, C. RAn interfacial stress rheometer to study rheological transitions in monolayers at the air-water interfaceLangmuir 16 1999 2450CrossRefGoogle Scholar
Derkach, S. RKragel, JMiller, RMethods of measuring rheological properties of interfacial layers: Experimental methods of 2D rheologyColloid J 71 2009 1CrossRefGoogle Scholar
Oh, S. GSlattery, J. CDisk and biconical interfacial viscometersJ Colloid Interface Sci 67 1978 516Google Scholar
Vandebril, SFranck, AFuller, G. GMoldenaers, PVermant, JA double wall-ring geometery for interfacial shear rheometryRheol Acta 49 2010 131CrossRefGoogle Scholar
Prasad, VKoehler, S. AWeeks, E. RTwo-particle microrheology of quasi-2D viscous systemsPhys Rev Lett 97 2006CrossRefGoogle ScholarPubMed
Ravera, FLoglio, GKovalchuk, V. IInterfacial dilatational rheology by oscillating bubble/drop methodsCurr Opin Colloid Interface Sci 15 2010 217CrossRefGoogle Scholar
Brady, J. FThe Einstein viscosity correction in dimensionsInt J Multiphase Flow 10 1984 113CrossRefGoogle Scholar
Zahn, KWille, AMaret, GSengupta, SNielaba, PElastic properties of 2D colloidal crystals from video microscopyPhys Rev Lett 90 2003CrossRefGoogle ScholarPubMed
Trappe, VWeitz, D. AScaling of the viscoelasticity of weakly attractive particlesPhys Rev Lett 85 2000 449CrossRefGoogle ScholarPubMed
Zang, DLangevin, DBinks, B. PWei, BShearing particle monolayers: Strain-rate frequency superpositionPhys Rev E 81 2010CrossRefGoogle ScholarPubMed
Tadjoa, OCassagneau, PChapel, J.-PTwo-dimensional sol-gel transition in silica alkoxides at the air-water interfaceLangmuir 25 2009 11205CrossRefGoogle ScholarPubMed
Camoin, CBossis, GGuyon, EBlanc, RBrady, J. F 1985 141
Stancik, E. JHawkinson, A. LVermant, JFuller, G. GDynamic transitions and oscillatory melting of a two-dimensional crystal subjected to shear flowJ Rheol 48 2004 159CrossRefGoogle Scholar
Stancik, E. JWidenbrandt, M. J. OLaschitz, A. TStructure and dynamics of particle monolayers at a liquid-liquid interface subjected to extensional flowLangmuir 18 2002 4372CrossRefGoogle Scholar
Hansen, P. H. FMalmsten, MBergenstahl, BBergstrom, LOrthokinetic aggregation in two dimensions of monodisperse and bidisperse colloidal systemsJ Colloid Interface Sci 220 1999 269CrossRefGoogle ScholarPubMed
Vassileva, N. Dvan den Ende, DMugele, FRestructuring and break-up of two-dimensional aggregates in shear flowLangmuir 22 2006 4959CrossRefGoogle ScholarPubMed
Masschaele, KFransaer, JVermant, JDirect visualization of yielding in model two-dimensional collolidal gelsJ Rheol 53 2009 1437CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Advanced topics
  • Jan Mewis, Katholieke Universiteit Leuven, Belgium, Norman J. Wagner, University of Delaware
  • Book: Colloidal Suspension Rheology
  • Online publication: 05 December 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977978.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Advanced topics
  • Jan Mewis, Katholieke Universiteit Leuven, Belgium, Norman J. Wagner, University of Delaware
  • Book: Colloidal Suspension Rheology
  • Online publication: 05 December 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977978.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Advanced topics
  • Jan Mewis, Katholieke Universiteit Leuven, Belgium, Norman J. Wagner, University of Delaware
  • Book: Colloidal Suspension Rheology
  • Online publication: 05 December 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977978.014
Available formats
×