Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-20T03:39:12.911Z Has data issue: false hasContentIssue false

SL9 impact chemistry: Long-term photochemical evolution

Published online by Cambridge University Press:  12 September 2009

Julianne I. Moses
Affiliation:
Lunar and Planetary Institute, 3600 Bay Area Blvd., Houston, TX 77058-1113, USA
Keith S. Noll
Affiliation:
Space Telescope Science Institute, Baltimore
Harold A. Weaver
Affiliation:
Applied Research Corporation, Landover, Maryland
Paul D. Feldman
Affiliation:
The Johns Hopkins University
Get access

Summary

One-dimensional photochemical models are used to provide an assessment of the chemical composition of the Shoemaker-Levy 9 impact sites soon after the impacts, and over time, as the impact-derived molecular species evolve due to photochemical processes. Photochemical model predictions are compared with the observed temporal variation of the impact-derived molecules in order to place constraints on the initial composition at the impact sites and on the amount of aerosol debris deposited in the stratosphere. The time variation of NH3, HCN, OCS, and H2S in the photochemical models roughly parallels that of the observations. S2 persists too long in the photochemical models, suggesting that some of the estimated chemical rates constants and/or initial conditions (e.g., the assumed altitude distribution or abundance of S2) are incorrect. Models predict that CS and CO persist for months or years in the jovian stratosphere. Observations indicate that the model results with regard to CS are qualitatively correct (although the measured CS abundance demonstrates the need for a larger assumed initial abundance of CS in the models), but that CO appears to be more stable in the models than is indicated by observations. The reason for this discrepancy is unknown. We use model-data comparisons to learn more about the unique photochemical processes occurring after the impacts.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×