Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T12:24:54.716Z Has data issue: false hasContentIssue false

Growth and dispersion of the Shoemaker-Levy 9 impact features from HST imaging

Published online by Cambridge University Press:  12 September 2009

Reta F. Beebe
Affiliation:
Department of Astronomy, New Mexico State University, P.O. Box 30001/Dept. 4500, Las Cruces, NM 88003, USA
Keith S. Noll
Affiliation:
Space Telescope Science Institute, Baltimore
Harold A. Weaver
Affiliation:
Applied Research Corporation, Landover, Maryland
Paul D. Feldman
Affiliation:
The Johns Hopkins University
Get access

Summary

The Hubble Space Telescope Wide Field Planetary Camera 2 imaging data provide the highest spatial resolution of individual Shoemaker-Levy 9 impact sites. Analysis of images obtained with the F410M filter yielded horizontal translation rates of tropospheric cloud structures and the east-west components have been interpreted as zonal winds which vary with latitude. When the tropospheric zonal winds between −60° and −30°, which were derived from the SL9 images, are compared with Voyager data there are no discernible changes in the magnitude or latitudinal positions of wind minima and maxima. This result provides additional evidence of the long-term stability of the zonal winds. Changes in individual sites during a two week period in July 1994 have been mapped. Their evolution is consistent with zonal winds decreasing with height and it provides evidence that local circulation associated with isolated weather systems perturbs the lower stratosphere.

Introduction

On July 16, 1994 at 21h30–51m the first multicolor images revealed the site of the A fragment impact of Comet P/Shoemaker-Levy 9 (SL9) as it rotated into view about 1.5 hours after it formed. The lack of color dependence and the resulting orientation and morphology of the ejecta blanket had not been anticipated. The blowout region was located more to the east than expected and dark rings and crescent-shaped structures centered on the impact site were observed, but the most obvious aspect of site A was the dark core (see the chapter by Hammel).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×