Published online by Cambridge University Press: 13 July 2017
This introductory chapter overviews the fundamentals of collision phenomena in liquids and solids. It begins with the physical estimates in Section 1.1, which ascertain the conditions of the commonality of phenomena characteristic of liquid and solid collisions and the historical and modern reasons for deep interest in them. Before embarking on a discussion of the governing equations some basic dimensionless groups are introduced in Section 1.2. Then, the reader encounters the basic laws of mechanics of liquids and solids formulated as the mass and momentum balance equations in Section 1.3. The distinction between liquids and solids can stem from rheological constitutive equations, which are to be added to the basic laws. Two rheological models, of an inviscid and Newtonian viscous liquid, are introduced in Section 1.4, which transforms the basic laws to the Laplace equation for the kinematics of potential flows of inviscid fluids accompanied by the Bernoulli integral of the momentum balance, as well as to the Navier–Stokes equations describing general flows of viscous fluids, or in the limiting case, to the Stokes equations for the creeping flows dominated by viscosity. A special case of a strong short impact of solid onto any type of liquid reveals the potential impulsive motions introduced in Section 1.5. On the other hand, high-speed flows of low-viscosity liquids near a solid surface reveal traditional boundary layers, while near free liquid surfaces the other, less frequently discussed, boundary layers arise. Both types of the boundary layers and the corresponding equations are considered in Section 1.6. Geometric peculiarities of flows in thin liquid layers on solid surfaces allow for such simplifications as the quasi-one-dimensional and lubrication approximations discussed in Section 1.7. Special physical conditions exist at the moving contact line where liquid surface is in contact with both the underlying solid surface and the surrounding gas, which involves such issues as the Navier slip also covered in Section 1.7. The static configurations of sessile and pendant liquid drops, in particular their contact angles with solid surfaces, can be significantly affected by the surface texture and chemical composition – the group of questions elucidated in Section 1.8 and associated with wettability.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.